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Abstract

In the minimum cost spanning tree model we consider decentral-
ized pricing rules, i.e. rules that cover at least the e�cient cost while
the price charged to each user only depends upon his own connection
costs. We de�ne a canonical pricing rule and provide two axiomatic
characterizations. First, the canonical pricing rule is the smallest
among those that improve upon the Stand Alone bound, and are either
superadditive or piece-wise linear in connection costs. Our second, di-
rect characterization relies on two simple properties highlighting the
special role of the source cost.

Keywords: Pricing rules, Minimum cost spanning trees, Canonical pricing
rule, Stand-alone cost, Decentralization.

1 Introduction

The notion of individual guarantees is as old as the discussion of Fair Division.
My actual share of the pie will depend upon other agents' characteristics,
but I am guaranteed a certain fraction of the pie no matter what these
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characteristics turn out to be. The higher this "worst case" share, the less
risky my participation in the division rule. For instance Steinhaus ([23]), and
many authors after him (see e.g., Brams and Taylor [7]), regards a division
of the pie as "fair" if each participant receives a share worth (to him) at least
1=n-th of the entire pie. In the pie division problem, the 1=n-th guarantee
can be implemented, and no higher share can.
This idea has been applied to virtually all formal models of Fair Division,

including public decisions with side payments ([11],[24], [15]), the assignment
of indivisible goods ([10], [4]) and cooperative production ([16]); see [17] for
a systematic discussion.
Here we look for the best individual guarantees in a classic network con-

nection problem, the minimal cost spanning tree problem ([3],[9],[22]). This
is a cost sharing problem, therefore individual guarantees take the form of
an upper bound on cost shares, and feasibility requires that the sum of these
upper bounds cover at least the actual cost. In problems where costs are
subadditive w.r.t. demands, the natural and much discussed upper bound is
the Stand Alone upper bound (e.g., [21],[17]), namely the cost a given agent
would incur to meet his own demand, irrespective of whether other users'
demands are met or not. Its key feature is decentralization: the Stand Alone
upper bound only depends upon the cost function and the individual demand
of the agent in question. Thus it can be interpreted as a (non linear) pricing
rule, that an agent can use to choose a level of demand. The interesting ques-
tion is to �nd a feasible decentralized pricing rule that is as close as possible
to cover the actual cost. For instance with a one-input one-output concave
cost function C such that C(0) = 0, the Stand Alone cost is a feasible pricing
rule that cannot be improved1.
In the minimal cost spanning tree (thereafter mcst) problem, costs are

subadditive w.r.t. demands, so the Stand Alone upper bound is a feasible
pricing rule. However we de�ne a canonical pricing rule that considerably
improves it, and only depends upon the connection costs of the agent in ques-
tion: it can be computed prior to any evaluation of other users connection
costs. The canonical rule is given by a simple linear expression (De�nition
2), closely related to an exact cost-sharing method in the mcst problem,
dubbed the Folk solution in [5], and introduced independently by several
authors ([13],[19],[6],[2]). Our canonical decentralized charge is bounded be-
low by that of the Folk solution, with equality whenever the cost matrix is
irreducible: see the discussion at the end of section 3.

1Writing xi for agent i's demand, let f(xi) be a pricing rule improving upon the Stand
alone upper bound: f(xi) � C(xi) for all xi. Combined with feasibility, C(

P
i xi) �P

i f(xi), this implies easily f � C.
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In section 4 we show a couple of natural examples where the ratio of the
total charge collected by the canonical pricing rule to the e�cient cost grows
as log n in the number n of users. This compares favourably to the Stand
Alone price, which in the same examples collects about n times the e�cient
cost. The canonical pricing rule has three desirable properties2, pertaining
to changes in connection costs and in the set of network users. The price I
pay is a continuous function of all connecting costs, and is weakly increasing
in any one of my own connection costs. If new users enter the network, this
price decreases weakly. See Lemma 2.
Our "canonical" terminology is vindicated by three axiomatic characteri-

zations of this pricing rule. In Theorem 1 we borrow two functional properties
of the mapping from the matrix of connection costs (for all users) to the ef-
�cient cost (that of an optimal spanning tree): this mapping is superadditive
and piece-wise linear. Superadditivity w.r.t. connection costs conveys the
designer's preference for exibility: it is (weakly) cheaper to build an optimal
network for today's cost matrix, and possibly another network for tomorrow's
cost matrix, rather than a single network optimal for the sum of today and
tomorrow's connecting costs. Piece-wise linearity is the fact that when the
same network is optimal for two di�erent cost matrices, then the optimal
cost is linear in the cost matrix.
Theorem 1 states that the canonical pricing rule is the smallest one that

improves upon the Stand Alone bound and is superadditive (or piece-wise
linear) in the pro�le of connecting costs.
Theorem 2 o�ers an alternative characterization relying on two simple

properties highlighting the special role of the source cost vis-a-vis the inter-
agent connecting nodes.

2 The MCST Model

We recall the well known minimal cost spanning tree model (see e.g. [22]).
Let N � N = f1; 2; : : : g be a �nite set of agents where jN j = n. We consider
networks with a source denoted by agent 0. The source can be considered as
a �rm supplying the agents in N . A network g over N0 = N [ f0g is a set
of unordered pairs ij where i; j 2 N0. We denote by N0(2) the set of such

unordered pairs; its cardinality is n(n+1)
2
. Sometimes we speak of N0(2) as

the complete network on N0. We write G0 = fgjg � N0(2)g for the set of all
networks of N0.
Two agents i and j are connected in g if there is a path i1i2; i2i3; : : : ; ih�1ih

2They are also satis�ed by the Folk solution and the Stand Alone pricing rule.
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such that ikik+1 2 g for 1 � k � h � 1 where i = i1 and j = ih. A network
g is said to be connected if i and j are connected in g for all i; j 2 N0. A
path is called a cycle if it starts and ends with the same agent. A network
is called a tree if it contains no cycles. A spanning tree is a tree connecting
all agents in N0. There are (n+ 1)n�1 such spanning trees.
For each pair ij 2 N0(2), there is a non-negative cost kij attached to

the link between agents i and j. We think of such costs as the costs of
establishing the link, maintenance costs or indirect costs such as congestion
etc. The set of such costs is an element K 2 RN0(2). We abuse notation by
speaking of the cost matrix K.
A minimum cost spanning tree (mcst) is a spanning tree T where the

total link cost
P

ij2T kij is minimized over all spanning trees of N
0. We write

this minimal cost as v(N;K). Note that this is also the smallest cost over all
networks, not necessarily trees, connecting the source to all agents. There is
a unique mcst if all costs kij are di�erent, but in general there may be more
than one (up to (n+ 1)n�1 if all costs kij are equal).
Two well known algorithms for �nding a minimum cost spanning tree

given K, are due to Kruskal ([14]) and Prim ([20]). We recall the latter,
that will be useful below. There are n steps: in step 1 we pick a cheapest
link between the source and one agent; in step t we add one of the cheapest
links between the set Mt�1 of agents already connected to the source, and
N nMt�1.

3 The Canonical Pricing Rule: de�nition

As explained in the Introduction, we wish to cover at least the e�cient cost
while charging each user of the network in a way that only depends upon his
or her \local" costs.
Given a mcst problem (N;K) and an agent i, we write k[i] for the (n�1)

dimensional vector (kij; j 2 N n fig) of this agent's own connection costs to
other agents.

De�nition 1 Fix the set N0 of users and the source. A decentralized
pricing rule is a mapping f : R+ � Rn�1+ ! R+ such that for all x � 0, the
mapping y ! f(x; y) is symmetric in the n� 1 coordinates of y; and for all
cost matrices K we haveX

i2N
f(k0i; k[i]) � v(N;K): (1)

The simplest example of a decentralized pricing rule is the stand alone
cost sa(k0i; k[i]) = k0i for which inequality (1) is obvious. The canonical
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pricing rule de�ned below is unanimously preferred to sa, because it charges
less than sa to every user, often signi�cantly so. Yet this rule too overcharges
in most problems, as do all decentralized pricing rules.

Lemma 1 No decentralized pricing rule can cover costs exactly for all
problems.
Proof. Consider a problem (N;K) where kjl = 0 for all j; l 2 N0 and let
f(k0i; k[i]) = � be the common charge of every agent. Sequentially chang-
ing the source cost from 0 to 1 for all agents except for agent 1 and using
budget-balance repeatedly, we see that the price charged to each agent can-
not change. Next consider �K where �k0h = 1 for all h 2 N and �kjl = 0
otherwise. We have f(�k0j; �k[j]) = � for all j 6= 1 and by budget-balance
f(�k0i; �k[i]) = � + 1. As the choice of 1 was arbitrarily in the symmetric
problem (N; �K), we have a contradiction.

We now de�ne the decentralized pricing rule that is the object of this
paper in two equivalent ways. In equation (2) we denote by �N the set of
orderings of N , and given � 2 �N , by P(i; �) denote the union of the source
and the set of agents prior to agent i in the order �, i.e. P(i; �) = f0g[fj 2
N j�(j) < �(i)g.
In equation (3) we arrange the n� 1 numbers k[i] increasingly as kti ; 1 �

t � n� 1, so that k1i � � � � � kn�1i .

De�nition 2 Given N0, the Canonical Pricing Rule is de�ned as

can(k0i; k[i]) =
1

n!

X
�2�N

min
j2P(i;�)

fkijg (2)

It is equivalently computed as

can(k0i; k[i]) =
1

n
k0i +

n�1X
t=1

1

t(t+ 1)
minfkti ; k0ig (3)

We have
can(k0i; k[i]) � sa(k0i; k[i]) (4)

Equation (3) is a closed form expression of the charge can(k0i; k[i]). There-
fore it is preferred to (2) when we compute the canonical price for a speci�c
problem.
On the other hand equation (2) gives an intuitive interpretation of the

canonical price, as the expected marginal cost of adding a given agent to a
(random, and typically ine�cient) spanning tree. Pick an unbiased random
ordering � of the agents, and construct a spanning tree T� as follows. Start by
connecting the �rst agent to the source and charging him the corresponding
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cost; connect next the second agent to either the source or the �rst agent,
whichever is cheaper, and charge him that new cost; ..; charge to the t-th
agent the cost of the cheapest link to one of its predecessors or the source;
and so on. This is similar to the Prim algorithm, with the crucial di�erence
that in the latter, the t-th agent is not selected at random: instead it is the
cheapest to connect with the t� 1 �rst agents and the source. In particular
for any � the cost of T� is no less than v(N;K), so inequality (1) holds.
To see why equations (2) and (3) are equivalent, �x i = 1 for simplic-

ity and observe that if (k01; k[1]) remains in the cone where the ordering of
the n numbers k01; k1i; 2 � i � n does not change, the right hand side of
either equation is a linear function of (k01; k[1])

3. A basis of such a cone
is made of vectors (k01; k[1]) with all coordinates equal to 0 or 1, thus it is
enough to check the equivalence for such vectors. If k01 = 0, both equa-
tions give can(k01; k[1]) = 0; if k01 = 1 but k[1] = 0, both equations give
can(k01; k[1]) =

1
n
. Assume next k01 = 1; k1i = 0 for 2 � i � t; k1j = 1 for

t + 1 � j � n. Then minj2P(1;�)fk1jg = 1 if and only if all predecessors of
1 in � are not smaller than t + 1, which happens with probability 1

t
, so (2)

yields can(k01; k[1]) =
1
t
. It is clear that (3) gives the same conclusion.

We turn to the relationship between the canonical pricing rule and the
(budget-balanced) Folk solution of the mcst problem mentioned in the intro-
duction. The latter uses a reduction of the cost matrix introduced by Bird
([3], [1]). Given (N;K), the reduced cost matrix K� is the smallest matrix K 0

such that v(N;K) = v(N;K 0). Equivalently k�ij is the largest number z such
that any path from i to j contains at least one edge with cost at least z. The
matrix K is called irreducible if K = K�. A matrix K is irreducible if and
only if for all i; j; l we have maxfkij; kjlg � kil, which is easy to recognize
numerically. Moreover for any K, irreducible or not, the reduced matrix K�

is irreducible.
Proposition 1 in [5] shows that for any irreducible cost matrix K, the

canonical charges (can(k0i; k[i]); i 2 N) cover the costs exactly. Hence the
following equation

'i(N;K) = can(k
�
0i; k

�[i]) for all N;K and i

de�nes a budget-balanced solution ', and this is the Folk solution. Because
K� � K, and the mapping K ! can(k0i; k[i]) is monotonic, the Folk solution
is always bounded above by the canonical upper bound:

'i(N;K) � can(k0i; k[i]) for all i, all K
3This is the piece-wise linearity property formally de�ned in section 4.
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with equality if the matrix K is irreducible. Note however that the equality
'i(N;K) = can(k0i; k[i]) for all i does not imply that K is irreducible4.

4 The canonical pricing rule: examples and

further properties

In the next two examples, we compute how far the pro�le of canonical upper
bounds (can(k0i; k[i]); i 2 N) is above budget-balance, and how far below
the pro�le of stand alone upper bounds (sa(k0i; k[i]); i 2 N) (inequality (4)).
Example 1 : Consider the linear tree 0 $ 1 $ 2 $ � � � $ n, with

connecting costs corresponding to distances, namely kij = ji� jj. Assume n
is even to �x ideas, and write Hn for the harmonic number Hn =

Pn
j=1

1
j
.

Then compute from (3):

cani =
iX
j=1

1

2j � 1 for 1 � i �
n

2

cani =
n�iX
j=1

1

2j � 1 +
nX

j=2(n�i)+1

1

j
= Hn �

n�iX
j=1

1

2j
for

n

2
� i � n

from which one deduces easily

nX
i=1

cani '
n

2
Hn ,

Pn
i=1 cani
v(N;K)

' 1

2
log n

Thus the relative excess charge
Pn
i=1 cani
v(N;K)

becomes arbitrarily large, but much
slower than under the Stand Alone upper bound:

nX
i=1

sai =
n(n+ 1)

2
,
Pn

i=1 sai
v(N;K)

' 1

2
n

Note that n
2
is also the expected cost of a spanning tree chosen uniformly

among all (n+1)n�1 spanning trees, independently of any cost consideration.
The canonical charges are much closer to the e�cient cost.
We conjecture that for any cost matrix satisfying the triangular property

kij � kil + klj, the relative excess charge never grows faster than 1
2
log n.

4An example is N = f1; 2g; k12 = 2; k0i = 1; i = 1; 2. Here v(n;K) = 2 = can1 + can2,
yet k�12 = 1.
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Example 2: Consider the random cost matrix K where all entries kij
are IID with uniform distribution on [0; 1]. Using the algorithm leading to
equation (2) it is easy to compute

Efcanig =
1

n
(
1

2
+
1

3
+ � � �+ 1

n+ 1
) ' log n

n
; and Efsaig =

1

2

Up to a factor 2, the limit in n of Efcanig
Efsaig is as in Example 1.

Moreover Theorem 6.21 in [8] shows that

Efv(N;K)g '
1X
j=1

1

j3
' 1:202

so the relative excess charge of the canonical rule is, again, of the order log n.
Notice that the choice of the uniform distribution is not important in this
example. Any cumulative distribution with positive derivative at zero would
give the same asymptotic comparison, because the e�cient cost would again
have a �nite limit. We omit the details.

We now de�ne three properties that play a leading role in the axiomatic
discussion of the mcst and other fair division problems (see e.g., [12],[2],[5]).
These properties are de�ned directly for a decentralized pricing rule, although
it is clear that they apply to general solutions, budget-balanced or not.
The �rst two are compelling regularity properties:

� Continuity: fi(N; k0i; k[i]) is continuous in (k0i; k[i]):

� Cost Monotonicity: fi(N; k0i; k[i]) is weakly increasing in each cost
kij; k0i:

Violation of Continuity means that a tiny measurement error may have
dramatic consequences on individual charges. Violation of Cost Monotonicity
opens the door to arti�cial ination of one's costs.
Our third axiom compares a decentralized pricing rule across problems

involving di�erent sets of users. For any subset S of N we use the notation
k[i; S] for the jSj-dimensional vector (kij; j 2 S).

� Population Monotonicity: for any pro�le of costs (k0i; k[i]), any
S � N and i 2 S we have

f(N; k0i; k[i]) � f(S; k0i; k[i; S]):
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This says that the addition of a new user is never detrimental to any of
the existing users. It is a strengthening of the Stand Alone upper bound,
provided we assume that in a one agent problem, the pricing rule is simply
f(fig; k0i) = k0i. Population Monotonicity generates clean incentives in the
game where agents must decide whether or not to request connection to the
source, based on their willingness to pay for such service (see [18]).

Lemma 2 The canonical pricing rule (and the Stand Alone rule) are
Continuous, Cost Monotonic and Population Monotonic.
Proof. It is enough to check that for all t; 1 � t � n � 1, the mapping
(k0i; k[i])! kti meets all three properties.

5 Main characterization

We introduce two properties pertaining to addition and positive linear com-
binations of cost pro�les.

� Superadditivity: for any two (k10i; k1[i]) and (k20i; k2[i]), we have

f(N; k10i + k
2
0i; k

1[i] + k2[i]) � f(N; k10i; k1[i]) + f(N; k20i; k2[i]):

Recall that the e�cient cost v(N;K) is superadditive in the matrix K
of connecting costs: if K changes over several periods and we must pay
connection costs in each period, it is advantageous to adjust optimally the
spanning tree in each period. The axiom imposes the same property for the
pricing rule.
For our next axiom, given a permutation � of f1; : : : ; pg we write C� =

fx 2 Rp
+jx�(1) � � � � � x�(p)g for the cone in Rp

+ such that the relative
ordering of the coordinates is constant and given by �. We say that the
real valued function g with domain Rp

+ is piece-wise linear if for any � its
restriction to C� is positively linear (respects positive linear combinations).

Key observation: the e�cient cost v(N;K) is piece-wise linear in R
n(n+1)

2
+ .

� Piece-wise Linearity: the pricing rule (k0i; k[i]) ! f(k0i; k[i]) is
piece-wise linear in Rn

+:

Like Superadditivity above (or additivity in the axiomatic cost sharing
literature), this axiom wants the solution to share some key structural prop-
erty of the e�cient cost. Its main justi�cation is informational parsimony:
a piece-wise linear pricing rule is entirely determined by its value over n
coordinate vectors in one of the cones C�.
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Theorem 1: The canonical pricing rule (and the Stand Alone rule) ,
are superadditive and piece-wise linear.
Conversely, if a decentralized pricing rule f is superadditive or piece-wise

linear, we have

ff(k0i; k[i]) � sa(k0i; k[i]) for all Kg ) fcan(k0i; k[i]) � f(k0i; k[i]) for all Kg:

Proof. Step 1. can is superadditive and piece-wise linear
In the sum (2) de�ning can(k0i; k[i]), each term minj2P(i;�)fkijg is super-

additive in (k0i; k[i]). If the relative ordering of the n numbers (k0i; kij; j 2
N n fig) remains �xed, each term minj2P(i;�)fkijg is positively linear in
(k0i; k[i]).

Step 2. Assume f is superadditive and f � sa, prove can � f

Notation: we write t for the n-dimensional vector t = (1;

t�1z }| {
0; � � � ; 0;

n�tz }| {
1; � � � ; 1).

Fix x � 0 and consider the cost matrixK with kij = k0i = x for all i; j. Feasi-
bility implies nx � n f(x1); moreover by assumption f(x1) � sa(x1) = x.
Thus f(x1) = x. Next �x any t; 2 � t � n�1, and consider the cost matrix

k0i = x for all i; kij = 0 if 1 � i; j � t; kij = 1 otherwise.

Observe that the canonical price is f(x1) = x for agents t+1; � � � ; n and
f(xt) for agents 1; � � � ; t. Feasibility implies

tf(xt) + (n� t)x � (n� t+ 1)x) f(xt) � x

t

Next we pick a n-dimensional vector of costs (a; b2; b3; ::; bn), where a is
the cost to the source, and

b2 � � � � � bp � a � b(p+1) � � � � � bn (5)

We decompose the vector (a; b2; b3; ::; bn) as follows

(a; b2; b3; ::; bn) = b2
1+f

p�1X
t=2

(bt+1�bt)tg+(a�bp)p+(0;
p�1z }| {
0; ::; 0; b(p+1)�a; ::; bn�a)

(6)
By the argument above

f(b2
1) = b2; f((bt+1�bt)t) �

1

t
(bt+1�bt) for 2 � t � p�1; f((a�bp)p) �

1

p
(a�bp)
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Now superadditivity and f � 0 imply

f(a; b2; b3; ::; bn) � b2 +
(b3 � b2)

2
+
(b4 � b3)

3
+ ::+

(a� bp)
p

the desired conclusion, upon checking that the right-hand-side is precisely
can(a; b2; b3; ::; bn).

Step 3. Assume f is piece-wise linear and f � sa, prove can � f
Both sides of the desired inequality are piece-wise linear in (k0i; k[i])

and symmetric in k[i]. Thus it is enough to prove can(a; b2; b3; ::; bn) �
f(a; b2; b3; ::; bn) when (a; b2; b3; ::; bn) is in one of the cones C

p de�ned by
(5) for 2 � p � n, or in C1 de�ned by a � b2 � � � � � bn. Fix p; 2 � p � n.
By assumption, in Cp the function f takes the form

f(a; b) = �1a+

nX
s=2

�sbs

for some �xed numbers �s (depending on p).

We use the notation t in step 1, as well as �t = (0;

t�1z }| {
0; � � � ; 0;

n�tz }| {
1; � � � ; 1).

Note that t 2 Cp i� t � p, while �t 2 Cp i� t � p.
From the stand alone upper bound at �t for t � p, we get

Pn
s=t+1 �s � 0.

Our assumption that f is non negative then implies �s = 0 for s � p+ 15.
Next we consider the cost matrix kij = k0i = 1 for all i; j: feasibility and

f � sa imply f(1) = 1,
Pp

s=1 �s = 1.
Finally we �x t � p and consider the cost matrix Kt

k0i = 1 for all i; kij = 0 if i; j � t, kij = 1 otherwise

) (k0i; k[i]) = 
t if i � t; (k0i; k[i]) = 1 if i � t+ 1

Here feasibility gives

v(N;Kt) = n� t+ 1 � tf(t) + (n� t)f(1) = t(�1 +
pX

s=t+1

�s) + (n� t)

, f(t) � 1

t
= can(t) for 1 � t � p

In Cp, both f(a; b) and can(a; b) are linear combinations of (a; b2; � � � ; bp) only
(recall �s = 0 for s � p+1), and each vector in the cone fb2 � � � � � bp � ag

5Note that even absent the assumption f � 0, these equalities follow the feasibility
property (1).
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is a positive linear combination of the vectors t; 1 � t � p. Therefore the
above inequalities conclude the proof.

Example 3: Here is a three agent example of a superadditive and piece-
wise linear decentralized pricing rule not bounded below by the canonical
rule. Let

f(a; b1; b2) =
1

3
a+minfa; b1; b2g

One check �rst that inequality (1) holds, and that f is not bounded above by
the Stand Alone rule. Moreover f is continuous and cost monotonic. Finally,
we have

f(4; 1; 5) =
7

3
< can(4; 1; 5) =

1

3
4 +

1

2
+
1

6
4 =

5

2
:

6 A direct characterization

We report an additional characterization of the canonical pricing rule, based
on the following two axioms on pricing rules.

� Relevance: for any two agents i; j 2 N and pro�le of costs (k0i; k[i])

fkij � k0ig ) f(N; k0i; k[i]) = f(N n fjg; k0i; k[i; N n fjg]):

If kij � k0i, the ij link is not relevant for agent i when linking to any network.
Relevance then stipulates that the irrelevant cost kij has no impact on the
price charged to agent i.
Next we have a decentralized version of an axiom analyzed in [2]:

� Equal Share of Extra Costs: for any pro�le of costs (k0i; k[i]), agent
i and number � > 0

fkij � k0i for all jg ) f(k0i + �; k[i]) = f(k0i; k[i]) +
�

n
for all i:

This axiom applies only to pro�les where all nodes j are relevant to i's charge,
because it is cheaper to connect to any one of them than to the source. Then
it requires to charge to agent i a fair share of any additional cost of connecting
to the source.

Theorem 2: The Canonical Pricing Rule is uniquely characterized by
Relevance, Equal Share of Extra Costs, and the stand alone upper bound:
f(k0i; k[i]) � k0i.
Proof. (Sketch) It is easy to check that the axioms are satis�ed by can.
We show that they lead to a unique solution. By Relevance all agents with

12



higher link costs than i's source cost can be disregarded. Next, among the
remaining agents, rank their link costs in increasing order and consider the
highest cost k� below k0i. By Equal Share of Extra Costs the di�erence
k� � k0i is shared equally between the remaining agents. Using Relevance
the agent(s) with link cost k� can then be removed and Equal Share of Extra
Costs can be used to share the di�erence between k� and the second highest
cost and so forth until only agent i is left to be connected to the source. By
feasibility and stand alone upper bound agent i must then pay his source
cost. Thus, the price is uniquely determined by the axioms.

We note that in the special case of 2-agent pricing problems the canonical
pricing rule is uniquely characterized by feasibility (1), Stand Alone upper
bound and Equal Share of Extra Costs. We omit the straightforward argu-
ment.
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