Estimation bias and bias correction in reduced rank autoregressions

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

This paper characterizes the finite-sample bias of the maximum likelihood estimator (MLE) in a reduced rank vector autoregression and suggests two simulation-based bias corrections. One is a simple bootstrap implementation that approximates the bias at the MLE. The other is an iterative root-finding algorithm implemented using stochastic approximation methods. Both algorithms are shown to be improvements over the MLE, measured in terms of mean square error and mean absolute deviation. An illustration to US macroeconomic time series is given.

OriginalsprogEngelsk
TidsskriftEconometric Reviews
Vol/bind38
Udgave nummer3
Sider (fra-til) 332-349
Antal sider18
ISSN0747-4938
DOI
StatusUdgivet - 2019

ID: 186156542