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Abstract

We generalize the canonical permanent-transitory income process to allow for
infrequent shocks. The distribution of income growth rates can then have a
discrete mass point at zero and fat tails as observed in income data. We pro-
vide analytical formulas for the unconditional and conditional distributions
of income growth rates and higher-order moments. We prove a set of identi-
fication results and numerically validate that we can simultaneously identify
the frequency, variance, and persistence of income shocks. We estimate the
income process on monthly panel data of 400,000 Danish males observed over
8 years. When allowing shocks to be infrequent, the proposed income process
can closely match the central features of the data.
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1 Introduction

Recent Heterogeneous Agent New Keynesian (HANK) models emphasize the im-
portance of idiosyncratic income risk for business cycle fluctuations.1 However,
calibrating these models has been proven difficult. The theoretical framework is
typically formulated at quarterly frequency or higher, whereas empirical evidence
on the dynamics of income at such high frequency is scarce. The goal of this paper is
to fill this gap by providing a detailed picture of the dynamics of income at monthly
frequency.

Identification of credible high frequency income processes is key for an accurate rep-
resentation of consumption and portfolio behavior.2 When consumers face many
frequent income shocks they need low-return liquid assets to smooth their consump-
tion. If consumers instead face larger, but more infrequent shocks, they are more
willing to hold a large share of high-return illiquid assets and be wealthy hand-to-
mouth consumers (Kaplan and Violante, 2014; Larkin, 2019). Heterogeneity in ac-
cess to liquidity across households leads to substantial heterogeneity in the marginal
propensity to consume (MPC) out of temporary income changes. The distribution
of MPCs in turn plays a key role for many important economic questions, including
the response of the macroeconomy to aggregate shocks. The conclusions reached
about these questions likely depend on the specification of the income process used
to calibrate these models.

In this paper, we propose to model monthly income fluctuations using a general-
ization of the canonical permanent-transitory income process extended with infre-
quent permanent and transitory shocks. We provide analytical formulas for how the
frequency of shocks affect central moments of income growth rates, such as their
variance, co-variance, and kurtosis. We use this to show that once the arrival prob-
abilities of the infrequent persistent and transitory shocks are pinned down, the
remaining parameters controlling the persistence and volatility of shocks are identi-
fied using standard moment conditions (as in e.g. Hryshko, 2012). In some specific
cases, the arrival probabilities of shocks are furthermore identified in closed-form
from e.g. the share of observations with zero income growth between months.

1 See for example Oh and Reis 2012; McKay and Reis 2016; Guerrieri and Lorenzoni 2017;
Den Haan et al. 2018; Bayer et al. 2019; Hagedorn et al. 2019; Ravn and Sterk 2020; Luetticke
2020. A review of the literature is provided by Kaplan and Violante (2018).

2 A related literature uses transaction level data to analyze high frequency consumer behavior.
See e.g. Gelman et al. (2014), Kueng (2018), Ganong and Noel (2019), Baker (2018), Olafsson
and Pagel (2018), and Druedahl et al. (2020)
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Figure 1.1: The fit of the estimated income process.

(a) Monthly income growth
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(b) 12-month income growth
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Notes: This figure shows the fit of the proposed incomes process estimated on monthly Danish
register data. The income process is introduced in Section 2, and the data and estimation results
are presented in detail in Section 4.

In the general specification, the arrival probabilities are, however, not identified in
closed-form. In a numerical exercise, we instead validate that they are simultane-
ously identified with all the other parameters by a set of standard mean, variance,
and co-variances moments combined with information on the unconditional and
conditional distribution of income growth rates and the kurtosis of growth rates.
Additionally, we show that we are also able to identify non-zero mean transitory
shocks such as bonuses. Finally, our analytical formulas allow us to estimate our
model without simulating it, which computationally is orders of magnitude faster.

A key challenge in estimating income risk at high frequency is that most panel data
on income, whether based on surveys or administrative tax records, are available only
at annual frequency, sometimes even lower. We exploit a unique source of panel data
containing monthly income records for every employee in Denmark from January
2011 to December 2018. The key advantage of this dataset is the accuracy of the
income information provided, the large sample size and the monthly frequency at
which income is recorded. In our empirical application, we investigate the dynamics
of monthly earnings for more than 400,000 Danish men.

Our key finding is that shocks to monthly earnings are rather infrequent, with es-
timated arrival probabilities of less than 30 percent across all specifications. The
estimated model fits the main features of the data reasonably well. Importantly,
we closely match the sizable mass-point at zero for monthly income growth rates
(see Figure (1.1)) and the gradual dispersion of the distribution of longer horizon
growth rates. The significantly negative higher-order auto-covariances suggest that
we cannot exclude even the most infrequent persistent shocks without reducing the
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fit markedly.

Our paper is related to the large and growing literature on estimating income pro-
cesses with early contributions by Lillard andWillis (1978) and MaCurdy (1982) who
developed the permanent transitory framework.3 Recently, a burgeoning literature
has focused on the importance of non-linear and idiosyncratic dynamics using data
on annual earnings (Browning et al., 2010; Altonji et al., 2013; Arellano et al., 2017;
Guvenen et al., 2019; De Nardi et al., 2020, 2021). In contrast, we focus on monthly
instead of annual income dynamics and allow for shocks of varying frequency.

Klein and Telyukova (2013) discuss estimation of high frequency income processes
using only auto-covariances of log-income from annual data. They show that the
frequency of shocks is not identified using their proposed moments. Kaplan et al.
(2018) rely on higher-order moments of annual income growth rates to infer high
frequency earnings dynamics. Eika (2018) discusses identification of the variance
of transitory and permanent shocks using auto-covariances of growth rates when all
households receive a single shock at a random point in time during the year. He
shows that the transitory shock variance becomes biased because a permanent shock
midway through year t induces a positive co-variance between the growth rate from
t − 1 to t and the growth rate from t to t + 1. Crawley 2020 and Crawley and
Kuchler (2018) also discuss time aggregation problems. We avoid such problems by
estimating the income process directly on the frequency where the wage is paid out,
i.e. monthly.

The paper proceeds as follows. Section 3 presents our proposed monthly income
process and derives central analytical properties. Section 3 discusses identification
issues. Section 4 presents the Danish register data and the empirical results. Section
5 concludes. Appendix A contains the proofs, and Appendix B presents additional
tables and figures.

2 Monthly income process

We propose to model monthly income fluctuation using a simple generalization of the
canonical persistent-transitory income process extended with infrequent persistent

3 See, for example, the review by Meghir and Pistaferri (2011) and the extensive list of studies
referenced therein. Scandinavian register data have previously been used to estimate income
processes by e.g. Browning and Ejrnæs (2013), Blundell et al. (2015), Daly et al. (2016) and
Druedahl and Munk-Nielsen (2018).
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and transitory shocks. Our specification for log-income, yt, in month t is given by

yt = zt + pt + πξt ξt + πηt ηt + εt (2.1)

zt = zt−1 + πφt φt

pt = %tpt−1 + πψt ψt

%t = 1− πψt (1− ρ), ρ ∈ [0, 1]

πxt ∼ Bernoulli(px), x ∈ {φ, η, ψ, ξ},

E[xt] = 0, x ∈ {ψ, η}

E[xt] = µx, x ∈ {φ, ξ}

Var[xt] = σ2
x, x ∈ {ψ, φ, η, ξ, ε}

φt, ψt, ηt, ξt, π
φ
t , π

ψ
t , π

η
t , π

ξ
t , εt are serially uncorrelated and i.i.d.

The income process has five components:

1. A permanent component, zt, where a shock arrives with a probability of pφ.
The shock has a variance of σ2

φ and a mean of µφ.

2. A persistent component, pt, modeled as an AR(1) process, which is constant
until a shock arrives with a probability of pψ. The shock has a variance of σ2

ψ

and have a mean of zero. Previous shocks depreciates with a rate of ρ.

3. A transitory component, ηt, where a shock arrives with a probability of pη.
The shock has a variance of σ2

η and a mean of zero.

4. A transitory component, ξt, where a shock arrives with a probability of pξ.
The shock has a variance of σ2

ξ and a mean of µξ.

5. An ever-present transitory shock (e.g. measurement error) with a variance of
σ2
ε and a mean of zero.

We analyze the model in the limit, where the effect of the initial values for the
permanent and persistent components, zt and pt, have died out. The income process
in eq. (2.1) nests the canonical persistent-transitory income process when pφ = pψ =
pη = pξ = 1 and µφ = µξ = 0.

In the rest of this section, we derive several analytical properties of the income
process in eq. (2.1). These results allow us to estimate the model without simulating
it and are used to provide identification results in Section 3.
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2.1 Alternative formulation

In order to simplify the analysis of the model, it is beneficial to note that our
assumption of constant variances of the permanent and persistent shocks implies
that it is only the number of shocks and not their timing which matters. Our
assumption of no serial correlation further implies that the number of shocks in
a given time interval is binomially distributed. Consequently, an alternative, but
equivalent, formulation of the permanent and persistent components are,

zt = z0 +
nφ∑
s=1

φs (2.2)

pt = ρnψp0 +
nψ∑
s=1

ρsψs (2.3)

nx ∼ Binomial(t, px), x ∈ {φ, ψ},

where nx is the number of arrived shocks of type x up to and including period t, and
ψs and φs (with a slight abuse of notation) now refer to the s’th shock of each type
(rather than the shock in period s). For later, denote the probability mass function
of the binomial distribution by fB(n|q, p) for a success probability of p and q trials.

Similarly, the k-month growth rate of the permanent component, ∆kzt = zt − zt−k,
and the persistent component, ∆kpt = pt − pt−k, can be formulated equivalently as

∆kzt =
nφ∑
s=1

φs (2.4)

∆kpt = (ρnψ − 1)pt−k +
nψ−1∑
s=0

ρsψs (2.5)

nx ∼ Binomial(k, px), x ∈ {ψ, φ}.

2.2 Stationary distribution

Lemma 1 shows that the limiting stationary distribution of the persistent compo-
nent, pt, is unaffected by the frequency of shocks. If e.g. all shocks are Gaussian,
the distribution of the persistent component is also Gaussian.

Lemma 1. If ρ ∈ [0, 1), the limiting distribution of the persistent component, pt,
exists and is independent of the arrival probabilities. In particular, the mean and
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variance are

E[ lim
t→∞

pt] = 0

Var[ lim
t→∞

pt] =
σ2
ψ

1− ρ2 .

Proof. See Online Supplemental Material A.

2.3 Conditional moments

Theorem 1 provides an expression for the mean and variance of the k-period growth
rate of income,

∆kyt = ∆kzt + ∆kpt + πηt ηt − πηt−kηt−k + πξt ξt − πξt−kξt−k + εt − εt−k, (2.6)

conditional on the number of arrived persistent and transitory shocks, and use this
to model ∆kyt as a mixture distribution. The mean is increasing in the mean of the
permanent shock and can either be affected positively or negatively by the transitory
shock with a non-zero mean depending on when it arrives. The variance increases
with the number of both transitory and persistent shocks.

Theorem 1. Let nφ,nψ denote the number of permanent/persistent shocks of type
φ and ψ arrived in the time interval [t − k + 1, t]. Let mη0,mη1 ∈ {0, 1} and
mξ0,mξ1 ∈ {0, 1} denote whether there was a transitory shock of respectively type η
and ξ in period t− k and period t. Conditional on nφ, nψ, mη0, mη1, mξ0, and mξ1,
the mean and variance of the k-month growth rate are

E[∆kyt|nφ, nψ,mη0,mη1,mξ0,mξ1] = nφµφ + (mξ1 −mξ0)µξ (2.7)

Var[∆kyt|nφ, nψ,mη0,mη1,mξ0,mξ1] = 2σ2
ψ

1− ρnψ
1− ρ2 + nφσ

2
φ

+ (mξ0 +mξ1)σ2
ξ

+ (mη0 +mη1)σ2
η + 2σ2

ε . (2.8)

The distribution of ∆kyt is a mixture distribution. The set of components is

s = (nφ, nψ,mη0,mη1,mξ0,mξ1) ∈ S = {0, . . . , k}2 × {0, 1}4, (2.9)

where µs ≡ E[∆kyt|s] and Ξs ≡ Var[∆kyt|s] are the mean and variance of the s’th
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component, and the mixture weights are given by

ωs = fB(nφ|k, pφ)fB(nψ|k, pψ)fB(mη0|1, pη)fB(mη1|1, pη)fB(mξ0|1, pξ)fB(mξ1|1, pξ).
(2.10)

Proof. See Online Supplemental Material A.

Theorem 2 extends the result above to the auto-covariance of income growth con-
ditional on the number of arrived persistent and transitory shocks and uses this to
model the joint distribution of (∆kyt,∆kyt−k) as a mixture distribution.

Theorem 2. Let nφ0, nφ1, nψ0, nψ1, denote the number of permanent/persistent
shocks of type φ and ψ arrived in the time intervals [t−2k+1, t−k] and [t−k+1, t].
Let mη0,mη1,mη2 ∈ {0, 1} and mξ0,mξ1,mξ2 ∈ {0, 1} denote whether there was a
transitory shock of respectively type η and ξ in period t−2k, t−k and t. Conditional
on nφ0, nφ1, nψ0, nψ1, mη0, mη1, mη2, mξ0, mξ1, mξ2 the auto-covariance of k-month
income growth is

Cov[∆kyt,∆kyt−k|nψ0, nψ1,mξ1,mη1] = (ρn1ψ − 1)(1− ρn0ψ)
1− ρ2 σ2

ψ

− (mξ1σ
2
ξ +mη1σ

2
η + σ2

ε ) (2.11)

and the means and variances can be calculated as in Lemma 1.

The joint distribution of (∆kyt,∆kyt−k) is a mixture distribution. The set of com-
ponents is

s = (nφ0, nφ1, nψ0, nψ1,mη0,mη1,mη2,mξ0,mξ1,mξ2)

∈ S = {0, . . . , k}4 × {0, 1}6, (2.12)

where the mean and covariance matrix of the s’th component are

µs = (µ1s, µ2s) (2.13)

Ξs =
 Ξ1s Cs

Cs Ξ2s

 , (2.14)
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where

µ1s ≡ E[∆kyt−k|nφ0, nψ0,mη0,mη1,mξ0,mξ1]

Ξ1s ≡ Var[∆kyt−k|nφ0, nψ0,mη0,mη1,mξ0,mξ1]

µ2s ≡ E[∆kyt|nφ1, n1ψ,mη1,mη2,mξ1,mξ2]

Ξ2s ≡ Var[∆kyt|nφ1, nψ1,mη1,mη2,mξ1,mξ2]

Cs ≡ Cov[∆kyt,∆kyt−k|nψ0, nψ1,mξ1,mη1],

and the mixture weights are given by

ωs =
 ∏
i∈{0,1}

fB(nφi|k, pφ)
 ∏

i∈{0,1}
fB(nψi|k, pψ)


 ∏
i∈{0,1,2}

fB(mηi|1, pη)
 ∏

i∈{0,1,2}
fB(mξi|1, pξ)

 .
Proof. See Online Supplemental Material A.

2.4 Moments

Corollary 1 derives expressions for the mean and variance of k-month growth.

Corollary 1. The mean and variance of k-month income growth are

E[∆kyt] = kpφµφ (2.15)

Var[∆kyt] = 2σ2
ψ(1− ρ̃k) + k(µ̃2

φ + pφσ
2
φ)

+2(pξσ2
ξ + µ̃2

ξ + pησ
2
η + σ2

ε ) (2.16)

where the adjusted persistence parameter is

ρ̃x ≡ (1− pψ(1− ρ))x, (2.17)

the long-run variance component of the persistent shock is

σ2
ψ ≡

σ2
ψ

1− ρ2 , (2.18)

and the adjusted means are

µ̃2
φ ≡ pφ(1− pφ)µ2

φ (2.19)

µ̃2
ξ ≡ pξ(1− pη)µ2

ξ . (2.20)
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Proof. See Online Supplemental Material A.

Corollary 2 derives expressions for the auto-covariance and fractional auto-covariance
of k-month growth rates.

Corollary 2. The auto-covariance and fractional auto-covariance of k-month in-
come growth are

Cov[∆kyt,∆kyt−k] = −σ2
ψ(1− ρ̃k)2 − (pξσ2

ξ + µ̃2
ξ + pησ

2
η + σ2

ε ) (2.21)

Cov[∆kyt,∆kyt−`k] = −σ2
ψ(1− ρ̃k)2ρ̃

(`−1)k
k , ` ∈ {2, 3...} (2.22)

Cov[∆kyt,∆kyt−`] = σ2
ψ(2ρ̃` − ρ̃k−` − ρ̃k+`) (2.23)

+µ̃2
φ(k − `) + σ2

φpφ(k − `)

for ` ∈ {1, 2, . . . , k − 1}.

Proof. See Online Supplemental Material A.

Corollary 3 derives expressions for the skewness and kurtosis of k-month growth
rates.

Corollary 3. If ψt, ξt, ηt, φt and εt are all Gaussian, the skewness and excess
kurtosis of k-month income growth rates are

Skew[∆kyt] = −3 + 1
Ξ

3
2

∑
s∈S

ωs(µs − µ)(3Ξs + (µs − µ)2) (2.24)

Kurt[∆kyt] = 1
Ξ2

∑
s∈S

ωs(3Ξ2
s + 6(µs − µ)2Ξs + (µs − µ)4), (2.25)

where µ = E[∆kyt] and Ξ = Var[∆kyt].

Proof. See Online Supplemental Material A.

Corrollary 4 derives expressions for the changes in variances and co-variances of
levels of income.

Corollary 4. The changes in variances and co-variances of levels of income are

Var[yt+k]− Var[yt] = k(pφσ2
φ + µ̃2

φ) (2.26)

Cov[yt, yt+k+`]− Cov[yt+k, yt] =
[
(1− pψ(1− ρ))k+` − (1− pψ(1− ρ))k

]
(2.27)

×
σ2
ψ

1− ρ2

Proof. See Online Supplemental Material A.
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2.5 Distributions

Corollary 5 derives an expression for the full CDF of k-month income growth rates.

Corollary 5. If φt, ψt, ηt, ξt, and εt are all Gaussian, then, using the same notation
as in Theorem 1, the CDF of k-month growth rates is

Pr[∆kyt < x] =
∑
s∈S

ωsΦ
(
x− µs√

Ξs

)
, (2.28)

where Φ(x) is the standard Gaussian CDF.

Proof. See Online Supplemental Material A.

Corollary 6 derives an expression for the full bi-variate CDF of just-connected k-
month income growth rates.

Corollary 6. If φt, ψt, ηt, ξt, and εt are all Gaussian, then, using the same notation
as in Theorem 2, the bi-variate CDF of just-connected k-month income growth rates
is

Pr[∆kyt < x1 ∧∆kyt−k < x2] =
∑
s∈S

ωsΦ2

(
x1 − µ1s√

Ξ1s
,
x2 − µ2s√

Ξ2s
,

Cs√
Ξ1s
√

Ξ2s

)
, (2.29)

where Φ2(x1, x2, r) is the bi-variate Gaussian CDF with a correlation coefficient of
r.

Proof. See Online Supplemental Material A.

There does not exist an analytical expression for the bi-variate CDF, so the expres-
sion in (2.29) is in principle only analytical up to the evaluation of Φ2(•).

3 Identification

In this section, we turn to identification of the empirically relevant 11 model param-
eters,4

θ = (pφ, pψ, pξ, pη, σξ, µξ, σφ, σψ, ση, µφ, ρ)

In line with our later empirical analysis, we will mainly focus on 12-month growth
rates, which are more robust to introducing seasonality than e.g. 1-month growth

4 The ever-present shock, εt, is empirically irrelevant as we observe a large share of exact zero
income growth rates.
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rates. We first prove two informative closed-form conditional identification results.
Secondly, we numerically verify a general identification conjecture based on the
closed-form results.

3.1 Closed form results

Combing Corollary 1 and Corollary 2, we see that the shock variances and the
persistence parameter affect the variances and covariances qualitatively in the same
way as when all shocks are ever-present (see e.g. Hryshko 2012 or Druedahl and
Munk-Nielsen (2018)). Standard identification arguments are therefore valid for
these parameters. This is formalized in Lemma 2.

Lemma 2. Given the arrival probabilities, pφ, pψ, pξ, and pη, and the mean and
variance of the non-zero-mean transitory shock, µξ and σ2

ξ , the persistence param-
eter, ρ, and the permanent, persistent, and transitory shock variances, σ2

φ, σ2
ψ, and

σ2
ξ , and the mean of the permanent shock, µφ, are identified by

µφ = E[∆12yt]
12pφ

(3.1)

ρ = 1−
1−

(
Cov[∆12yt,∆12yt−3·12]
Cov[∆12yt,∆12yt−2·12]

) 1
12

pψ
(3.2)

σ2
ψ =

(
2(Var[∆24yt]− µ̃φ24)−∑k∈{12,36} (Var[∆kyt]− µ̃φk)

)
(1− ρ2)

2(ρ̃12 + ρ̃36 − 2ρ̃24) (3.3)

σ2
φ =

(Var[∆24yt]− µ̃φ24)− (Var[∆12yt]− µ̃φ12)− 2σ2
ψ(ρ̃12−ρ̃24)

1−ρ2

12pφ
(3.4)

σ2
η = −

Cov[∆12yt,∆12yt−12] + σ2
ψ(1−ρ̃12)2

1−ρ2 + pξσ
2
ξ + µ̃2

ξ

pη
. (3.5)

Proof. Follows directly from Corollary 1-2.

If the non-zero-mean shocks have zero variance, i.e. σ2
φ = σ2

ξ = 0, identification
of the arrival probabilities are straightforward. Lemma 3 shows that the arrival
probabilities are identified from mass points in the distribution of income growth
rates.

Lemma 3. If the non-zero-mean shocks have zero variance, σ2
φ = σ2

ξ = 0, the
distribution of income growth rates has mass points given by

11



Pr[∆kyt = 0] = (1− pψ)k
(
(1− pξ)2 + p2

ξ

)
(3.6)

×(1− pφ)k(1− pη)2

Pr[∆kyt = µφ] = (1− pψ)k
(
(1− pξ)2 + p2

ξ

)
(3.7)

×kpφ(1− pφ)k−1(1− pη)2

Pr[∆kyt = µξ|∆kyt−k = 0] = (1− pψ)k(1− pφ)k (3.8)

× (1− pη)
p2
ξ + (1− pξ)2pξ(1− pξ)

2

Pr[∆kyt = −µξ|∆kyt−k = 0] = (1− pψ)k(1− pφ)k (3.9)

× (1− pη)
p2
ξ + (1− pξ)2 (1− pξ)p2

ξ

and the arrival probabilities, pφ, pψ, pξ and pη, are identified by

pφ = Pr[∆12yt = µφ]
(12Pr[∆12yt = 0]+Pr[∆12yt = µφ]) (3.10)

pξ = Pr[∆12yt = −µξ|∆12yt−12 = 0]
Pr[∆12yt = µξ|∆12yt−12 = 0] + Pr[∆12yt = −µξ|∆12yt−12 = 0] (3.11)

pψ = 1−

(
Pr[∆24yt=0]
Pr[∆12yt=0]

) 1
12

1− pφ
(3.12)

pη = 1−
√√√√ Pr[∆12yt = 0]

(1− pψ)12
(
(1− pξ)2 + p2

ξ

)
(1− pφ)12

. (3.13)

Proof. Follows directly from the arrival of a shock being Bernoulli distributed.

3.2 Numerical identification test

When the non-zero-mean shocks have non-zero variances, σ2
φ, σ

2
ξ > 0, the arrival

probabilities can no longer be estimated by the knife-edge conditions in Lemma 3
because the exact mass points disappear. There will, however, still be identifying
information in the probability mass of income growth rates around these mass points.
This suggests that it is valuable to target the uni-variate and bi-variate CDFs of
income growth rates, which we showed how to calculate in Corollary 5 and Corollary
6. The slopes of the CDFs around the excess mass regions, for given means of the
permanent and transitory shocks, µφ and µξ, will also contain valuable information
on the variances, σ2

φ and σ2
ξ . Additionally using the moments in Lemma 2, we
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conjecture that all the parameters are identified.

To test this conjecture, we conduct the following numerical experiment. We first
draw J sets of random model parameters indexed by j,

θj0 = (pφ, pψ, pξ, pη, σξ, µξ, σφ, σψ, ση, µφ, ρ)j.

We draw these from a uniform distribution with pre-specified bounds. For each
random set, we estimate the model parameters by minimizing

θ̂j = arg min
θ

[h(θ)− h(θj0)]′[h(θ)− h(θj0)] (3.14)

where h(•) is the vector of moments used. Specifically we use:

1. Mean of 12-month growth rates:
E[∆12kyt], k ∈ {1, 2, . . . , 6}

2. Variance of 12-month growth rates:
Var[∆12kyt], k ∈ {1, 2, . . . , 6}

3. Kurtosis of 12-month growth rates:
Kurt[∆12kyt], k ∈ {1, 2, . . . , 6}

4. Auto-covariance of 12-month growth rates:
Cov[∆12yt,∆12yt−12`], ` ∈ {1, 2, 3, 4, 5}

5. Fractional auto-covariance of 12-month growth rates:
Cov[∆12yt,∆12yt−`], ` ∈ {1, 2, . . . , 11}

6. Unconditional CDF of 12-month growth rates:

Pr[∆12kyt < ω], ω ∈ Ω, k ∈ {1, 2, . . . , 5}

7. Conditional CDF of 12-month growth rates:
Pr[∆12yt < ω|∆12yt−12 ∈ [−0.01, 0.01]}, ω ∈ Ω

8. Unconditional CDF of 1-month growth rates:
Pr[∆yt < ω], ω ∈ Ω

9. Conditional CDF of 1-month growth rates:
Pr[∆yt < ω|∆yt−1 ∈ [−0.01, 0.01]], ω ∈ Ω

10. Changes in variance of income levels
Var[yt+12k]− Var[yt], k ∈ {1, 2, . . . , 5}
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11. Changes in covariance of income levels
Cov[yt, yt+12+12`]− Cov[yt+12, yt], ` ∈ {1, 2, . . . , 4}

where Ω = {±x, x ∈ [0.50, 0.30, 0.10, 0.05, 0.01, 10−3, 10−4}}. For the 12-month
growth rates, we thus combine standard moments for the mean, variance, and auto-
covariance with additional information in the kurtosis and unconditional and con-
ditional CDFs. To improve on identification in practice, we also include the un-
conditional and conditional CDF of 1-month growth rates, and information from
the variance and covariance of income levels. In general, we include relatively fewer
values of ω for the conditional CDF because this moment is by far the most time-
consuming to calculate, creating a bottleneck in the estimation procedure.5 We use
the exact same moments when estimating the model on the data in the next section.6

We solve the problem in eq. (3.14) using a numerical optimizer over (pφ, pψ, pξ, pη, σξ, µξ)
with (σφ, σψ, ση, µφ, ρ) implied by Lemma 2. We first evaluate the objective function
forM random guesses inside the pre-specified bounds and start the optimizer in the
best guess. We then evaluate the objective function forM new guesses calculated as
a weighted average of the previous guesses and the true parameters and again start
the optimizer in the best guess. The result with the lowest objective function across
the two optimizer runs is the estimate, θ̂j. We thus simultaneously increase the
likelihood that we can find potential global minima away from the true parameters,
and that we will at least find the global minima at the true parameters.

5 There is no closed-form expression for the bi-variate Gaussian cumulative distribution function,
but efficient quadrature-based algorithms have been invented to evaluate it efficiently.

6 Note, that we do not use any skewness moments. The reason is that our income process is not
designed to match this aspect of the data.
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Figure 3.1: Test of identification ofpφ, pψ, pξ and pη.
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(c) pξ
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(d) pη
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Notes: These figures show the results of J = 500 experiments. In each experiment, we draw a set
of random model parameters, θ0 = (pφ, pψ, pξ, pη, σξ, µξ, σφ, σψ, ση, µφ, ρ), inside the bounds shown
on the x-axes above. The model is estimated by minimizing the objective in eq. (3.14) imposing
the bounds of the true parameters. The targeted moments are listed in sub-section 3.2. Each
plot is a scatter-plot with the true parameter value on the x-axis and the estimated value on the
y-axis. The 45-degree line thus represents the case where the estimated and true value coincide.
We solve the problem in eq. (3.14) using a numerical optimizer over (pφ, pψ, pξ, pη, σξ, µξ) with
(σφ, σψ, ση, µφ, ρ) implied by Lemma 2. We first evaluate the objective function for M = 500
random guesses inside the pre-specified bounds and start the optimizer in the best guess. We next
evaluate the objective function for M = 500 new guesses calculated as a weighted average of the
previous guesses (weight = 0.01) and the true parameters (weight = 0.99) and again start the
optimizer in the best guess. The best result across the two converged optimizer runs is used (blue
squares and circles). The converged result starting from the random guess is also shown (green
crosses).
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Figure 3.2: Test of identification of σφ, σψ, σξ and ση.

(a) σφ

0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
true, 

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

es
tim

at
ed

, 

best
best with obj. > 1e-8
from random guess

(b) σψ

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
true, 

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

es
tim

at
ed

, 

best
best with obj. > 1e-8
from random guess

(c) σξ

0.2 0.4 0.6 0.8 1.0
true, 

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

, 

best
best with obj. > 1e-8
from random guess

(d) ση

0.2 0.4 0.6 0.8 1.0
true, 

0.2

0.4

0.6

0.8

1.0

es
tim

at
ed

, 

best
best with obj. > 1e-8
from random guess

Notes: See Figure 3.1.
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Figure 3.3: Test of identification of µφ, µξ, and ρ.
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Notes: See Figure 3.1.

In Figures 3.1--3.3, we plot the true parameters, θj0, against the estimated parame-
ters, θ̂j. The parameters seem to be well-identified as almost no deviations from the
true parameters are observed as all estimations end up on the 45-degree line (the
blue squares and circles). When there are small deviations, the resulting objective
functions are above 1e-8, while we know that the true minimum is exact 0 (up to
numerical provision). This indicates that full convergence has not been achieved.7

The small green crosses show where the estimator ends up when starting from the
random guess. We see that it sometimes converge to points away from the 45-degree
line, but that these are local minima, as the estimations starting closer to the true
parameters have a lower objective value after the solver convergences.

7 We use a combination of Nelder-Mead and BFGS numerical optimizers. First, we iterate with a
Nelder-Mead optimizer for a maximum of 500 iterations. Second, we continue iterating with the
BFGS optimizer with a gradient tolerance of 1e-8.
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4 Application: Danish Monthly Income Data

In this section, we provide background information on the Danish administrative
data we use for estimation, and present our empirical results.

4.1 Sample selection

We use 8 years of Danish administrative data from January 2011 to December 2018.
All firms in Denmark have to report wages and hours for every employee to the
national tax agency. This information is reported monthly and is recorded in the
BFL register.8 The register contains unique identifiers for both the employees and
firms allowing us to link the data to other administrative data at Statistics Denmark.
We aggregate the data to a monthly frequency (summing across multiple jobs) and
include all labor income before taxes.

Table 4.1: Sample Selection.
Individuals Observations

0. Initial sample 894,828 83,351,112
1. Always in income register 868,884 80,948,028
2. Never self-employed 725,852 67,582,788
3. Never retired 639,479 59,579,988
4. Annual wage never above 3 mil. DKK 636,899 59,336,580
5. Monthly wage never above 500,000 DKK 628,664 58,560,420
6. Full-time employed 50 percent of the time 438,494 40,878,804
Notes:Anyone with more than 20,000 DKK in annual non-labor business income is defined
as self-employed. Anyone with income from private or public pensions is defined as
retired. We define an individual to be full-time employed if his reported hours are above
95 percent of the standard full-time measure of 160.33 hours, and simultaneously have
monthly labor income in excess of 10,000 DKK. An individual is unemployed if his
monthly income is missing or less than 1,000 DKK. Monetary selection cut-offs are
adjusted relative to 2019 using the change in disposable income of Danish men in the
age range 35–59 based on the series INDKP106 from Statistics Denmark. In the sample
period, the USD-DKK exchange rate has fluctuated in the range 5-7.

For simplicity, we focus our analysis on regularly full-time employed prime-age male
workers. Specifically, we use males from the cohorts 1956-1978 in the age span 35-60
ensuring at least 6 years of longitudinal data. We further require that individuals

8 The data has also been used by Kreiner et al. (2014) and Kreiner et al. (2016) to study intertem-
poral shifting of income before and after a tax reform. We exclude the years 2008-2010 to avoid
our estimates to be too affected by the financial crisis.
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are always in the annual income register, are never self-employed, and never retire in
our sample period. We define self-employed as individuals having more than 20,000
DKK in annual profits from own firms. Finally, we remove individuals who at any
point in the sample period have an annual labor income above 3 million DKK9, earn
more than 500,000 in a single month, or who are not full-time-employed in at least
half of the months in which they are observed. We define an individual to be full-time
employed in a given month if his reported hours are above 95 percent of the standard
full-time measure of 160.33 hours, and simultaneously have labor income in excess of
10,000 DKK. An individual is denoted unemployed if his monthly income is missing
or less than 1,000 DKK. Details of the sample selection process are described in
Table 4.1. We end up with a sample of about 400,000 male workers with on average
around 93 months of observations. About 90 percent of the observations are full-
time employed, and 2.7 percent are unemployed. We calculate growth rates as log-
differences for all employed observations winsorizing at the 0.1 and 99.9 percentiles.
To reduce the influence of seasonality, we only use data for February, March, and
August through November when calculating 1-month growth rates.

4.2 Data overview

To get an overview of the data, Figure 4.1a shows the average monthly labor income
(conditional on employment) for each cohort and year. We observe a standard life-
cycle profile for labor income with initially high growth gradually slowing down.

9 In the sample period, the USD-DKK exchange rate has fluctuated in the range 5-7.
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Figure 4.1: Data overview.

(a) Monthly labor income
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(b) 1-month growth rates by month
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(c) 12-month growth rates by month
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(d) Growth rates by horizon
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(e) Growth rates by age
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(f) Growth rates by lagged growth
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Notes: This figure shows the monthly income data. Panel (a): Average monthly labor income.
Each line represents a cohort. Panel (b)–(f): Observations are pooled across cohorts and years,
and plotted on a symmetric log-scale such that 100 is 1 percent, 101 is 10 percent, etc.

Figure 4.1b shows the pooled distribution of 1-month growth rates on symmetric
log-scale in percent (i.e. 100 is 1 percent, 101 is 10 percent, etc.). We see that in
most calendar months more than half of the observations are very close to zero,
and while February-March and August-November seem very similar, the remaining
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months are highly affected by seasonal fluctuations.10

Figure 4.1c shows that the seasonality in 12-month growth is very limited, and
that a substantial share of the 12-month changes is also very close to zero. Figure
4.1d shows that the zero changes disappear as the horizon is increased. Figure 4.1e
shows that conditioning on age mostly affects the right-hand side of the distribution.
Figure 4.1f shows that the left-tail of the distribution collapses when conditioning
on the lagged growth rate being numerically small. This indicates that most of the
negative changes observed are due to previous positive changes.

4.3 Estimation results

We estimate the model parameters, θ = (pφ, pψ, pξ, pη, σξ, µξ, σφ, σψ, ση, µφ, ρ), of
the monthly income process in eq. (2.1) using the generalized method of moments
(GMM) as

θ̂ = arg min
θ

[h(θ)− hdata]′W [h(θ)− hdata] (4.1)

where h(θ) is the vector of theoretical model moments calculated given θ, hdata are
the same moments calculated in the data, and W is a symmetric positive semi-
definite weighting matrix. We use the same moments as specified in sub-section 3.2.
We use a diagonal weighting matrix with the inverse of bootstrapped variances of
each moment on the diagonal.11

The results are shown in Table 4.2. We estimate all of the shocks to be highly
infrequent suggesting that this is a crucial extension of the canonical permanent-
transitory income process when fitting high-frequency income data. First, consider
the first column with the full specification. The permanent shock, φt, arrives with
a probability of 15 percent and has a positive mean of 0.012 and a low standard
deviation of 0.015. The persistent shock, ψt, arrives much more infrequently with a
probability just below 1 percent, but with a larger standard deviation of 0.20, but
depreciates fully when a new shock arrives as ρ = 0.0. The mean-zero transitory
shock, ηt, arrives with a probability of about 7 percent and has an enormous standard
deviation of 0.65. The other transitory shock, ξt, has positive a mean of 0.085 and

10See also Appendix Figures B.1c and B.1d.
11We solve the problem in eq. (4.1) numerically using a multi-start algorithm. We run the esti-
mation algorithm 50 times, where we each time first draw 500 random parameter combinations,
and then start a Nelder-Mead optimizer from the parameters associated with the lowest value
of the objective function. Using the result of the Nelder-Mead optimizer, we start a BFGS opti-
mizer to get the final results of each estimation. The estimates reported are from the estimation
associated with the lowest value of the objective function.
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arrives more regularly with a probability of 0.21, but a lower standard deviation of
0.12.

The parameters are all very precisely estimated. The only parameter with a sub-
stantial standard deviation is the auto-correlation parameter ρ in the persistent
shock process. In practice, this parameter is hard to estimate precisely because of
the extremely infrequent arrival of the ψt shock. To investigate the effect of ρ, we
show estimation results when fixing ρ = 0.99 and ρ = 0.50 in the second and third
columns. While the other parameter estimates remain largely unchanged, the value
of the objective function increases significantly. Below, we show that this reduction
in fit stems primarily from the auto-covariances which these restricted models can-
not fit. The infrequency of the shock, however, implies that ρ is hard to identify
even in our long panel data.

In column four we remove the persistent shock completely (ψt = 0) to investigate if
the very low arrival probability suggests that the persistent process is not important
to fit the data. The very large increase in the value of the objective function suggests
that the persistent shock is absolutely central to include in the process to be able
to match both the auto-covariances and the growth-rate distributions in the data.
Finally, in column five we instead remove the non-zero mean transitory shock (ξt =
0) which also leads to a substantial increase in the value of the objective function.
Both these experiments show that these components are necessary to fit the data
well.
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Table 4.2: Estimation results.
Estimates

Parameters baseline ρ = 0.99 ρ = 0.5 ψt = 0 ξt = 0

Prob. of permanent shock pφ 0.146 0.146 0.146 0.159 0.158
(0.000) (0.000) (0.000) (0.000) (0.000)

Prob. of persistent shock pψ 0.008 0.009 0.009 0.000† 0.003
(0.000) (0.000) (0.000) (0.000)

Prob. of mean-zero transitory shock pη 0.071 0.072 0.072 0.091 0.237
(0.000) (0.000) (0.000) (0.000) (0.000)

Prob. of transitory shock pξ 0.206 0.204 0.205 0.165 0.000†
(0.000) (0.000) (0.000) (0.000)

Std. of permanent shock σφ 0.015 0.015 0.015 0.024 0.019
(0.000) (0.000) (0.000) (0.000) (0.000)

Std. of persistent shock σψ 0.198 0.253 0.231 0.000† 0.424
(0.002) (0.001) (0.000) (0.007)

Std. of mean-zero transitory shock ση 0.646 0.643 0.645 0.583 0.281
(0.001) (0.001) (0.001) (0.000) (0.000)

Std. of transitory shock σξ 0.122 0.123 0.122 0.141 0.000†
(0.000) (0.000) (0.000) (0.000)

Persistence ρ 0.000 0.990† 0.500† 0.000† 0.000
(0.022) (0.038)

Mean of permanent shock µφ 0.012 0.012 0.012 0.011 0.011
(0.000) (0.000) (0.000) (0.000) (0.000)

Mean of transitory shock µξ 0.085 0.086 0.086 0.162 0.000†
(0.000) (0.000) (0.000) (0.000)

Objective function 1.3499 1.3628 1.3553 4.8707 4.4132

Notes: This table shows the estimation results. The upper part of the table shows the parameter estimates.
The lower part of the table shows the resulting value of theobjective function calculated as in eq. (4.1).
See the text for details on the chosen moments and weighting matrix. In the data, we calculate each
moment by age and birth cohort and use the average across birth cohorts and age. We winsorize data
used in each moment at the 0.1th and 99.9th percentiles to dampen the effect of outliers on our estimates.
The standard errors are computed using a variance-covariance matrix calculated using 500 bootstraps.
† fixed parameter
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4.4 Fit

Figure 4.2 shows the model fit for the mean, variance, and kurtosis of 12k-month
growth rates for k ∈ {1, . . . , 6}. The fit of the mean is good for all specifications at
all horizons. The variance and kurtosis profiles are fitted well for both the baseline
specification and when varying the auto-correlation parameter, ρ. However, when
removing the persistent component (ψt = 0) the variance for low values of k is too
high and the subsequent increase undershoot, while the kurtosis profile starts too
low and is too flat. When removing the non-zero mean transitory shock (ξt = 0) the
variance and kurtosis are always too low.

Figure 4.2: Fit: Mean, variance, and kurtosis of 12k-month growth rates.
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(b) Variance
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(c) Kurtosis
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Notes: This figure compares the moments implied by the estimated parameters and the moments
in the data. The estimated parameters are shown in Table 4.2. The data used for estimations are
winsorized at the 0.1th and 99.9th percentiles.

Figure 4.3 shows the model fit for the auto-covariances of 12-month growth rates.
The overall fit is good but most specifications imply a too numerically large first-
order auto-covariance and too numerically low higher-order auto-covariances. The
baseline specification has the best fit. It is thus clear that including these moments
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in the estimation will result in a low estimated ρ. Note that the baseline model
implies negative higher-order auto-covariances even though ρ = 0 because the shock
is infrequent.12

Figure 4.3: Fit: Auto-covariances of 12k-month growth rates.

(a) k = 1: Full auto-covariance.

1 2 3 4 5

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0.000

Co
v[

12
y t

,
12

y t
12

]

data
data (raw)
baseline

= 0.99

= 0.5
t = 0
t = 0

(b) k = 1: ` > 1.
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Figure 4.4 shows the model fit for the fractional auto-covariances of 12-month growth
rates. All specifications imply slightly too low fractional auto-covariances for low
levels of ` and too high values for higher values of `. Again the baseline specification
has slightly better fit than when fixing ρ at 0.99 and 0.00.

12We have also experimented with allowing ρ to be negative. This improves the fit of auto-
covariances slightly leading to a reduction in the value of the objective function. In terms of
economic theory, it is however unclear how a negative ρ should be interpreted. We have thus
restricted attention to ρ ≥ 0 in the main analysis.
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Figure 4.4: Fit: Fractional auto-covariances of 12k-month growth rates.
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Notes: See Figure 4.2.

Figure 4.5 shows the model fit for the unconditional CDF of 1-month, 12-month,
24-month, and 108-month income growth. The fit is remarkably good in the base-
line specification. Fixing ρ to 1.0 or 0.5 does not change the fit significantly but
disregarding ψt or ξt completely does. This clearly shows why we cannot remove the
persistent process completely although the arrival probability is estimated quite low.
Importantly, the model fits the extreme mass-point at zero for 1-month growth rates
and the gradual dispersion of the distribution for longer growth rates. This clearly
shows that allowing for infrequent shocks is absolutely key to match high-frequency
income dynamics.
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Figure 4.5: Fit: Distributions of income growth rates.
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Notes: See Figure 4.2. This figure shows the unconditional distribution of k-month growth rates.

Figure 4.6 shows the CDF of 1-month and 12-month income growth rates conditional
on lagged income growth being numerically smaller than one percent. Again, the
baseline specification provides a very good fit. However, for both the 1-month and
12-month growth rates the CDF is too flat for small positive growth rates. For the
12-month growth rate, the proportions of exact zero are a bit too small in the baseline
specification. This could indicate that the shocks are not fully i.i.d. Shutting off
either the persistent or transitory components worsens the fit significantly.

27



Figure 4.6: Fit: Conditional distributions of k-month growth rates.
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Notes: See Figure 4.2. The figure shows the distribution of 1-month and 12-month growth
rates conditional on the lagged income growth rate being numerically small, i.e. ∆12kyt−12k ∈
[−0.01, 0.01], k ∈ {1, 12}.

Figure 4.7 shows moments related to the level of log-income. As also often observed
in annual data, there is some tension between moments in growth rates and level.
The baseline specification implies a too low increase in the variance of log-income
over time. This is improved when the persistent shock is removed and the standard
deviation of the permanent shock is estimated to be slightly more frequent and
has a standard deviation of 0.024 instead of 0.015. This is also the case when the
transitory shock, ξt, is removed. The changes in covariances of the income level are,
however, best matched in the baseline specification.

Figure 4.7: Fit: Variance and covariances of log-income.
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log-income.
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5 Conclusions

In this paper, we have analyzed and estimated a generalization of the canoni-
cal permanent-transitory income model allowing for infrequent and non-zero mean
shocks. We provide analytical formulas for the unconditional and conditional dis-
tributions of income growth rates and higher-order moments. We prove a set of
identification results and numerically validate that we can simultaneously identify
the frequency, variance, and persistence of income shocks.

Using our theoretically motivated monthly income moments, we estimate the pro-
posed model using 8 years of Danish monthly income data. The results show that
income shocks are highly infrequent, and that this is central for explaining the
non-Gaussian elements of the data. Consumption-saving models with idiosyncratic
income risk should thus pay attention not just to the volatility and persistence of
shocks, but also their frequency. Extending the analysis in this paper with hetero-
geneity across types and dynamics over the life-cycle, up and down the job ladder,
and in and out of employment is an interesting avenue for future work.
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A Proofs

This appendix provides proofs for the theoretical results presented in the main text.
In sub-section A.1, we state some results regarding mixture distributions used ex-
tensively in the proofs. In sub-section A.2, we state some auxiliary lemmas used in
the proofs.

A.1 Mixtures

Remark 1 states a number of general results regarding mixtures.

Remark 1. Let P be a stochastic variable with possible values {1, . . . ,m} and cor-
responding probabilities, pi. Let X1, X2,. . . , Xm be stochastic variables with finite
first and second moment, then

µX ≡ E[XP ] =
m∑
i=1

piµiX (A.1)

ΞX ≡ E[(XP − µX)2] = −µ2
X +

m∑
i=1

pi(ΞiX + µ2
iX), (A.2)

where

µiX ≡ E[Xi]

ΞiX ≡ E[(Xi − µi)2].

Further, let Y1, Y2, . . . , Ym be another set of stochastic variables with finite first and
second moment, then

Cov[XP , YP ] = −µXµY +
m∑
i=1

pi(Cov[Xi, Yi] + µiXµiY ). (A.3)

Remark 2 states a general result regarding the skewness and kurtosis of a Gaussian
mixture.

Remark 2. Let P be a stochastic variable with possible values {1, . . . ,m} and cor-
responding probabilities, pi. Let X1, X2,. . . , Xm be stochastic variables drawn from
Gaussian distributions, then using the same notation as in remark 1 we have
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Skew[XP ] = 1
Ξ

3
2
X

m∑
i=1

pi(µiX − µX)(3ΞiX + (µiX − µX)2) (A.4)

Kurt[XP ] = 1
Ξ2
X

m∑
i=1

pi(3Ξ2
iX + 6(µiX − µX)2ΞiX + (µiX − µX)4). (A.5)

A.2 Auxiliary lemmas

Lemma 4 provides a formula for the mean and variance of a mean-zero infrequent
shock.

Lemma 4. If X ∼ Bernoulli(p) and Y is an independent stochastic variable with
mean µ and variance Ξ, then

E[XY ] = pµ

Var[XY ] = pΞ + p(1− p)µ2.

Proof. We directly have

E[XY ] = p · E[1 · Y ] + (1− p) · E[0 · Y ] = pµ

E[Y 2] = Var[Y ] + E[Y ]2 = Ξ + µ2

E[(XY )2] = p · E[(1 · Y )2] + (1− p) · 0 · E[(0 · Y )2]

= p(Ξ + µ2).

Using that Var[Z] = E[Z2]− E[Z]2 for any stochastic variable Z, we further have

Var[XY ] = E[(XY )2]− E[XY ]2

= p(Ξ + µ2)− p2µ2

= pΞ + pµ2 − p2µ2

= pΞ + p(1− p)µ2.

Lemma 5 provides a formula for a geometric sum with binomial weights.

Lemma 5. If X ∼ Binomial(n, p) with probability mass function fB(k|n, p) and
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ρ ∈ R, then

∀n ∈ N : F (n) ≡
n∑
k=0

fB(k|n, p)ρk = (1− p(1− ρ))n. (A.6)

Proof. Let Y ∼ Bernouilli(p). An equivalent formulation of F (n) then is

F (n) =
1∑

h=0
Pr[Y = h]ρh

n−1∑
k=0

fB(k|n− 1, p)ρk. (A.7)

This implies the following recursive formula for F (n),

F (n) =
1∑

h=0
ph(1− p)1−hρhF (n− 1)

= pρF (n− 1) + (1− p)F (n− 1)

= (1− p(1− ρ))F (n− 1).

From F (1) = pρ1 + (1− ρ)ρ0 = 1− p(1− ρ) the result follows by induction.

Lemma 6 provides a formula for the mean squared number of successes of a binomial
distributed variable.

Lemma 6. If X ∼ Binomial(n, p) with probability mass function fB(k|n, p), then

∀n ∈ N : F (n) ≡
n∑
k=0

fB(k|n, p)k2 = np(1− p) + (np)2. (A.8)

Proof. Note that F (n) = E[X2]. Using the standard result for the mean and variance
of a binomial variable, we have

E[X2]− E[X]2 = np(1− p)⇔

E[X2] = np(1− p) + (pn)2.

A.3 Proof of Lemma 1

The probability of a persistent shock arriving in any period is pψ independently
of what happens in any other period, and the sum of probabilities from period 1
to infinity, ∑∞t=1 pψ, thus clearly diverges. By the second Borel-Cantelli lemma the
number of arrived shocks therefore converges to infinity for t → ∞. Consequently,
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using the formulation in eq. (2.2), we have

lim
t→∞

pt = lim
k→∞

ρkp0 + lim
k→∞

k∑
s=0

ρsψs

=
∞∑
s=0

ρsψs. (A.9)

From this, it directly follows using our mean-zero and independence assumptions
that

E[pt] =
∞∑
s=0

ρsE[ψj] = 0 (A.10)

Var[pt] =
∞∑
s=0

Var[ρsψj] =
∞∑
s=0

ρ2sσ2
ψ =

σ2
ψ

1− ρ2 . (A.11)

A.4 Proof of Theorem 1

Using the formulation in eq. (2.4) and our mean-zero assumptions, we have

E[∆kyt|nψ, nφ,mξ0,mξ1,mη0,mη1] = E[∆kpt|nψ] + E[∆kzt|nφ] + E[πξt ξt|mξ1]− E[πξt−1ξt−1|mξ0]

+ E[πηt ηt|mη1]− E[πηt ηt−k|mη0] + E[εt]− E[εt−k]

= (ρnψ − 1)2E[pt−k] +
nψ−1∑
s=0

ρsE[ψs]

+
nφ−1∑
s=0

E[φs] +mη1µη −mη0µη

= nφµφ + (mη1 −mη0)µη, (A.12)

where we have used that E[pt−k] = 0 by lemma 1.

Using the formulation in eq. (2.4) and our independence assumptions, we have

Var[∆kpt|nψ] = (ρnψ − 1)2Var[pt−k] +
nψ−1∑
s=0

ρ2sVar[ψs]

= (ρnψ − 1)2 σ2
ψ

1− ρ2 + 1− ρ2nψ

1− ρ2 σ2
ψ

= 21− ρnψ
1− ρ2 σ

2
ψ, (A.13)

where we have used that Var[pt−k] = σ2
ψ

1−ρ2 by lemma 1.
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Var[∆kzt|nφ] =
nφ−1∑
s=0

Var[φs] = nφσ
2
φ

Using the formulation in eq. (2.5), we directly have Var[∆kzt|nφ] = 0, and thus
Cov[∆kpt,∆kzt|nψ, nφ] = 0.

Using eq. (2.6) and our independence assumptions, we arrive at the result

Var[∆kyt|nψ, nφ,mξ0,mξ1,mη0,mη1] = Var[∆kpt|nψ] + Var[∆kzt|nφ]

+Var[πξt ξt|mξ1] + Var[πξt−kξt−k|mξ0]

+Var[πηt ηt|mξ1]+Var[πηt ηt|mξ0]

+Var[εt] + Var[εt−k]

= 21− ρnψ
1− ρ2 σ

2
ψ + nφσ

2
φ + (mξ0 +mξ1)σ2

ξ

+(mη0 +mη1)σ2
η + 2σ2

ε . (A.14)

A.5 Proof of Theorem 2

By our assumptions, we have

∆kyt = ∆kpt + ∆kzt +mξ2ξt −mξ1ξt−k +mη2ηt −mη1ηt−k + εt − εt−k

∆kpt = ρnψ1pt−k − pt−k +
nψ1−1∑
s=0

ρsψs,n1

= (ρnψ1 − 1)ρn0ψpt−2k + (ρnψ1 − 1)
n0ψ−1∑
s=0

ρsψs,n0 +
nψ1−1∑
s=0

ρsψs,n1

∆kzt =
nφ1−1∑
s=0

φs,n1 ,

and

∆kyt−k = ∆kpt−k + ∆kzt−k +mξ1ξt−k −mξ0ξt−2k +mη1ηt−k −mη0ηt−2k + εt−k − εt−2k

∆kpt−k = (ρn0ψ − 1)pt−2k +
n0ψ−1∑
s=0

ρsψs,n0

∆kzt−k =
n0φ−1∑
s=0

φs,n0 .

This implies
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Cov[∆kpt,∆kpt−k|n0, n1] = (ρnψ1 − 1)ρn0ψ(ρn0ψ − 1)Var[pt−2k]

+(ρnψ1 − 1)
n0ψ−1∑
s=0

ρ2sσ2
ψ

= (ρnψ1 − 1)ρn0ψ(ρn0ψ − 1)
σ2
ψ

1− ρ2

+(ρnψ1 − 1)1− ρ2n0ψ

1− ρ2 σ2
ψ

= (ρnψ1 − 1)ρ
2n0ψ − ρn0ψ + 1− ρ2n0ψ

1− ρ2 σ2
ψ

= (ρn1ψ − 1)(1− ρn0ψ)
1− ρ2 σ2

ψ.

Noting

Cov[∆kpt,∆kzt−k|n0ψ, nψ1, n0φ, nφ1] = Cov[∆kpt−k,∆kzt|n0ψ, nψ1, n0φ, nφ1]

= 0,

and using our independence assumptions, we arrive at the result

Cov[∆yt,∆kyt−k|n0ψ, nψ1, n0φ, n0φ,mξ1,mη1] = Cov(∆kpt,∆kpt−k)

−(mξ1σ
2
ξ +mη1σ

2
η + σ2

ε )

= (ρnψ1 − 1)(1− ρn0ψ)
1− ρ2 σ2

ψ

−(mξ1σ
2
ξ +mη1σ

2
η + σ2

ε ).
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A.6 Proof of Corollary 1

A.6.1 Mean

Theorem 1 and remark 1 imply the result

E[∆kyt] =
∑
s∈S

ωsE[∆kyt|nψ, nφ,mξ0,mξ1,mη0,mη1]

=
∑
s∈S

ωsnφµφ

= µφ
∑
s∈S

ωsnφ

= µφ
k∑

nφ=0
fB(nφ|k, pφ)nφ

= µφkpφ

A.6.2 Variance

Theorem 1 and remark 1 imply

Var[∆kpt] = −E[∆kpt]2 +
∑
s∈S

ωs [Var[∆kpt|nψ,mξ0,mξ1] + E[∆kpt|nψ,mξ0,mξ1]]2

=
∑
s∈S

ωsVar[∆kpt|nψ]

=
k∑

nφ=0
fB(nψ|k, pψ)

(
21− ρnψ

1− ρ2 σ
2
ψ

)

=
2σ2

ψ

1− ρ2

 k∑
nψ=0

fB(nψ|k, pψ)(1− ρnψ)


=
2σ2

ψ

1− ρ2

1−
k∑

nψ=0
fB(nψ|k, pψ)ρnψ


=

2σ2
ψ

1− ρ2 (1− ρ̃k),

where we have used lemma 5.
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Similarly, we have

Var[∆kzt] = −E[∆kzt]2 +
∑
s∈S

ωs(Var[∆kzt|nφ,mξ0,mξ1] + E[∆kzt|nφ,mξ0,mξ1])2

= −(kpφµφ)2 +
∑
s∈S

ωs(nφσ2
φ + (nφµφ))2

= −(kpφµφ)2 + kpφσ
2
φ + (kpφ(1− pφ) + (kpφ)2)µ2

φ

= kpφ(1− pφ)µ2
φ + kpφσ

2
φ

= k(µ̃2
φ + pφσ

2
φ)

where we have used lemma (6), and

Cov[∆kpt,∆kzt] = −E[∆kzt]E[∆kpt] +
∑
s∈S

ωs[Cov[∆kpt,∆kzt|nψ, nφ] + E[∆kzt|nφ]E[∆kpt|nψ]]

= 0

Using lemma (4), we have

Var[πξt ξt] = pξσ
2
ξ + pξ(1− pξ)µ2

ξ

Var[πηt ηt] = pησ
2
η + pη(1− pη)µ2

η = pησ
2
η

Combining the above results and using our independence assumptions, this implies
the result

Var[∆kyt] = Var[∆kpt] + Var[∆kzt] + Var[πξt ξt − πξt−kξt−k]

+Var[πtηt − πηt−kηt−k] + Var[εt − εt−k]

=
2σ2

ψ

1− ρ2 (1− ρ̃k)− (kpφµφ)2 + (kpφ(1− pφ) + (kpφ)2)(σ2
φ + µφ)2

+2(pξσ2
ξ + pξ(1− pξ)ξ + pησ

2
η + σ2

ε )

=
2σ2

ψ

1− ρ2 (1− ρ̃k) + k(µ̃2
φ + pφσ

2
φ)

+2(pξσ2
ξ + µ̃2

ξ + pησ
2
η + σ2

ε )
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A.7 Proof of Corollary 2

A.7.1 Autocovariance

By our assumptions, we have

∆kpt−`k = (ρaψ − 1)pt−(`+1)k +
aψ−1∑
s=0

ρsψs,aψ

pt−k − pt−`k = (ρbψ − 1)pt−`k +
bψ−1∑
s=0

ρsψs,bψ

∆kpt = (ρcψ − 1)pt−k +
cψ−1∑
s=0

ρsψs,cψ

= (ρcψ − 1)
ρaψ+bψpt−(`+1)k + ρbψ

aψ−1∑
s=0

ρsψs,aψ +
bψ−1∑
s=0

ρsψs,bψ

+
cψ−1∑
s=0

ρsψs,cψ

aψ, cψ ∼ Binomial(k, pψ)

bψ ∼ Binomial((`− 1)k, pψ).

This implies

Cov[∆kpt,∆kpt−`k|aψ, bψ, cψ] = (ρaψ − 1)(ρcψ − 1)ρaψ+bψVar[pt−(`+1)k]

+(ρcψ − 1)ρbψ
aψ−1∑
s=0

ρ2sσ2
ψ

= ((ρaψ − 1)(ρcψ − 1)ρaψ+bψ + (ρcψ − 1)ρbψ(1− ρ2aψ))
σ2
ψ

1− ρ2

= −(1− ρcψ)(1− ρaψ)ρbψ
σ2
ψ

1− ρ2 ,

where we have used that Var[pt−(`+1)k] = σ2
ψ

1−ρ2 by lemma 1.
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Using remark 1 and lemma 5, we now have

Cov[∆kpt,∆kpt−`k] =
k∑

aψ=0
fB(aψ|k, pψ)

(`−1)k∑
bψ=0

fB(bψ|(`− 1)k, pψ)
k∑

cψ=0
fB(cψ|k, pψ)

(
−(1− ρcψ)(1− ρaψ)ρbψ

σ2
ψ

1− ρ2

)

= −
σ2
ψ

1− ρ2

 k∑
aψ=0

fB(aψ|k, pψ)(1− ρcψ)


(`−1)k∑
bψ=0

fB(bψ|(`− 1)k, pψ)ρbψ
 k∑

aψ=0
fB(cψ|k, pψ)(1− ρaψ)


= −

σ2
ψ

1− ρ2 (1− (1− pψ(1− ρ))k)2(1− pψ(1− ρ))(`−1)k.

Using remark 1, we also have

Cov[∆kzt,∆kzt−`k] = −E[∆kzt]E[∆kzt−k]

+
k∑

aφ=0
fB(aφ|k, pφ)

(`−1)k∑
bφ=0

fB(bφ|(`− 1)k, pφ)
k∑

cφ=0
fB(cφ|k, pφ)(aφµφ)(cφµφ)

= −(kpφµφ)2 +
 k∑
aφ=0

fB(aφ|k, pφ)aφ

 k∑
cφ=0

fB(cφ|k, pφ)cφ

µ2
φ

= 0.

Combining the above results and using our independence assumptions, this implies
the result

Cov[∆kyt,∆kyt−`k] = Cov[∆kpt,∆kpt−`k] + Cov[πξt−kξt−k, π
ξ
t−`kξt−`k]

+Cov[πηt−kηt−k, π
η
t−`kηt−`k] + Cov[εt−k, εt−`k]

= Cov[∆kpt,∆kpt−`k]−

pξσ
2
ξ + µ̃2

ξ + pησ
2
η + µ̃2

η + σ2
ε if ` = 1

0 if ` ∈ {2, 3, . . . }.

A.7.2 Fractional covariance

Using the same argumentation as when formulating eq. (2.4), we have
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∆kpt−` = (ρaψ+bψ − 1)pt−`−k + ρbψ
aψ−1∑
s=0

ρsψs,aψ +
bψ−1∑
s=0

ρsψs,bψ

∆kzt−` =
aφ−1∑
s=0

φs,aφ +
bφ−1∑
s=0

φs,bφ

∆kpt = (ρbψ+cψ − 1)pt−k + ρcψ
bψ−1∑
s=0

ρsψs,bψ +
cψ−1∑
s=0

ρsψs,cψ

= (ρbψ+cψ − 1)
ρaψpt−`−k +

aψ−1∑
s=0

ρsψs,aψ

+ ρcψ
bψ−1∑
s=0

ρsψs,bψ +
cψ−1∑
s=0

ρsψs,cψ

∆kzt =
bφ−1∑
s=0

φs,bφ +
cφ−1∑
s=0

φs,cφ

ai, ci ∼ Binomial(`, pi) i ∈ {ψ, φ}

bi ∼ Binomial(k − `, pi) i ∈ {ψ, φ}

This implies

Cov[∆kpt,∆kpt−`|aψ, bψ, cψ] = (ρaψ+bψ − 1)(ρbψ+cψ − 1)ρaψVar[pt−`−k]

+(ρbψ+cψ − 1)ρbψ
aψ−1∑
s=0

ρ2sσ2
ψ

+ρcψ
bψ−1∑
s=0

ρ2sσ2
ψ

= [(ρaψ+bψ − 1)(ρbψ+cψ − 1)ρaψ + (ρbψ+cψ − 1)ρbψ(1− ρ2aψ)

+ρcψ(1− ρ2bψ)] ·
σ2
ψ

1− ρ2

=
[
ρaψ − ρbψ + ρcψ − ρaψ+bψ+cψ

] σ2
ψ

1− ρ2 .

where we have used that Var[pt−`−k] = σ2
ψ

1−ρ2 by lemma 1.
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Using remark 1 and lemma 5, we now have

Cov[∆kpt,∆kpt−`k] =
∑̀
aψ=0

fB(aψ|`, pψ)
k−∑̀
bψ=0

fB(bψ|k − `, pψ)
∑̀
cψ=0

fB(cψ|k, pψ)

(
ρaψ − ρbψ + ρcψ − ρaψ+bψ+cψ

) σ2
ψ

1− ρ2

=
[
2 (1− pψ(1− ρ))`

− (1− pψ(1− ρ))k−`

− (1− pψ(1− ρ))2` (1− pψ(1− ρ))k−`
]

σ2
ψ

1− ρ2

= (2ρ̃` − ρ̃k−` − ρ̃`+k)
σ2
ψ

1− ρ2

Using remark 1, we also have

Cov[∆kzt,∆kzt−`] = −E[∆kzt]E[∆kzt−k]

+
∑̀
aφ=0

fB(aφ|`, pφ)
k−∑̀
bφ=0

fB(bφ|k − `, pφ)
∑̀
cφ=0

fB(cφ|k, pφ)
[
bσ2

φ

+(aφ + bφ)(bφ + cφ)µ2
φ

]
= −(kpφµφ)2

+µ2
φ

k−∑̀
bφ=0

fB(bφ|k − `, pφ)b2
φ + σ2

φ

k−∑̀
bφ=0

fB(bφ|k − `, pφ)bφ

+µ2
φ

 ∑̀
aφ=0

fB(aφ|`, pφ)aφ

 k−∑̀
bφ=0

fB(bφ|k − `, pφ)bφ


+µ2

φ

 ∑̀
aφ=0

fB(aφ|`, pφ)aφ

 ∑̀
cφ=0

fB(cφ|k, pφ)cφ


+µ2

φ

 k−∑̀
bφ=0

fB(bφ|k − `, pφ)bφ

 ∑̀
cφ=0

fB(cφ|k, pφ)cφ


= −(kpφµφ)2 + σ2

φpφ(`− k) + µ2
φ(pφ(1− pφ)(`− k)

+p2
φ(`− k)2 + p2

φ2`(k − `) + p2
φ`

2)

= −(kpφµφ)2 + σ2
φpφ(`− k) + µ2

φ(pφ(1− pφ)(`− k) + (kpφ)2)

= (k − `)µ̃2
φ + σ2

φpφ(`− k)

Combining the above results and using our independence assumptions, this yields
the result
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Cov[∆kyt,∆kyt−`] = (2ρ̃` − ρ̃k−` − ρ̃`+k)
σ2
ψ

1− ρ2 + (k − `)µ̃2
φ + σ2

φpφ(`− k).

A.8 Proof of Corollary 3

When ψt, ξt, ηt, φt, and εt are all Gaussian then, using the notation of Theorem
1, ∆kyt|nψ, nφ,mξ0,mξ1,mη0,mη1 is a linear combination of Gaussian variables and
therefore also a Gaussian variable. The mean and variance of ∆kyt|nψ, nφ,mξ0,mξ1,mη0,mη1

are given in Theorem 1. Then using remark 2 gives the result.

A.9 Proof of Corollary 4

Variance. The variance of the transitory shocks are the same in period t and t+k

by assumption. In turn, using that all shocks are independent together with Lemma
4, we have that

Var[yt+k]− Var[yt] = Var[zt+k]− Var[zt] + Var[pt+k]− Var[pt]

= Var[zt +
k∑
j=1

πφt+jφt+j]− Var[zt] + ∆kVar[pt+k]

=
k∑
j=1

Var[πφt+jφt+j] + ∆kVar[pt+k]

= k(σ2
φ + pφ(1− pφ)µ2

φ + ∆kVar[pt+k]

From Theorem 1 we have that limt→∞∆kVar[pt+k] = 0 and the difference in income-
level variances converges to

k(σ2
φ + pφ(1− pφ)µ2

φ.

Covariance There is no covariance of the transitory shocks by assumption, and
the co-variance of the permanent component is independent of the span given a
common starting point, i.e. Cov[zt, zt+k] = Cov[zt, zt+k+`]. Using that all shocks are
assumed to be independent, it follows using Lemma 5 and Lemma 1 that
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Cov[yt, yt+k+`]− Cov[yt, yt+k] = Cov[pt, pt+k+`]− Cov[pt, pt+k]

=
k+∑̀
nψ=0

fB(nψ|k + `, pψ)Cov[ρnψpt +
nψ∑
s=1

ρsψs, pt]

−
k∑

nψ=0
fB(nψ|k, pψ)Cov[ρnψpt +

nψ∑
s=1

ρsψs, pt]

= (1− pψ(1− ρ))k+` σ2
ψ

1− ρ2 − (1− pψ(1− ρ))k
σ2
ψ

1− ρ2

=
[
(1− pψ(1− ρ))k+` − (1− pψ(1− ρ))k

] σ2
ψ

1− ρ2

A.10 Proof of Corollary 5

When ψt, ξt, ηt,φt, and εt are all Gaussian then, using the notation of Theorem
1, ∆kyt|nψ, nφ,mξ0,mξ1,mη0,mη1 is a linear combination of Gaussian variables and
therefore also a Gaussian variable. The mean and variance of ∆kyt|nψ, nφ,mξ0,mξ1,mη0,mη1

are given in Theorem 1. We then have

Pr[∆kyt < x|nψ, nφ,mξ0,mξ1,mη0,mη1] = Φ
(
x− µs√

Ξs

)

Consequently

Pr[∆kyt < x] =
∑
s∈S

ωsPr[∆kyt < x|nψ, nφ,mξ0,mξ1,mη0,mη1]

=
∑
s∈S

ωsΦ
(
x− µs√

Ξs

)

A.11 Proof of Corollary 6

When ψt, ξt, ηt, φt, and εt are all Gaussian then, using the notation of Theorem 2,
∆kyt|nψ1, nψ2nφ1, nφ2,mξ0,mξ1,mξ2,mη0,mη1,mη2 and
∆kyt−k|nψ1, nψ2nφ1, nφ2,mξ0,mξ1,mξ2,mη0,mη1,mη2 are both linear combinations of
Gaussian variables and therefore jointly Gaussian. The covariances matrix is implied
by Theorem 2. We then have

Pr[∆kyt < x1 ∧∆kyt−k < x2|nψ1, nψ2nφ1, nφ2,mξ0,mξ1,mξ2,mη0,mη1,mη2]

= Φ2

(
x1 − µ1s√

Ξ1s
,
x2 − µ2s√

Ξ2s
,

Cs√
Ξ1s
√

Ξ2s

)
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Consequently

Pr[∆kyt < x1 ∧∆kyt−k < x2] =
∑
s∈S

ωsPr[∆kyt < x1 ∧∆kyt−k < x2|

nψ1, nψ2nφ1, nφ2,mξ0,mξ1,mξ2,mη0,mη1,mη2]

=
∑
s∈S

ωsΦ
(
x1 − µ1s√

Ξ1s
,
x2 − µ2s√

Ξ2s
,

Cs√
Ξ1s
√

Ξ2s

)
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B Additional figures

Figure B.1: Additional data figures

(a) Mean of log-income
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(b) Variance of log-income
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(c) Share of 1-month growth rates ≤ 1-percent
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(d) Share of 1-month growth rates ≤ 5-percent
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(e) Time-profile of 12-month growth rate
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(f) Time-profile of 1-month growth rate
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Notes: Panels (a)–(b) show the age profiles of the mean and variance of monthly log-income.
Panels (c)–(d) show the age profiles of the share of observations with absolute monthly income
growth below 1 and 5 percent, split by month. Black dots are averages over February–March and
August–November. Panels (e)–(f) show the average 12 and 1-month growth rates over the sample
period. All measures are pooled across cohorts.
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