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Abstract. We develop a life cycle model featuring an optimal retirement decision in the

presence of physiological aging. In modeling the aging process we draw on recent advances

within the fields of biology and medicine. In the model individuals decide on optimal

consumption during life, the age of retirement, and (via health investments) the timing of

their death. Accordingly, “years in retirement” is fully endogenously determined. Using

the model we can account for the evolution of age of retirement and longevity across

cohorts born between 1850 and 1940 in the US. Our analysis indicates that 2/3 of the

observed increase in longevity can be accounted for by wage growth, whereas the driver

behind the observed rising age of retirement appears to have been technological change

in health care. Both technology and income contribute to the rise in years in retirement,

but the contribution from income is slightly greater.
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1. Introduction

A 20 year-old US male who was born in 1850 could expect to live another 43.7 years upon

reaching his 20th birthday; in the 1940 cohort the same number had gone up by more than a

decade. At the same time the age of retirement only rose by two years, implying an increase

in length of retirement by roughly eight years (Lee, 2001).1 What were the main driving forces

behind the impressive increase in longevity? What drove the changes in the age of retirement?

Can the observed increase in years in retirement be expected to continue in the years to come?

In an era where the global population is aging rapidly, these are all relevant and important

issues to resolve; not least because of the fiscal sustainability problems that are created by an

aging global population. In this paper we attempt to offer some progress in this regard.

In the present study we develop a life-cycle model where the representative individual is

subject to physiological aging. In modeling the aging process as increasing frailty we draw

on recent research in the fields of biology and medicine. In our life cycle model aging has

three substantive implications: it gradually lowers wage earnings over the life cycle; it works

to increase the disutility from work, and it eventually leads to death. Within this framework

the individual consumes, saves, and makes deliberate investments in slowing down the aging

process thus postponing death. In addition, the individual decides when to optimally retire. In

the end, the model allows us to study the impact from income and health technology (broadly

defined) on changes in longevity, age of retirement, and thus years in retirement.2 Formally, the

model below extends the framework developed in Dalgaard and Strulik (2010) so as to allow for

optimal retirement, age-related disutility from work and a wage rate that changes over the life

cycle.

We proceed to calibrate the model so that it reproduces observed aging, death and health

expenditures for the US cohort that was born in 1940. Subsequently, we use the calibrated

model to analyze the evolution of longevity and age-of-retirement across cohorts born from 1850

1It is well known that the labor force participation rate for older individuals has declined monotonically from the
19th century (Costa, 1998; Lee, 2001). From this evidence it is tempting to conclude that the age of retirement
also must have been monotonically declining. This is not so, as discussed below in the context of our cohort
analysis.
2Technically, technology improvement in our model means that any dollar amount of investment in health is more
effective in slowing down the aging process. As a result, “technology” could be anything from improvements in
health institutions to scientific discoveries leading to a better mode of conduct at the individual level (washing
hands more often in response to the discovery of the germ theory, for instance) or breakthroughs that are more
of the nature of “Big Medicine” (e.g., blood pressure controlling medicine).
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to 1940. We focus on these cohorts as they have all (largely) retired, which means our models’

predictions can be compared to observed rather than estimated age of retirement.

In so doing we establish three main results. First, the increase in life expectancy at age 20 is

mainly driven by income, propelling investments in health; 2/3 of the increase in longevity can

be accounted for by wage growth. Second, technological progress in health care is responsible for

the observed increase in age of retirement for individuals born between 1850 and 1940. Finally,

our simulations show that as for years in retirement both income and technological change

contributed over the period in question, with the income channel being somewhat stronger. As

noted below various explanations for the rise in the importance of retirement have been put

forward in the literature. While income is a familiar explanation for the rise of retirement, we

believe this paper is the first to suggest that technological change in health was a contributor.

Analytically, wage income increases longevity for a simple reason. If an increase in income

is solely spend on increasing consumption at the “intensive margin” (i.e., more per period

consumption) the utility gains will diminish rapidly. As a result, it is a superior strategy to

expand consumption along an “extensive margin” (i.e., by an increasing length of life), which

can be attained by making investments that slow down aging. Consequently wages increase

longevity. At the same time, we show that wages hold an ambiguous effect on age of retirement.

As a result, wage growth is unlikely to have caused the observed path of age of retirement.

But it does contribute significantly to an increase in years in retirement, though primarily via

longevity.

In contrast, technological change in health care works to increase the age of retirement. The

intuition is the following. When technology in health improves, individuals age more slowly;

both because of a direct impact from the innovation and because of a behavioral response in the

direction of more health investments. As a result, the disutility from work declines, inducing

individuals to stay on longer in the labor market. In addition, a lower per period consumption

level, prompted by greater health investments, elevates the utility gain from working. Hence,

technology promotes both longevity and extends working life. While wage growth accounts for

a big part of the observed increase in adult life expectancy, the increase in age of retirement is

caused by technology. Since technological change both raises longevity and age of retirement,

the net impact on years in retirement is theoretically ambiguous. With the aid of the calibrated
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model however we find that technological change, like wage growth, has worked to increase years

in retirement, on net.3

The present paper is related to several strands of literature. Our work is related to the

literature which models optimal health investments and longevity (e.g., Grossman, 1972; Ehrlich

and Chuma, 1990). Kuhn et al. (2012) is particularly related as the authors develop a life

cycle model where retirement is optimally determined, in the presence of life prolonging health

investments. The authors explain how annuity markets (motivated by uncertain length of life)

might lead to overinvestment in longevity, and discuss policy options to restore the first best.

Wolfe (1985) and Galama et al. (2009) discuss the implications of retirement in the context of

a Grossman (1972) model. In Wolfe (1985), however, retirement is not determined by way of

utility maximization, and in Galama et al (2009) longevity is not affected by health investment.

None of the mentioned studies analyzes the historical origins of rising years in retirement and

longevity.4

In the analysis below we contrast the impact of changes in income with those pertaining

to technology vis-a-vis changes in longevity. This resonates with the debate on whether the

observed increase in life expectancy (at birth) was due to income and nutrition (McKeown,

1976; Fogel, 1994) or technological knowledge (Preston, 1975; 1999). Our focus is different in

that we study longevity at age 20. But in the context of “adult longevity” for cohorts born

1850-1940, we find that the income channel (here mediated by “health investments” rather than

nutrition per se) seems to have been the relatively more powerful engine for life extension.

Also related are studies that examine “the rise of retirement” (e.g., Sala-i-Martin, 1996; Gru-

ber and Wise, 1998; Kalemli-Ozcan and Weil, 2011; Bloom et al, 2011). Among these studies

Bloom et al. (2011) is particularly related. Bloom et al. (2011) develop a life cycle model and

use it to gauge the impact of changes in income and life expectancy on age of retirement using

cohort data for the US. The authors find income to have been the most important driver of age of

retirement. We obtain a different result since aging is endogenous in our model. This difference

3We also examine the impact of changes in the relative prices of health investments. From an empirical standpoint,
however, this relative price has - if anything - been on the rise during the period in question, which the model
suggests works to lower life expectancy and age of retirement. As a result, the observed rise in age of retirement
seems to derive from technological change. Moreover, our analysis suggests that the impact from prices on years
in retirement appears to be modest.
4In a general equilibrium setting the evolution of life expectancy and its interplay with growth as been studied
by e.g. Cervallati and Sunde (2005), Hazan and Zoabi (2006) and Galor and Moav (2007). See also Heijdra and
Romp (2009) who analyse the impact from pension reform in a general equilibrium setting, in the presence of a
realistic (but exogenously given) mortality process.
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in modeling strategy allows us to capture technological change in health care in the first place.

Moreover, our model adds another channel through which income matters to retirement: that

greater income admits health improvements, which reduces the individual’s disutility from work

and promotes a longer work-life. In the calibration this additional channel serves to “mute” the

total effect of income on retirement compared to the Bloom et al. (2011) setting.5

Finally, this research is related to a recent literature which tries to explain the long-run

evolution of macroeconomic aggregates in the US, such has health expenditures (Hall and Jones,

2009), leisure (Ramey and Francis, 2009) or schooling (Restuccia and Vanderbroucke, 2012). To

this list we add life expectancy (at age 20) along with years in retirement.6

The paper proceeds as follows. The next section describes the analytical model, after which

the model is calibrated in Section 3. In Section 4 we discuss comparative statics, whereas

Section 5 provides our cohort analysis of longevity and retirement. A final section is reserved

for concluding remarks.

2. The Model

2.1. Physiological Basics: Deficit Accumulation. Our theory is built upon a physiologi-

cally founded notion of human aging: Aging is defined as the intrinsic, cumulative, progressive,

and deleterious loss of function that eventually culminates in death (Arking, 2006). In geron-

tology the fact of aging is explained by applying reliability theory to the human body (Gavrilov

and Gavrilova, 1991). That is, aging is understood as declining redundancy within the body in

its totality; as redundancy recedes expiry (“system failure”) becomes increasingly likely.7 From

an empirical perspective this process has been captured by the so-called frailty index, which is

developed by Mitnitski and Rockwood and various coauthors in a series of articles (e.g., Mitnit-

ski et al, 2002a,b; 2005; Rockwood and Mitnitski, 2006). This description is what we draw on

in the following.

5Kalemli-Ozcan and Weil (2011) point out that the 20th century has witnessed a decline in uncertainty about
life expectancy which may have helped propel the desire for early retirement; their numerical experiments sug-
gest, however, that income should be a quantitatively more important determinant. Sala-i-Martin (1996) argues
technological change has served to dilute the human capital of older workers making publically funded early retire-
ment programs desirable; Gruber and Wise (1998) also highlight public retirement programs along with the tax
disincentives for remaining in the labor market. Hence, pointing to an important impact from health technology
on years in retirement appears to be a novel notion in this literature.
6See also the interesting debate on the link between life expectancy, schooling and growth within the US (Hazan,
2009; Cervalletti and Sunde, 2010; Hansen and Lønstrup, 2011; Strulik and Werner, 2012).
7As young adults the functional capacity of our organs is estimated to be tenfold higher than needed for mere
survival (Fries, 1980); this functional redundancy declines as we age.
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Specifically, we follow Dalgaard and Strulik (2010) and implement a parsimonious description

of the process of health deficit accumulation (or increasing frailty), which extends Mitnitski and

Rockwood (2002) by allowing health expenditure and technology to have an impact on aging.

In concrete terms, health deficits D are evolving with age t according to

Ḋ(t) = µ (D(t)− a−Ah(t)γ) , D(t) ≤ D̄, (1)

where initial deficits D(0) are given. The parameter a captures environmental influences on ag-

ing beyond the control of the individual, the parameters A > 0 and 0 < γ < 1 reflect the state of

the health technology, and h is health investment. While A refers to the general power of health

expenditure in maintenance and repair of the human body, the parameter γ specifies the degree

of decreasing returns of health expenditure; the larger γ, the larger the relative productivity of

cost-intensive high-technology medicine in maintaining and repairing highly deteriorated human

bodies. It is worth pointing out that the interpretation of A is necessarily a broad one; the pa-

rameter captures all factors that ensure that a dollar of health investment is more effective in

slowing down aging. Accordingly, the list would include technological knowledge, the effective-

ness of health care institutions etc. The parameter µ, the “natural” rate of aging, is estimated

with great precision by Mitnitski and Rockwood (2002a,b). In fully developed countries the av-

erage µ is around 0.04; with each birthday the average citizen obtains four percent more health

deficits. Finally, death occurs when health deficits reach an upper boundary D̄. Direct evidence

on the existence of an upper boundary for D is found in Rockwood and Mitnitski (2006).8

2.2. Labor Supply and Wages. In order to capture the labor market consequences of aging we

assume that human productivity deteriorates as a result of mounting bodily deficits. Specifically,

we assume that wages decline at the rate of deficit accumulation (µ). At the same time, however,

technological progress tends to elevate wages at the exogenous rate α.9 Formally the wage at

age t is given by

w(t) = w0

(
eαt − κeµt

)
. (2)

8Dalgaard and Strulik (2010) provide an extensive comparison between the standard economic approach to aging,
according to which humans are thought to accumulate “health capital” (Grossman, 1972) with our physiological
approach, according to which humans accumulate “health deficits”. One empirical advantage of our approach is
that it avoids the counterfactual prediction of the Grossman (1972) model that medical expenses are positively
correlated with health (see e.g., Case and Deaton, 2005).
9See Bloom et al. (2011) for a similar approach to capturing the impact of aging on wages; their approach however
involves an impact from “health capital” rather than from “health deficits” in addition to exogenous technological
progress.
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Here, w0 denotes the initial wage at entry into the workforce. If we assume that α < µ it follows

that the wage profile is hump shaped over the life cycle; that there is a unique solution for the

age of retirement, and that, once retired, individuals do not find it worthwhile to re-enter the

workforce. Conceptualizing α as aggregate productivity growth (of, say, 1.5 percent per year)

and recalling that µ is around four percent p.a. empirically, the assumption α < µ is plausible

and thus adopted in the following. Finally, κ is a parameter which determines the peak of labor

income along the life cycle, 0 < κ < 1.

Our individual under investigation is assumed to own one unit of indivisible labor. At each

age he decides whether to supply this labor endowment or not. We assume that the initial

wage is high enough at the beginning of the working life such that he does indeed supply labor.

Consequently there is a decision about optimal retirement at age R, which has to be taken

together with the decision about optimal life-length T . We assume that the model’s parameters

support R < T so that the individual indeed retires before he dies.

2.3. The optimization problem. The individual maximizes utility from consumption c(t)

over life, taking disutility from work into account. We are considering a representative member

of a cohort, for which reason the maximization problem can be viewed as deterministic to a

first approximation. By considering a deterministic framework we are following the mainstream

economic literature on health, e.g. Grossman (1972), Ehrlich and Chuma (1990), Hall and Jones

(2007).10

The initial age is for convenience normalized to zero. This is the age at entry in the workforce

and will later be assumed to be at age 20 in the calibration. Life before 20 is thus summarized

in the initial conditions. Furthermore, to avoid notational clutter, we suppress a time index

denoting the birth year of the cohort. Summarizing, intertemporal utility is given by

V =

∫ T

0
e−ρt {u(c)− (β1 + v(D)) · `+ β2v(D) · (1− `)} dt. (3)

with instantaneous utility from consumption u(c) = (c1−σ−1)/(1−σ) for σ 6= 1 and u(c) = log(c)

for σ = 1 and v(D) = Dν/ν. The parameter ρ is the rate of time preference and ` ∈ {0, 1} is a

toggle-variable that assumes the value of unity if the individual is working. The disutility from

work depends positively on health deficits and we allow health deficits to matter for life time

10In Strulik (2011) it is shown that the physiological approach to aging can be extended towards uncertain life
time with insignificant impact on results albeit with substantial erosion of analytical tractability.
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utility after retirement. The positive parameters ν, β1, and β2 control the impact of health on

utility before and after retirement. This approach is similar to that adopted in Bloom et al.

(2011).

Besides labor income the individual receives a capital income from wealth k, which bears

interest at rate r. We do not restrict k to be non-negative, so there may be periods in life,

where it is optimal to go into debt and k is therefore negative. At death we assume (wolog)

that k(T ) = k̄ ≥ 0. Thus the individual is assumed to inherit wealth k(0) = k0, and to leave a

bequest k(T ) = k̄ (which both could be zero).

Income can be spend on consumption goods c or on health goods h. The relative price

of health goods is p. While consumption goods are directly utility enhancing, health goods

are instrumental in repairing or delaying bodily decay and, ultimately, in prolonging the life-

span during which consumption goods can be enjoyed. In contrast to our earlier study, health

expenditure also affects the retirement decision. The individual takes all prices as given, and

both p and r are parametrically fixed. The law of motion for individual wealth is thus given by

k̇ = `[w + rk − c− ph] + (1− `)[rk − c− ph]. (4)

The problem is to maximize (3) subject to the accumulation equations (1) and (4), the wage

schedule (2), the initial conditions D(0) = D0, k(0) = k0, and the terminal conditions k(T ) = k̄,

D(T ) = D̄. The problem can be solved by employing optimal control theory; the state variables

are k(t) and D(t) and the control variables are consumption c(t), health investments h(t), and

the work decision (`).

2.4. Optimal Aging, Retirement, and Death. From the first order conditions for consump-

tion, health expenditure and age of retirement R we obtain (see Appendix for details):

gc ≡
ċ

c
=
r − ρ
σ

(5)

gh ≡
ḣ

h
=
r − µ
1− γ

. (6)

β1
D(R)ν

ν
= w(R)c(R)−σ (7)

Equation (5) is the standard consumption Euler equation, whereas equation (6) is the “Health

Euler”. The Health Euler implies that a higher real rate of interest will induce individuals to

allow health expenditure to rise over the life cycle; with a higher marginal rate of transformation
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it becomes attractive to postpone consumption by prolonging life (i.e., more consumption along

the “extensive margin”, in this case). This growth is tempered however by the natural rate of

aging, µ. The intuition is that if µ is high, health deficits accumulate fast at the end of life, which

make late-in-life health investments relatively ineffective in prolonging life; instead the optimal

strategy is to invest early in life (i.e., “prevention”). The optimal path for health expenditures

is also influenced by the degree of diminishing returns in investments γ: intuitively, the greater

the degree of diminishing returns the more attractive it will be to smooth health investments.

The condition (7) says that at the age of retirement, R, the disutility from supplying labor

β1 + D(R)ν/ν, in which D(R) represents health deficits at R, must equal the marginal utility

gain from labor supply, captured by the marginal utility from consuming (c(R)−σ) the additional

wage income (w(R)).

Early in life (i.e., at age t < R) the above equation is not fulfilled with equality; rather, the

right hand side exceeds the left hand side. As noted above, this is essentially due to the fact

that health deficits D are small early in life, and because wages are relatively high. During life,

however, individuals suffer physiological decay, which works to increase the costs of labor supply,

via rising deficits, and (eventually) lowers the gains via lower wages. At time R the individual

is indifferent between work or leisure, at which point he retires.

Now, consider the consequences of a higher wage level; this corresponds to an experiment in

which the wage profile of the individual is shifted up, implying greater life-time wages.11 There

are three individual channels that influence the individual retirement choice: a health channel;

an opportunity cost channel and a channel which operates through the level of consumption.

The first channel is that as wages increase individuals will respond by investing more in health,

which lowers deficits at any given age and thus serves to delay expiry. This “health effect” will

work to delay retirement, by lowering disutility from work. We elaborate on the intuition below,

in the context of comparative statics.

The second channel is that as the wage profile shifts up the alternative costs of leisure rises,

enticing the individual to stay on a little longer in the labor market. Hence, the opportunity

cost channel will also work to delay retirement.

The third channel, however, renders the overall link between income and retirement ambigu-

ous. Higher wages work to increase the level of consumption, which implies lower marginal utility

11Formally, w0 in equation (1) is shifted up: wages are thus higher at all points in time during life.
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from additional work effort and concordant wage income. Consequently, the “enjoyment” of the

incremental wage addition from staying in the labor market a little longer, is reduced. This

channel then provides individuals with an incentive to retire a little earlier, thereby increasing

their overall utility by increasing leisure rather than consumption.

Given these fundamental trade-offs in human behavior it is a priori unclear how the age of

retirement (and thus years in retirement) will change, if income rises. Accordingly, in order to

answer this question we need to calibrate the model. This is done below, where the parameters of

the model are chosen such that the model matches behavior of the average US male citizen (born

in 1940) in several dimensions such as in terms of the evolution of frailty, health investments over

life and more. With the calibrated model in hand it is possible to conduct experiments, whereby

parameters are changed after which the consequences for aging, longevity and retirement can be

assessed. We return to this below.

At the time of death the boundary conditions k(T ) = k̄ and D(T ) = D̄ have to be fulfilled.

That is, the lethal number of health deficits has been attained, and the capital stock has been

eroded to the level of intentional bequests. Integrating (1) and (4) this means that conditions

(8) and (9) have to hold. Observe that ` = 1 for t ≤ R and ` = 0 otherwise. Furthermore, an

optimal solution of this free boundary value problem requires that the associated Hamiltonian

assumes a value of zero at the time of expiry. This implies condition (10), see Appendix for

details.

D̄ = D0 exp(µT )− a [exp(µT )− 1]− µAh(0) exp(µT )

gD
[exp(gDT )− 1] , (8)

k̄ exp(−rT ) = k0 +
w0

α− r
[exp((α− r)R)− 1]− w0κ

µ− r
[exp((µ− r)R)− 1] (9)

− c(0)

gc − r
[exp((gc − r)T )− 1]− ph(0)

gD
[exp(gDT )− 1]

0 = v(T ) + β1β2D̄
ν + c(T )−σ

{
rk̄ − c(T )−−ph(T )

}
(10)

− c(T )−σph(T )1−γ

µAγ
{−µa− µAh(T )γ + µBu(T )ω + µD(T )}

with c(T ) = c(0)egcT , h(T ) = h(0)eghT , u(T ) = u(0)eguT , and c(T ) = (c(T )1−σ − 1)/(−σ) for

σ 6= 1 and c(T ) = log(c(T ) otherwise. The four equations (7) – (10) can be solved for the four

unknowns: c(0), h(0), R, and T . Having found the optimal initial values and the optimal dates

of retirement and death, the four-dimensional dynamic system (1) and (4) – (6) is fully specified
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and it can be integrated analytically to obtain the optimal life-cycle trajectories of c, h, k, and

D.

3. Calibration

We calibrate the model for the average male (white) US citizen who retired around the year

2000; our benchmark American thus originates from the cohort born in 1940. For this cohort

life expectancy at age 20, that is at the assumed age at entry into the labor force, was 74.3 and

the age at retirement was 62.7.

We begin by calibrating the evolution of health deficits. Since the estimate of the rate of aging

µ is unavailable for the US we take from Mitnitski et al. (2002a) the estimate of µ = 0.043 for

Canadian men. The rate of aging within the USA and Canada appears to be similar enough

to justify this as a good approximation (Rockwood and Mitnitski, 2007). Using the estimate

gh = 0.021 for the growth rate of health expenditure over age from Dalgaard and Strulik (2010)

and the estimate r = 0.06 from Barro et al. (1995), we obtain from the Health Euler (7) the

estimate γ = 1− (r − µ)/gh = 0.19.

From Mitnitski et al.’s (2002a) regression analysis we back out initial deficits D0 = D(20) =

0.0274 as the relevant initial value for a 20 year old and D̄ = 0.1005 54.3 years later at the

expected expiry of the benchmark citizen. Before 1840 there was no visible trend for adult life

expectancy in the US and we take the average life-expectancy at 20 of cohorts born between 1780

and 1840, which was about 62 years (Pole, 1992), as life expectancy without the benefits from

medical technological progress. This assumption produces the estimate a = 0.013 so that the

model predicts a life-expectancy at 20 of 42 years without health investment. The 1850 cohort

seems to be the first cohort from which on life expectancy begins to increase permanently (see

Section 5).

For the benchmark run we employ data on the annual labor income by cohort (see Appendix

for details). From this series we take the wage in 1960; that is, the year when our benchmark

citizen (born 1940) is assumed to enter the labor force. Assuming an average annual growth

rate of labor productivity of 1.5 percent we set κ = 0.13 so that annual labor income peaks at

the age of 55 at a value of about 1.2 times the labor income at age 30, as observed by French

(2005).
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Since consumption tends to be essentially constant across the life cycle, once family size has

been taken into account (Browning and Ejrnæs, 2009), we put ρ = r. We normalize the relative

price of health to unity and adjust the remaining parameters of the utility function and the

technology parameter A such that (i) death occurs at the moment when D̄ health deficits have

been accumulated at the age of 74.3; (ii) such that the individual retires at the age of 62.7; (iii)

such that the health expenditure approximates average expenditure of American adults at the

point of retirement (Keehan et al.,2004); (iv) and such that the wage elasticity of retirement is

consistent with the historical record of the age at retirement across cohorts. This provides the

estimates A = 0.00138, σ = 1.15, ν = 0.65, and β1 = 0.035.

The calibrated intertemporal elasticity of substitution for consumption is close to unity as

suggested by several recent studies (see e.g. Chetty, 2006). The external validity of ν is harder

to gauge. But as alluded to above, the selected value ensures that the model is able to replicate

the historical evolution of age in retirement and years in retirement, as seen below. Different

values for ν do not change the qualitative properties of the model, in terms of comparative

statics, as discussed in the next section. But it makes a difference vis-a-vis the model’s ability

to replicate the historical time series, as discussed in Section 5.

In order to focus on health expenditure and retirement as a motive for savings we assume

k(0) = k(T ) = 0. This rules out intentional bequests, which seem to play an unimportant rule

for the savings decision of average Americans (see de Nardi et a., 2010).

Figure 1 shows the obtained life cycle trajectories. Stars in the upper left panel indicate data

according to Mitnitski et al.’s estimate of the age-specific frailty index. We have calibrated the

upper and lower end of the frailty trajectory; the trajectory in between, however, is a prediction

of the model. It fits the data well. The upper right panel shows the imposed wage trajectory.

The lower right panel shows the resulting trajectory of health expenditure. Stars indicate the

actual health expenditure by age-group from Keehan et al, (2004), which can be compared to

the solid line representing the prediction from the calibrated model. Admittedly, our calibra-

tion predicts a bit too much health expenditure in young ages and fails to match the actual

expenditure for the oldest age group. But the model does well on average.

The lower left panel shows how wealth evolves with age. Since individuals wish to have

health expenditures grow over time they save early in life, thus building up wealth. The hump
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Figure 1: Age Profiles: Cohort Born 1940
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wealth in 1000 $. Health expenditure is annual health expenditure in 1000 $.

shaped wealth trajectory reaches its maximum at the age of retirement after which the individual

dissaves until death.

4. Comparative statics

The model involves three key exogenous variables: wages, prices and technology. Table 1

reports the comparative static results from a change in each of these variables. Table 1A reports

the results from increases in the exogenous variables (A,w0, p) by a factor 1/3 (which could be

attained (say) by a constant growth rate of 1.5 % per year over two decades), whereas Table 1B

show comparative statics associated with a decline in each of the variables by 1/3. Note that

since the system is highly non-linear the results need not be symmetrical.

To interpret the results we begin with the impact of wages. An increase in w0 by 1/3 evidently

increases longevity by about 1.3 years. The reason is easy to grasp. If the individual were to

spend his additional income solely on greater per period consumption it would involve sharply

diminishing marginal utility. To avoid this situation it is attractive to expand consumption along
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the extensive margin instead; i.e., via a longer life. But this dictates more health investments so

as to postpone the date of expiry. In the experiment health spending over the life cycle therefore

increases by about 47 percent (cf. column 3). From Table 1B we see the results from a reduction

in wages by 1/3: life expectancy and health expenditures decline, as expected.

Interestingly, when wages go up the age of retirement increases by about three weeks (Table

1A, column 2). This modest impact is to be appreciated in the light of the discussion in Section

2.4.: in our calibration the three countervailing effects from wage changes on age of retirement

nearly cancel each other out. This point is nicely illustrated by the results pertaining to a

reduction in wages (Table 1.B): a large reduction in wages delays retirement as well. Hence, at

sufficiently lower wage levels the comparative static changes sign. In absolute value, however,

the impact remains modest. Yet the result is worth emphasizing since it serves to illustrate the

ambiguity of the effect of the wage on age of retirement. Moreover, in the next section, where

we analyze historical time series, we will expect to see that pre-1940 wage increases predict a

declining trend in age of retirement. The reason is that the model is calibrated to the 1940

cohort, implying that the simulation involves moving backward in time, which involves lower

wages. As seen from Table 1B, at sufficiently low wage levels the impact from a wage increase

on age of retirement is negative. Finally, whether we examine an increase or decrease in wages

the net impact on length of retirement is positive, and largely caused by longer life.

Table 1: Comparative Statics

A. Increase in...

∆T ∆R (∆h/h)

income (w0) 1.37 0.06 46.8

price (p) -1.05 -0.94 -29.4

technology(A) 8.34 5.92 35.2

B. Decrease in . . .

∆T ∆R (∆h/h)

income (w0) -1.65 0.09 -42.3

price (p) 1.71 1.44 63.1

technology(A) -5.72 -5.83 -37.9

Table 1.A shows the results from increasing w0, A, p by factor 1/3. Table 1.B provides corresponding
results for a similar reduction. For the columns on ∆T and ∆R the units are “years” and (∆h/h) is
measured in percent.

Unsurprisingly, an increase in the relative price of health spending leads to a decrease in health

spending. The consequence is a shorter life. Quantitatively longevity shrinks by about a year,

as seen from the table. Meanwhile, the age of retirement also declines. In theory, price changes

actually have two countervailing effects on retirement. On the one hand the price increase

encourages early retirement since it leads to a higher level of health deficits (due to lower health

investments), which raises disutility from labor supply; on the other hand, when p increases real
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income declines and ordinary consumption c falls along with h (albeit less so), for which reason

the marginal utility gain from staying on the labor market an additional year goes up. The

latter effect promotes later retirement and leaves the overall effect of p on R ambiguous. In the

calibrated version of the model, however, the former effect dominates. Accordingly, both death

and retirement occur at an earlier point in life, but years in retirement increase. The economic

significance of the impact is modest, at about five weeks (i.e., 0.1 year). Note that these results

carry over to price reductions.

Finally consider the influence from health efficiency. Improvements in health efficiency makes

it more attractive to expand utility from consumption along the extensive margin (longer life)

relative to the intensive margin (more per period utility). Consequently the level of h increases

(and c decreases), which leads to longer life (see column 3: h goes up by 35 percent). Quantita-

tively the impact is rather substantial: longevity rises by roughly eight years. At the same time

the age of retirement also goes up. The reason is that a lower level of per period consumption

increases its marginal utility, and thus the marginal benefits from additional wage work. This

effect is reinforced by the fact that lower deficits reduce the marginal utility costs from staying

in the labor market. While health efficiency improvements do increase the age of retirement (by

6 years) they also increases years in retirement by about 2.5 years. From Table 1.B. we note

that the results are qualitatively the same for a reduction in A, though the impact on years in

retirement is smaller.

The general take-away from these experiments is that increases in either wages, relative prices

of health spending, or improvements in health efficiency all will work to increase years in retire-

ment. Quantitatively, income and health efficiency have roughly the same effect, whereas the

influence from prices appears to be small. In the appendix we examine the robustness of these

results to different values of ν; qualitatively and quantitatively the results are very similar to

those reported in Table 1.

5. A Century of Rising Health, Wealth, and Leisure

In this section we examine the model’s ability to replicate the movements in longevity, age

of retirement and years of retirement across cohorts born 1850-1940 in the US. These cohorts

are singled out since they have all (largely) left the labor market as of today, implying that the

numbers for age of retirement are based on observation rather than estimation.
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We have obtained data on average real wages by cohort, life expectancy by cohort, and age of

retirement by cohort for the US. In addition, we have data on the evolution of the relative price

of health services from 1928 onwards. Prior to 1928 we assume, inspired by the modest change

in CPI, that the relative price of health services remained constant. We use the price series to

calculate average prices per life time for the cohorts under scrutiny to proxy p. All data sources

and manipulations are described in the Appendix. The data on wages, life expectancy, age of

retirement and years in retirement are depicted in Figure 2 (cf. the solid blue lines).

It is probably worth pausing a moment to comment on the data, since it may seem surprising

that the age of retirement (taken from Lee, 2001) is trending upward during most of the period

in focus. To be sure, labor force participation rates (LFPR) among older males have declined

drastically (and in a monotonic fashion) since the 19th century (Costa, 1998; Lee, 2001). Note,

however, that the LFPR only captures individuals who manage to survive until 65; individuals

who retired and died before the age of 65 do not count. As it turns out people started per-

manently leaving the labor force already at the age of 50 (Lee, 2001, p 643). Now, suppose

improvements in health allow more people to survive until the age of 65 after which they retire.

Then the LFPR will decline, while the expected age of retirement will increase as individuals

who in the past retired and died in their 50s manage to survive and retire in their 60s. There is

therefore no contradiction between Lee’s (2001) estimates that show a (slight) increase in age of

retirement and the observed dramatic reductions in the LFPR of the old (Costa, 1998). That

said, it is also worth observing that the age of retirement indeed starts to decline with cohorts

born after 1930. This process continues during the post World War II period (Lee, 2001, Table

1). We return to this fact at the end of this section.

With the data in hand, along with our calibrated parameters, we provide the following cross-

cohort analysis. First, we feed our real wage data (displayed in the top panel of Figure 2)

through the model and compare the model’s predictions for longevity and age of retirement to

the data. As next steps one would ideally like to look at the influence from p and A, individually.

Sadly, however, A is unobservable and our data on p is somewhat incomplete. Hence, we do the

following instead. We start by filtering our data series for p through the model, and subsequently

calibrate the series for A such that we match the evolution of longevity by cohort exactly. Notice

that measurement error in the series for p (in particular the unobserved part) will be picked

up by the calibrated A series. The key check of the model then becomes whether it is able to
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Figure 2: A Century of Increasing Health and Leisure: Basic Run
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Solid lines: data. Dashed lines: model prediction with imputed wages and constant medical
technology and prices.

account for the observed evolution of cohort specific age of retirement, conditional on the series

for A, w and p. Notice that this procedure also allows us to asses how much of the observed
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increase in longevity and age of retirement we can account for by either wage changes or changes

in p and A, conditional on our calibration.

In Figure 2 we show the result from the first exercise. As seen from panel 2 from above we

cannot fully motivate the evolution of cohort specific life expectancy: the calculated increase

due to wage growth is somewhat smaller than what is observed in the data. The model does

replicate longevity for the cohort born in 1940 but this is a consequence of the calibration, since

it was designed to match life expectancy at age 20 for individuals born precisely in 1940. The

sign that wage growth falls short of accounting fully for the path of longevity is thus found in

the fact that the model overestimates longevity of the 1850 cohort. That said, the explanatory

power of wage growth is substantial in that it can account for roughly 7 additional years in life

expectancy (=54.7-47.6), or roughly 2/3 of the total increase from the 1850 to 1940 cohort (i.e.,

10.7 years). This means that the lions share of the total increase can adequately be accounted

for by wage growth over the period in question.

However, wage growth is clearly incapable of accounting for the trend in age of retirement;

the exact match for the 1940 cohort is again a simple consequence of the calibration. As we

saw in the last section wage growth works to lower the age of retirement, at wages substantially

below their 1940 level. Accordingly, the model overestimates age of retirement in 1850; indeed,

the simulation suggest that the age of retirement should progressively have dropped over time

whereas in fact the opposite occurred. This exercise shows that wage growth is unlikely to have

been the dominant force in accounting for the evolution of age of retirement between 1850-1940.

Even though the age of retirement evidently rose during most of the period that we consider,

years in retirement nevertheless expanded monotonically, as shown in Figure 2. In this context,

however, wage growth tends to overstate the increase slightly. This is reflected in the fact that

the simulated number of years in retirement in 1850 is smaller than in the data. Absent changes

in technology and prices the model suggest that a larger increase in years in retirement should

have occurred.

Accordingly, we next try to gauge the (joint) influence from changes in prices and health

efficiency on longevity and age of retirement. The calibrated series for A, which ensures that

the model replicates the evolution of longevity, is depicted in Figure 3 along with our input

data on price movements. As noted above the calibrated series for A is undoubtedly tainted

by measurement error if the price series is inaccurate, which it may well be since we have no
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data prior to 1928. Still, movements in prices have a relatively modest quantitative impact on

longevity compared to the impact from A, as documented in the last section. Consequently, as

long as the measurement error in p is relatively small the induced bias on the path of A will

probably be insignificant. It therefore seems worthwhile to try to assess whether the path of A

looks plausible as a representation of the evolution of health efficiency.12

Figure 3: Imputed Prices and Predicted Medical Technology
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Price data and calibrated series for medical technology.

It is clear that the series feature two major increases: from cohorts born in 1870 to cohorts

born 1880-90, and again between the turn of the century and 1910-1920. Recall that longevity

is measured as life expectancy at the age of 20; hence the question is whether major innovations

can be said to have occurred during the period 1900-1910 (episode 1) and during the period

1930-40 (episode 2).13

A possible explanation for the first episode could be initiatives associated with the discovery

of the germ theory of disease. While this theory, by all accounts, was scientifically accepted

around 1880 it is probably not until the beginning of the 20th century that its implications is

12The period under scrutiny also witnessed longevity-influencing events, such at World War I. The impact from
such events will inevitably be picked up by A in this calibration.
13The major shifts are clearly between generations 1870 and 1880, and between generations 1900 and 1910. But
in both cases the increase appears to continue for another generation (to 1890 and 1920, respectively) before it
“stalls”.
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Figure 4: A Century of Increasing Health and Leisure: Imputed Prices
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Solid lines: data. Dashed lines: model prediction with imputed wages and prices and
estimated medical technological progress.

starting to diffuse in society at large in the US (Preston, 1999). That is, the value of ventilated

rooms, of washing hands, isolating sick individuals etc. If indeed these ideas started to spread
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at this time one would expect to see an increase in longevity of cohorts that were 20 around

the turn of the century. The second episode involving a rising A might be associated with the

discovery of penicillin in 1928 and its subsequent application in the 1940s. This is at least

broadly consistent with Figure 3 although the initial upward shift in A seems to be a decade

early. Overall the calibrated series for A does not seem glaringly inconsistent with major health

related innovations during the period in question.

Thus reassured, Figure 4 depicts the impact of changes in A, p and w0 on our main outcome

variables; the panels mimic those from Figure 2. By construction the model matches life ex-

pectancy exactly. The key issue though is the model’s fit with regards to the age of retirement.

With our preferred value for ν the model replicates it well. Hence, once we also take into account

changes in the relative price of health and health efficiency, the model can match 90 years of

persistent increases in health and leisure. But there is an important upshot. Since both price

increases and wage growth work to lower the age of retirement we have a clear conclusion: the

upward sloping path for age of retirement is due to the impact from technological change in

health care.

Finally, the fit for years in retirement is also good. In part, of course, because we match

longevity exactly. Nevertheless we now see that the model does not underestimate years in

retirement appreciably in 1850. This suggests that while technology (and prices) do serve to

increase years in retirement (cf. Table 1), their quantitative impact is more modest than that

of income, and have therefore served to stabilize the evolution of years in retirement over the

period in question.

As explained in Section 3 we have been unable to pin down an exact value for ν. But the

one chosen allows us to match the historical time series to the greatest possible extent, which is

essential in order to provide a meaningful assessment of the relative impact from prices, income

and technology on years in retirement. In the Appendix we show simulations for an alternative

ν; the model fit is not as good. In particular, we do not match age of retirement very well.

Hence, it is worth stressing that the “decomposition results” above are contingent on choosing

parameter values such that the model fits the within cohort data discussed in Section 3, and the

time series movements depicted in Figures 3 and 4, to the greatest extent possible.

In the analysis above we have focused on cohorts born between 1850 and 1940. As noted in the

Introduction, we focus on these cohorts as they have all (largely) retired from the labor market.
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Consequently, we can rely on observations (cohort estimates) on age of retirement rather than

(cross sectional) period estimates. Nevertheless, it seems worth commenting on more recent

developments.

The evidence reported in Lee (2001) shows that years in retirement have continued to expand

with cohorts born after 1940: it rose from 11.6 years to 16.3 years for the cohort born in 1990.

The further rise of retirement is driven by increasing life expectancy but also by a declining age

of retirement: whereas the expected age of retirement was 63.5 for the cohort born in 1930 (the

recorded “peak”), it declined to 61.5 in 1990. These changes suggest, seen through the lens of

our model, that income and technological progress have been unable to off-set the impact from

an accelerated rate of increase in the medical consumer price index (MCPI); the relative rate of

increase in the MCPI went progressively up from 0.4% per year to 2.8 pct per year at the end of

the century (Berndt et al., 2000, Figure 1). This, at least, can account for the declining age at

retirement, combined with the continued increase in years in retirement, within the context of

the model developed above. At the same time other mechanisms might well have been at work,

encouraging earlier retirement (e.g., Gruber and Wise, 1998; Kalemli-Ozcan and Weil, 2011).

6. Conclusion

In the present paper we have developed a life cycle model with an optimal retirement choice

where individuals are subject to physiological aging. We have used a calibrated version of the

model to study the origins of the remarkable rise in adult life expectancy as well as the increase

in the age of retirement, for cohorts born 1850-1940.

We find that the bulk of the increase in adult longevity appears to have been generated via

an income-cum-health investment channel; about 2/3 of the total increase seems to be due to

income growth. Technological progress also contributed, but income appears to have been more

important. Conversely, technological knowledge appears to have been largely responsible for the

increase in age of retirement in the US, 1850-1940; income and rising prices work to drive the

age of retirement in the other direction during this period.

From a policy angle the difference between longevity and age of retirement is perhaps of

greater interest. The model predicts that increases in (relative) health care prices, technological

progress in health care and rising income all contribute to more years in retirement. Since there

is no particular reason to expect that either one of these factors will stall, this suggests that
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desired length of retirement will continue to grow in the years to come. This could be seen as

bad news from the point of view of fiscal sustainability.

Since governments are unlikely to wish for technological regress and declining income, it

would appear that the only option left to policy is to target relative prices of health care. Our

calibration suggest that declining relative prices of health investments will serve to increase

both longevity and the age of retirement, but that the impact on the latter appears to be larger,

which would thus imply fewer desired years in retirement. Yet caution is warranted as these

results might be specific to the US calibration. Moreover, the quantitative impact from even

substantial reductions in prices appear to be modest.
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Appendix

Mathematical Appendix

Integrating (1) provides the following solution.

D(t) = D(0) exp(µt)−
∫ t

0
µa exp(µ(t− v))dv − µA

∫ t

0
h(v)γ exp(µ(t− v))dv

+ µB

∫ t

0
u(v)ω exp(µ(t− v))dv. (A.1)

Integrating (4) we get (A.2).

k(t) = k(0) exp(rt)−
∫ min{t,R}

0
exp(r(t− v))w(v)dv −

∫ t

0
exp(r(t− v))c(v)dv

−
∫ t

0
exp(r(t− v))ph(v)dv. (A.2)

Using (A.1) and (A.2), the initial conditions D(0) = D0, k(0) = k0, and the terminal condi-

tions D(T ) = D̄, k(T ) = k̄, the Lagrangian associated with problem (1)- (4) is given by

max
c,h,R,T

L =

∫ T

0

e−ρt
c1−σ − 1

1− σ
−
∫ R

0

e−ρt(β1 +Dν/ν)dt

+ φ

{
k0 +

∫ R

s

e−rtw(t)dt−
∫ T

0

e−rtc(t)dt−
∫ T

0

e−rtph(t)dt− k̄e−rT

}

+ λ

{
D0 − µa

∫ T

0

e−µtdt− µA
∫ T

0

h(t)γe−µtdt− D̄e−µT

}
. (A.3)

The first order conditions for consumption and health expenditure are:

0 = e−ρtc−σ − φe−rt (A.4)

0 = −φe−rtp− λµAγhγ−1e−µt. (A.5)

Differentiating (A.4) with respect to time we get (5) and differentiating (A.5) with respect to

time we get (6). The first order condition for optimal retirement is

−
(
β1 +

D(R)ν

ν

)
e−ρR − φw(R)e−rR = 0

Inserting φ from (A.4) provides (7) in the text.

Two conditions have to be fulfilled at the optimal T . The first one is that D(T ) = D̄.

Evaluating (A.1) at T and employing the fact of constant growth rates of h and u according to

(7) and (8) this can be expressed as:

D̄ = D0 exp(µT )− µa
∫ T

0
exp(µ(T − t)dt− µA

∫ T

0
h(0)γ exp(γght) exp(µ(T − t))dt

Solving the integrals provides (8) in the text. The second condition for optimal T is that the

Lagrangian evaluated at T assumes the value of zero, that is, using (A.3) and the Euler equations
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(5)-(7):

0 =

(
c(T )1−σ − 1

1− σ

)
exp(ρT )− (β1 + D̄ν(ν)) exp(ρT )

+ φ
[
− exp(−rT )c(T )− p exp(−rT )h(T ) + r exp(−rT )k̄

]
+ λ

[
−µ exp(−µT )− µAh(T )γ exp(−µT ) + µD̄ exp(−µT )

]
Inserting from (A.4) and (A.5) that φ exp(−rT ) = c(T )−σ exp(−ρT ) and that λ exp(−µT ) =

−φ exp(−rT ) ·ph(t)1−γ/(µAγ) provides (10) in the text.

Using the Euler conditions (A.4)–(A.5) and the wage schedule (2) the budget constraint (A.2)

can be written as:

0 = k(0) + w0

∫ R

0
exp((α− r)t)dt− w0

∫ R

0
exp(−(µ+ r)t)dt

−
∫ T

0
c(0) exp((gc − r)t)dt− p

∫ T

0
h(0) exp((gh − r)t)dt− k̄ exp(−rT ).

Solving the integrals provides (9) in the text.

Data appendix

• Life expectancy at age 20 by cohort. Source: Lee (2001, Table 1).

• Expected age of retirement at age 20 by cohort. Source: Lee (2001, Table 1).

• Average years of schooling by cohort. Source: Hazan (2009).

• Nominal wage index for unskilled workers for the US. Source: Historical statistics

for the US millennium edition. Table Ba4218: Index of money wages for unskilled labor: 1774-

1974.14

• CPI for the US. Source: Historical statistics for the US millennium edition. Table CC1-2:

Consumer price indices for all items: 1774-2003.15

• Real wages 1850-1940 for individual cohorts: The real wage index for unskilled workers,

at time t, xt, is calculated as the nominal wage (index =100 in 1860) divided by the CPI (index

= 100 in 1860). In practise the average wage reflects educational attainment of the cohort.

Hence, for cohorts born at time c, with uc years of recorded schooling, the associated real wage

index was calculated as

yc = xc+20 · eθ·uc . (A.6)

Hence, we assume cohort c enters the labor market at age 20. The parameter θ is the return

to a year of schooling. We assume θ = 0.1 in all years. Finally, to get the wage level, we did the

following. First, we obtained GDP per worker, rgdpl2wok, for 1970 from Penn World Tables 7.0

(1970 is the last year for which we have data on cohort specific years of schooling from Hazan,

2009). Second, we define zt as 2/3 · rgdpl2wok1970, where “2/3” proxies for the labor share.

14Web source: http://hsus.cambridge.org/HSUSWeb/essay/showtableessay.do?id=Ba4218&swidth=1366
15Web source: http://hsus.cambridge.org/HSUSWeb/search/searchTable.do?id=Cc1-2
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Third, for all cohorts c their entry real wage level is then calculated as

wc = zt · (yc/y1970). (A.7)

• The relative price, p. We constructed p at an annual frequency (1850-2000) in the following

way: Until 1927 p = 1. After 1927 the p is allowed to rise with the relative rate of inflation (CPI

vs MCPI) in the period intervals reported in Berndt et al (2000, Figure 1). For instance, between

1927 and 1946 the relative rate of increase in MCPI was 0.4 pct per year, rising progressively to

2.81 pct per year in the last period 1986-96. The relative speed of inflation from 1996 to 2016

(the terminal year of the 1940 cohort) is assumed identical to the period 1986-96.

Sensitivity Analysis

The tables below report comparative static results comparable to those reported in the text.

The alternative values of ν and β1 are such that the within cohort match of model and data is

the same as that shown in Section 3. However, the fit for the historical time series exercise is

poorer (see below).

Table A.1: Comparative Statics: ν = 1

A.1.A. Increase in...

∆T ∆R (∆h/h)

w0 1.34 -0.61 44.9

p -1.06 -0.95 -29.6

A 8.32 5.16 32.6

A.1.B. Decrease in . . .

∆T ∆R (∆h/h)

w0 -1.63 0.95 -41.2

p 1.72 1.37 62.8

A -5.73 -6.23 -38.6

ν = 1 requires to to recalibrate β1 = 0.237 such that the model supports the same
retirement age as the benchmark calibration.

Table A.2: Comparative Statics: ν = 2

A.2.A. Increase in...

∆T ∆R (∆h/h)

+∆w0 1.31 -1.55 42.0

+∆p -1.06 -0.94 -29.6

+∆A 8.29 4.29 31.8

A.2.B. Decrease in . . .

∆T ∆R (∆h/h)

−∆w0 -0.50 0.62 -13.8

−∆p 1.71 1.27 62.7

−∆A -5.74 -6.86 -39.4

ν = 1 requires to to recalibrate β1 = 0.303 such that the model supports the same
retirement age as the benchmark calibration.
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Figure A.1: A Century of Increasing Health and Leisure: ν = 1
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Solid lines: data. Dashed lines: model prediction with imputed wages and prices and estimated
medical technological progress. Parameter values as for Figure 4 but ν = 1 and β1 = 0.237.
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