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Abstract

This paper combines information from a representative household

survey with publicly available spatial data extracted from satellite images

to produce a high-resolution poverty map of Dar es Salaam. In particular,

it builds a prediction model for per capita household consumption based on

characteristics of the immediate neighborhood of the household, including

the density of roads and buildings, the average size of houses, distances to

places of interest, and night-time lights. The resulting poverty map of Dar

es Salaam dramatically improves the spatial resolution of previous examples.

Extreme Gradient Boosting (XGB) performs best in predicting household

consumption levels given the input data. This result demonstrates the

simplicity with which policy-relevant information containing a spatial

dimension can be generated.
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1 Introduction

The metropolitan region of Dar es Salaam, Tanzania, covers a vast area and

encompasses five main districts with a total of 90 wards (third level administrative

units), according to the population census of 2012. The region has a population

of 5.4 million according to population census of 2022 and a basic needs poverty

rate of 8 % according to the latest poverty assessment [World Bank, 2020]. While

significantly lower than in the rural (31 %) and other urban areas of Tanzania (19

%), urban poverty not reduced between 2012 and 2018 (15.4 % to 15.8 %) and

is likely to be underestimated due to continued urbanization and the Covid-19

pandemic.

Poverty incidence is typically monitored using nationally representative household

surveys, of which the latest and most commonly used in the case of Tanzania is

the Household Budget Survey (HBS) 2017/18. Based on this dataset, regional

or even district level poverty maps can be produced to guide poverty reduction

strategies and development policy in general. However, in order to gain detailed

knowledge on the distribution of poverty within a city like Dar es Salaam, which

represents a special case of urbanization in Tanzania, the survey data is not

suitable, since it has not been sampled to be representative at the level of wards.

Of the 90 wards located within the region of Dar es Salaam, the 797 household

interviews are distributed across 60 wards with either one or two enumeration

areas and thus only up to 12 or 24 households interviewed in each.

It is the purpose of this paper to show that it is possible to generate high-

resolution poverty maps of urban areas using readily available open spatial

data. We use the types, sizes and density of buildings, distances to and length

of roads of various qualities, and the intensity of nighttime lights to predict

average consumption at the local level. To this end, the city is divided into

grid cells, approximately the size of enumeration areas, and average household

consumption aggregates estimated using the indicators mentioned above and

machine learning methods. The output of the exercise is useful for various
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policy targeting purposes, for instance poverty alleviation, disaster response, and

infrastructure investments. Moreover, the visualizations provide a present and

all-encompassing view of the urban area, including newer peri-urban settlements

often not represented in official statistics.

An overview of the study is provided in figure 1. At the basic level, we combine

input data from a household survey with available open source spatial data.

Based on the overlaps between these, we build a prediction model and test three

common methods before finally generating the outputs, which in this case can

be visualized on a map.

Figure 1: Study overview

Recent years have seen a growing interest in the use of building footprints and

other open spatial data for urban poverty mapping. A key advantage of using

open spatial data for poverty mapping is the high spatial resolution. This allows

for more precise mapping of poverty at the neighborhood level, enabling a better

understanding of the spatial distribution of poverty within cities. This can

be particularly useful for identifying areas of concentrated poverty, which may

require targeted interventions to reduce poverty [Vijay and Patnaik, 2018].

Another advantage is availability and accessibility. Unlike traditional household

surveys, which can be expensive and time-consuming to collect, open spatial data
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can be easily obtained from a variety of sources, such as government agencies

and online platforms [Garcia et al., 2020]. This makes it possible to generate

poverty maps on a regular basis, enabling policymakers to monitor changes in

poverty over time.

However, the quality of the data may vary, depending on the source and the

data collection methods used [Amendola et al., 2019], which can potentially lead

to errors and biases in the resulting poverty maps. Another limitation is the lack

of socio-economic characteristics within households. This can make it difficult

to use these data sources to identify the specific households and individuals who

are living in poverty, [Vijay and Patnaik, 2018, Garcia et al., 2020].

Despite the limitations, recent research has shown that these data sources can

be used to generate reliable and accurate poverty maps. For example, Amendola

et al. [2019] used building footprint data and satellite imagery to map poverty

in Ghana, finding that the resulting maps were highly correlated with official

poverty estimates. Likewise, Sohnesen et al. [2021] and Fisker et al. [2022] have

used similar techniques to map poverty in urban areas of Mozambique and São

Tomé.

2 Data

2.1 Household survey

This study relies on the Household Budget Survey (HBS) 2017/18, which contains

information on monthly per capita consumption along with many other household

characteristics, and importantly, recordings of latitude and longitude that are

accurate (i.e. non-scrambled). We use logarithm of adult equivalent per capita

consumption, adjusted by spatial differences to measure and rank households by

poverty status.

Dar es Salaam represents a special case of urbanization in Tanzania with a

population share of 8.6% and average annual growth rate of 5.6 %, compared
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to the national average rate of 2.7%. Sampling design of the HBS takes this

fact into account. Based on HBS 2017/18, there are 797 households and 3,276

individuals in the sample, distributed in 60 wards. Figure 2 shows the locations

of interview points and the distribution of the outcome variable to be estimated

in this study.

Figure 2: Survey data

(a) HBS 2017/18 locations (b) Distribution of outcome variable

Source: Authors’ illustration based on HBS 2017/18 and OSM.

The HBS 2017/18 is a nationally representative survey, sampled randomly based

on enumeration areas drawn in preparation for the 2012 population census.

Taking into account the urban development that has taken place in Dar es

Salaam during the past decade, creating a poverty map solely based on these

survey points would likely misrepresent the situation in areas that have seen large

growth. Furthermore, the survey only covers a sub-set of census enumeration

areas, which implies a risk of omission of the tails of the welfare distribution.

2.2 Spatial data

2.2.1 Building footprints

In the absence of high-quality consumption data in household surveys, economists

often rely on proxies, easily identified by enumerators, for instance when en-
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rolling beneficiaries to social protection programs. Such proxies include building

materials of the walls, floors, and roofs, toilet facilities, and number of rooms

per inhabitant. Some of these indicators of poverty can also be derived from

satellite imagery; and when aggregated to units the size of a neighborhood block,

idiosyncratic variation (e.g. a rich family living in a tiny house) can largely be

disregarded. One of the most promising sources of large-scale, satellite-based

information on living conditions are building footprints.

A building footprint is a polygon outline that defines the outline of a building as

seen from above. When aggregated to cells of 250 m x 250 m, three essential

pieces of information can be derived:

i Average area of the buildings (larger homes are expected in richer areas).

ii Average perimeter (more complex structures have a longer perimeter relative

to the area).

iii Number of buildings (proxy for population density).

Footprints larger than 400 square meters are filtered out in order to exclude

most industry facilities, offices, and public buildings. Partly, this will also mean

excluding large apartment buildings commonly located near the coastline and

downtown area.

In Dar es Salaam, a complete coverage of all buildings has been added to

OpenStreetMaps by a volunteer project called Dar Ramani Huria.1 A total of

1, 323, 748 buildings are available in Dar es Salaam region, out of which 745, 989

were mapped by around 150 university students between 2015 and 2017 in the

first stage of the project, aimed at improving flood resilience in vulnerable areas.

2.2.2 Roads and distances

Information on the road network is obtained from OpenStreetMaps (OSM), which

is a global collaborative project to create a free, editable map of the world. The
1see ramanihuria.org
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Figure 3: Open spatial data

(a) Building footprints (b) Road network

Source: Authors’ illustration based on OSM data.

road network dataset contains roads, paths, highways, and other transportation

features. In this study, we focus on two road feature types: primaryroads, which

are important for easy access to jobs and activities in other parts of the city,

and residentialroads, which are indicators of local urban development.

For each category of road, we calculate the total road length within a cell as

well as the smallest geodesic distance from the cell centroid to the nearest road.

For primary roads, it is expected to be the distance measure that contributes

the most to the prediction model, while for residential roads, the total length is

likely to be of greater importance, due to the above-mentioned considerations.

Furthermore, for each cell centroid we calculate the direct distance to the city

centre, in this case the DTV roundabout in the financial downtown of Dar es

Salaam. The reasoning behind the inclusion of this variable is that the city centre

is typically home to the most desirable jobs, local businesses, and amenities. As

a result, those who live closer to the city centre are more likely to have higher

incomes, better access to employment, and a wider selection of leisure activities.

Additionally, those who live closer to the city centre tend to benefit from higher

property values, due to the increased demand for housing in these areas.
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2.2.3 Night-time lights

Additional layers of geo-spatial data can be included in the prediction model

from satellite records. Here, we complement the polygon and line features with

raster data on artificial lights at night. At a resolution of roughly 250 m x

250 m (similar, but not aligned to our gridded units of observation), we rely

on the VIIRS (Visible Infrared Imaging Radiometer Suite) Night-Time Lights

(NTL) data. The data is produced from an instrument on the Suomi NPP

satellite, and is often used to monitor changes in urbanization, economic activity,

population, and other environmental processes. Here, we use the most recent

yearly composite from 2021, while monthly and daily images are also available.

2.3 Combining the data

The geographical extent of Dar es Salaam region is the area of the study. A grid

of cells comprising around 250 m x 250 m is defined, generating a dataset of

5,334 units. In 165 of these cells there is an overlap with survey points from

the HBS 2017/18, as shown in figure 2. These are the data points on which the

prediction models are based. All cells have been intersected with all information

on geo-spatial features such as building footprints, roads, distances, and NTL.

The predictions based on the cells where consumption data is available are then

applied to all cells to produce city-wide estimates of average per capita household

consumption.

Regarding the choice of cell size, it is important to take into account factors such

as usefulness, practical purposes, model performance, and computer requirements.

The unit should be small enough that policy targeting becomes accurate, while

also being large enough to ensure meaningful results and avoid being driven

by outliers. Moreover, units of around 250 m x 250 m can reduce potential

measurement errors with the position recorders for the household survey data.
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3 Methods

The methodological approach for producing a high-resolution poverty map of

Dar es Salaam using open spatial data is broadly explained in figure 1, where

input data is to set up and combined, then applied to various prediction models,

and finally visualized. In this section we briefly present the prediction strategies

applied to the data and discuss the role of spatial dependence between our units

of observation.

3.1 Prediction models

Following the construction of the cell-level dataset, we first predict the outcome

variable using Ordinary Least Squares (OLS). This method, which is standard

in economic analyses has the advantage of being relatively simple and intuitive

when it comes to interpretation of the results. It can give an overview of the

individual effects of variables when linearity is assumed. However, it does not

take into account non-linearities and interactions between the predictors.

As an opposite approach, we also employ Extreme Gradient Boosting (XGB),

which is a boosting algorithm that uses a gradient descent-based optimization

technique to improve the accuracy of a prediction model [Chen and Guestrin,

2016]. While other machine learning methods such as Random Forest (RF) uses

iterations of random subsets of variables and observations, essentially leaving

out weak predictors, XGB goes through a similar process, but exploits excluded

variables to predict residuals. This means that more weak learners are included

in the models to focus on areas neglected by RF. XGB is also better at handling

missing data than RF and is more effective in dealing with highly unbalanced

datasets.

3.2 Spatial dependence

In both our prediction models, we include spatially lagged explanatory variables.

This means that for all variables, we calculate the average value in neighboring
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cells and add those values as new variables in the prediction model. This

is because factors that influence living standards in one specific cell are also

expected to affect surrounding cells. For instance, a unit of observation with

no roads will be better off if all neighbouring units are connected to roads

than if none of them are. Likewise, being surrounded by neighborhoods with

high-quality infrastructure and housing will positively affect property values of

a given cell, ceteris paribus. Apart from improving the predictive power of the

models, this furthermore has a smoothing effect on the final predictions.

4 Results

4.1 Variable contributions

While all variables included in the models contribute to the predicted outcome

values, some are more important than others. Using OLS, Table 1 lists the corre-

lation coefficients and significance levels of the main cell-level spatial covariates.

Column 1 is the baseline model while column 2 controls for spatial lags of all

variables and column 3 in addition contains ward-level fixed effects.

In our preferred model (column 2), which includes spatially lagged explanatory

variables, but no ward fixed effects, the most important cell-level predictors of

average consumption are i) distance to the city centre, ii) distance to nearest

residential road, iii) night-time lights, and iv) avg. building perimeter. As can

be seen from column 3, adding ward-specific intercepts improves the resulting

R2̂; however, as this study is more concerned with the explanatory power of

open spatial data, the inclusion of administrative boundaries may shroud these

results.

Turning to the results of the prediction based on Extreme Gradient Boosting,

figure 4 shows the importance scores of the most important variables. In this

set-up, the predictor which is most likely to be included is the spatial lag of

the distance to nearest residential road followed by night-time lights, length of
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Table 1: Predictors of cell-level consumption using ordinary least squares

1 2 3

Avg. building area -0.00220 -0.00525 0.00550

Avg. building perimeter 0.0179 0.0215* -0.0107

Number of buildings -5.63e-05 -5.86e-05 -3.15e-05

Dist. city centre -1.01e-05** -1.77e-05*** -0.000101***

Dist. prim. road -1.98e-06 6.85e-05 -0.000195

Dist. res. road -0.000833* -0.00115** -0.000355

Length of prim. roads 3.34e-05 -1.86e-05 -0.000197*

Length of res. roads -4.05e-06 -1.05e-06 -2.51e-05

Night-time lights -0.000677 0.0110* 0.0111

Spatial lags NO YES YES

Ward fixed effects NO NO YES

Constant 4.881*** 5.127*** 9.215***

(0.269) (0.512) (1.698)

Observations 165 165 165

R^2 0.135 0.245 0.668
Note: *, **, *** indicate significance at 0.1, 0.05, and 0.001 level, respectively.

residential roads, and distance to nearest primary road. Only thereafter comes a

number of variables related to building footprints.

4.2 Actual vs predicted values

Using the OLS model presented in Table 1, column 2, we found an R2̂ of 0.24

with spatial lags and no ward fixed effects, and a within-sample Spearman rank

correlation of 0.44. Extreme Gradient Boosting achieved a within-sample Spear-

man rank correlation of 0.87, and an out-of-sample Spearman rank correlation
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Figure 4: Variable importance, XGB

of 0.25. Our results suggest that XGB is more effective at predicting outcomes

than OLS. However, the out-of-sample rank correlation shows that the predicted

outcomes in cells with no survey data are not perfect; the spatial data can only

be expected to be able to explain a moderate part of the variation in consumption

between these cells. Figure 5 shows scatter plots of actual and predicted values

for both OLS and XBG.

Figure 5: Actual vs predicted values

(a) OLS (b) XGB
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4.3 Visualizations

Based on the outcomes of the XGB model, all areas of the Dar es Salaam region

can be attributed a value for its predicted average (logarithm of) per capita

consumption. This is illustrated on figure 6 using a color scale ranging from red

(poor) over green (average) to blue (relatively well-off). Most of the poorer areas

seem to be scattered on the periphery of the urban area, while a few pockets of

poverty persist closer to the downtown area. Figure 7 exemplifies the level of

detail contained in the map; the zoom-in reveals more organized, larger houses

underneath the blue shade

Figure 6: Visualization

Source: Authors’ illustration

5 Conclusion and discussion

The poverty maps provide an important tool that can be used to target policies

aimed at reducing poverty and improving the quality of life for citizens in a
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Figure 7: Visualization detail

Source: Authors’ illustration on Google Earth background

given area. Interventions such as social protection, social pensions and disaster

or pandemic response can be more effectively targeted using poverty maps. For

instance, around 100,000 households in Dar es Salaam are currently enrolled in

the Productive Social Safety Net (PSSN), a cash-for-work program administered

by the Government of Tanzania. Currently, the beneficiaries are distributed

across the 90 Wards of Dar es Salaam, and with the maps presented in this study,

a potential future re-targeting exercise could improve efficiency and fairness due

to better spatial resolution and coverage.

In addition, poverty maps can be used to inform urban planning decisions such

as the location of new schools, hospitals, roads and other public infrastructure.

Finally, as in most other urban centres of Sub-Saharan Africa, urbanization is

continuously adding new, largely unregistered peri-urban neighborhoods to the

city of Dar es Salaam. These areas seem to be poorer on average than more

established neighborhoods, and putting them on a map is an important first

step for inclusion in policy discussions.
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