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Abstract

We study whether households can distinguish persistent from transitory
income shocks, and the implications for consumption-saving behavior. We
construct a novel consumption-saving model where the household must infer
the persistent component of its income process from actual income realiza-
tions together with an additional noisy private signal. We first show that
the degree of imperfect information has important consequences for the in-
terpretation of transmission parameters to persistent and transitory income
shocks. A large transitory transmission parameter can e.g. be estimated
despite of a low marginal propensity to consume because the short run co-
variance between income growth and consumption growth increases when
households cannot distinguish persistent from transitory income shocks. We
further show that the households’ degree of knowledge can be identified from
panel data on income and consumption. Finally, we estimate a high degree
of knowledge in the Panel Study of Income Dynamics.
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1 Introduction

The degree to which households can distinguish persistent from transitory income
shocks have important implications for our interpretation of observed consumption-
saving behavior. In particular, imperfect information with respect to the composi-
tion of income shocks can induce strong short run co-movements between income
growth and consumption growth even if the true marginal propensity to consume
is low. The standard assumption that households know the persistent compo-
nent of their income process, and thus can perfectly distinguish persistent from
transitory shocks, is rarely discussed explicitly, let alone tested empirically.1

In this paper, we construct a novel consumption-saving model where households
know the true income process but need to infer the persistent component of their
income process, and thus whether observed income changes are persistent or transi-
tory, from the realization of their actual income path together with an additional
noisy private signal. This allows us to consider a continuum of cases from the
households perfectly knowing the persistent component of their income process,
and thus the composition of their income shocks, to the household having the
same information set as an econometrician, who needs to solve a filtering problem
to infer the hidden persistent component from observed actual income.

In the first part of the paper, Section 2, we consider a simple certainty equivalence
framework with quadratic utility and a permanent-transitory income process to
build intuition on how households behave when they cannot perfectly distinguish
permanent from transitory income shocks. We show that the assumption about
the households’ degree of knowledge about its permanent income has important
consequences for the interpretation of transmission parameters to permanent and
transitory income shocks estimated as in the influential studies by Blundell, Pista-
ferri and Preston (2008) (henceforth BPP) and Kaplan and Violante (2010).2

In line with intuition, the estimated response to transitory shocks rises above the
true marginal propensity to consume (MPC) when the noise in the households’
private signal increases and they cannot perfectly discriminate permanent from
transitory shocks. Somewhat counter-intuitively, the estimated response to per-
manent shocks also rises above the true marginal propensity to consume out of

1 In a recent survey, Blundell (2014) thus asks for research on “the consumer’s ability to distin-
guish between permanent and transitory shocks” (p. 312).

2 See also Blundell, Low and Preston (2013) and the surveys in Jappelli and Pistaferri (2010),
Meghir and Pistaferri (2011) and Blundell (2014).
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permanent shocks (MPCP) when the noise increase. This is due to an increas-
ing bias in the estimator of the permanent transmission parameter proposed by
BPP. Consistent with intuition, the true permanent transmission parameter is
decreasing in the degree of noise in the private signal.

We further derive the joint covariance structure of consumption and income growth
and show that the households’ degree of knowledge, i.e. the precision of their
private signal, can be point identified in closed form with panel data on income
and consumption, even if the consumption data is subject to measurement error.
With unknown measurement error in income, the variance of the transitory shock
is, as previously noted in the literature, not point identified, which implies that the
degree of knowledge is not point identified. However, we show that the estimated
degree of knowledge will be increasing in the variance of measurement error in
income. From an upper bound on the measurement error in income relative to
the observed variance of income growth, we can thus derive an upper bound on
the degree of knowledge; the assumption of no measurement error delivers a lower
bound.

In the second part of the paper, Section 3, we consider a more general consumption-
saving model where households have CRRA utility and face a life-cycle income pro-
cess with potentially persistent rather than fully permanent shocks, and a MA(1)
term. In the limit, where the household’s information about their permanent in-
come is perfect, the model nests the canonical buffer-stock model of Deaton (1991,
1992) and Carroll (1992, 1997, 2012). Through simulations we show that the the-
oretical results from the certainty equivalence framework also holds qualitatively
for the more general model. In a Monte Carlo study we in particular show that the
households’ degree of knowledge can be estimated from panel data on income and
consumption using a simulated method of moments (SMM) estimator. We jointly
estimate the degree of knowledge together with income process and preference
parameters. We show that the closed-form estimator derived from the certainty
equivalence model also delivers reasonable estimates when used on data simulated
from the more general model.

In the third, and final, part of the paper, Section 4, we apply the same estimator
to data on income and consumption from the Panel Study of Income Dynam-
ics(PSID). We conclude that we cannot reject that the PSID households know the
persistent component of their own income process perfectly, and that they can
fully distinguish persistent from transitory shocks. This result is robust to a wide
range of specifications of the income process and allowing for measurement error
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in both income and consumption. We also find no evidence of differences in the
degree of knowledge across different educational groups. We only find evidence
of imperfect information when we impose a too high discount factor on the data.
With very patient households the model cannot match the co-movements between
income growth and consumption growth observed in the data without restricting
them to have imperfect information.

Related literature. The notion that households might not have perfect in-
formation about the components of their own income process goes back to at
least Muth (1960). Pischke (1995) analyzed the case where the households have
access to less information than the econometrician about the aggregate state of
the economy but observe their own income shocks perfectly.3 Wang (2004, 2009)
show in a continuous time model with CARA preferences that imperfect knowl-
edge about permanent income implies larger precautionary saving. Blundell and
Preston (1998), Cunha, Heckman and Navarro (2004), and Blundell (2014), also
all briefly discuss the possibility that households cannot perfectly discriminate
persistent from transitory shocks.

Our study is also related to the seminal papers by Guvenen (2007) and Guve-
nen and Smith (2014) studying consumption-saving behavior when households
are gradually learning their individual-specific income growth rate. They assume
that households only have imperfect information about their own latent income
growth rate in form of an initial private signal, and otherwise need to infer it from
the realization of their income path. This implies that the standard case, with ho-
mogeneous growth rates and perfect information about the persistent component
of the income process, is not nested in their specification.4 Our paper does not
consider heterogeneous growth rates, but focus on the learning of the persistent
component of income given a period-by-period private signal. Hereby the standard
case with perfect information is nested as a special case in our framework.

Finally, our paper is related to Pistaferri (2001) and Kaufmann and Pistaferri
(2009) who use subjective belief data to identify respectively transitory and per-
manent shocks. Their identification strategy relies on the assumption that the

3 Goodfriend (1992) investigates aggregation bias when households face an income process con-
sisting of an individual component and an aggregate component observed with a one period
lag.

4 In turn, the models in Guvenen (2007) and Guvenen and Smith (2014) cannot answer the
question of the current paper.
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households know their permanent income component.

2 Framework and Identification

In this section, we use a certainty equivalence consumption-saving model to build
intuition on how households behave when they cannot perfectly distinguish be-
tween permanent and transitory income shocks. We consider a continuum of cases
from the households perfectly knowing their permanent income, and thus the com-
position of their income shocks, to the households having the same information
set as an econometrician only observing realized income. We show that point
identification of the households degree of knowledge can be achieved with panel
data on income and consumption allowing for an unknown degree of measurement
error in consumption. When also allowing for measurement error in income, we
can derive lower and upper bounds on the households’ degree of knowledge.

2.1 Household problem

We assume that households have quadratic utility, like Hall (1978), face a permanent-
transitory income process, and only observe actual income, yt, and a noisy private
signal of permanent income, zt. Specifically, the households solve

U = max
ct,ct+1,...

Ẽt
∞∑
k=0

βk[αct+k − γ
c2
t+k
2 ], α > 0, γ > 0 (2.1)

s.t.

at = R(at−1 + yt − ct), R > 0 (2.2)

lim
t→∞

R−tat ≥ 0 (2.3)

yt = pt + ξt, ξt ∼ N (0, σ2
ξ ), σξ > 0 (2.4)

pt = pt−1 + ψt, ψt ∼ N (0, σ2
ψ), σψ > 0 (2.5)

zt = pt + εt, εt ∼ N (0, σ2
ε ), σε ≥ 0, (2.6)

where eq. (2.2) is the budget constraint and eq. (2.3) is the No-Ponzi game
condition, eq. (2.4)-(2.5) are the permanent-transitory income process, zt in eq.
(2.4) is the private signal, and the expectations operator Ẽt is conditional on the
history of actual income and the private signal, i.e.

Ẽt[•] ≡ E[• | yt, yt−1, . . . , zt, zt−1, . . . ]. (2.7)
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If σε = 0 we are in the standard case with perfect information, zt = pt, and the
households can perfectly distinguish permanent from transitory income shocks.
For σε > 0 the households need to solve a filtering problem to form beliefs about
their permanent income and the composition of income shocks. Because the in-
come process is linear-Gaussian it is optimal for the household to infer its level of
permanent income by the Kalman filter.5 We denote a household’s mean-belief of
pt by p̂t, and the variance of its mean-belief by q̂t.

A useful property of the Kalman filter is that the distribution of prediction errors,
p̂t − pt, is mean-zero and is Gaussian with the same variance as the mean-belief,
i.e.

κt ≡ p̂t − pt ∼ N (0, q̂t), (2.8)

and uncorrelated with future shocks,

∀k > 0 : cov(κt, ψt+k) = cov(κt, ξt+k) = cov(κt, εt+k) = 0. (2.9)

In the following section, we present central properties of the Kalman filter updating
process before turning to the implied consumption-saving behavior.

2.2 Updating Beliefs

Given period t information the best predictions of t+ 1 variables are

p̂t+1|t = p̂t (2.10)

ŷt+1|t = p̂t+1|t (2.11)

ẑt+1|t = p̂t+1|t (2.12)

q̂t+1|t = q̂t + σ2
ψ. (2.13)

The mean-belief is optimally updated as

p̂t+1 = p̂t+1|t +Kt+1∆t+1, (2.14)

5 For a general treatment of the Kalman filter see e.g. Hamilton (1994).
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where ∆t+1 is the vector of prediction errors given by

∆t+1 ≡

 yt+1

zt+1

−
 ŷt+1|t

ẑt+1|t

 , (2.15)

and Kt+1 is the optimal Kalman gain vector given by

Kt+1 ≡ q̂t+1|t

 1
1

T S−1
t+1, (2.16)

=
q̂t + σ2

ψ

(σ2
ξ + σ2

ε )(q̂t + σ2
ψ) + σ2

ξσ
2
ε

[
σ2
ε σ2

ξ

]
,

with

St+1 ≡

 1
1

 q̂t+1|t

 1
1

T +
 σ2

ξ 0
0 σ2

ε

 . (2.17)

The variance of the mean-belief is updated optimally as

q̂t+1 =
1−Kt+1

 1
1

 q̂t+1|t. (2.18)

Steady state. We can solve for the steady state value of q̂t in eq. (2.18), as

q? =

√√√√ σ2

ξσ
2
ε

(σ2
ξ + σ2

ε )σ2
ψ

+ 1
4 −

1
2

σ2
ψ. (2.19)

The steady state Kalman gain vector consequently is

K? ≡
[
K?

1 K?
2

]
=

[
q?σ−2

ξ q?σ−2
ε

]
. (2.20)

Lemma 1 presents some important properties of the steady state variance of the
mean-belief and Kalman gain vector. Note in particular that when all the noise in
the private signal disappears, σε → 0, we have perfect information and get p̂t = pt

and q̂t = 0. On the other hand, q̂t reaches an upper bound when the private signal
becomes infinitely noisy, σε → ∞. Note also that the sum of the elements of the
Kalman gain vector, K? ≡ K?

1 + K?
2 , is one in the perfect information case, and

gradually declines towards a positive constant as σε →∞.

Lemma 1. q? and K? have the following properties:

1. The steady state variance of the mean-belief is bounded by the minimum
of the transitory shock variance and the variance of the noise in the
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private signal, and the steady state Kalman gains are always positive
and sum to weakly less than one,

q? ≤ min{σ2
ξ , σ

2
ε} (2.21)

K?
1 , K

?
2 ≥ 0 (2.22)

K? ≡ K?
1 +K?

2 ≤ 1 (2.23)

2. In the limit as all noise in the private signal disappears (perfect infor-
mation), σε → 0, the variance of the mean-belief collapses and all of the
Kalman gain is placed on the noiseless private signal,

lim
σε→0

q? = 0 (2.24)

lim
σε→0

K? =
[

0 1
]

(2.25)

lim
σε→0
K? = 1 (2.26)

3. In the opposite limit, where the private signal becomes infinitely noisy,
σε →∞, the variance of the mean-belief reaches an upper bound, and no
weight is placed on the private signal

lim
σε→∞

q? =

√√√√σ2

ξ

σ2
ψ

+ 1
4 −

1
2

σ2
ψ ≡ q? > 0 (2.27)

lim
σε→∞

K? =
[
q?σ−2

ξ 0
]

(2.28)

lim
σε→∞

K? = q?σ−2
ξ ∈ (0, 1) (2.29)

4. The variance of the mean-belief and the elements of the Kalman gain
changes monotonically with the noise in the private signal as

∂q?

∂σ2
ε

> 0 (2.30)

∂K?
1

∂σ2
ε

> 0 (2.31)

∂K?
2

∂σ2
ε

< 0 (2.32)

∂K?

∂σ2
ε

< 0 (2.33)

Proof. Follow from eq. (2.19) and (2.20). See Supplemental Material A.
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Lemma 2 presents the law of motion for the prediction error. An important im-
plication is that the prediction errors under imperfect information have a positive
autocovariance and are correlated with both past and current shocks. In particu-
lar, we see that permanent shocks lead to under-prediction of permanent income
( ∂κt
∂ψt

< 0 ) and transitory shocks lead to over-prediction of permanent income
(∂κt
∂ξt

> 0). We also have mean-reversion in the prediction error, E[κt|κt−1] < κt−1

because (1−K?) < 1 when σε > 0.

Lemma 2. The law of motion for the steady state prediction error is

κt = (1−K?)κt−1 + (K? − 1)ψt +K?
1ξt +K?

2εt (2.34)

and consequently the autocovariance of the prediction errors is

cov(κt, κt−1) = (1−K?)q? ≥ 0 (2.35)

Proof. Follow from eq. (2.14) and eq. (2.8)–(2.9). See Supplemental Material
A.

Note further that despite the prediction errors have a positive autocovariance the
income growth forecast errors, defined as et ≡ (yt+1|t− yt|t)− (yt+1− yt), still have
zero autocovariance as shown in Lemma 3.

Lemma 3. The income growth forecast error is mean zero and has excessive vari-
ance, but have zero autocovariance.

1. et ≡ (yt+1|t − yt)− (yt+1 − yt) = κt − ψt+1 − ξt+1

2. E[et] = 0

3. var(et) = q? + σ2
ψ + σ2

ξ ≥ σ2
ψ + σ2

ξ

4. cov(et, et+k) = 0, for all k > 0

Proof. See Supplemental Material A.

This implies that the household’s degree of knowledge cannot easily be inferred
from survey information on their income growth forecasts. In principle the variance
of the income growth forecast errors could be used, but it would require strong
assumptions on the measurement error in the reported forecasts. Here, we instead
pursue identification through the use of consumption data.
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2.3 Consumption-Saving

We can now derive an analytical formula for the change in consumption under
imperfect information. The result is provided in Theorem 1.

Theorem 1. Consider a household solving the problem in eq. (2.1) where the
variance of the mean-belief has converged to q?. If βR = 1 then

∆ct = φψ(ψt − κt−1) + φξξt + φεεt (2.36)

where

φψ ≡ R−1(R− 1 + q?(σ−2
ξ + σ−2

ε )) (2.37)

φξ ≡ R−1(R− 1 + q?σ−2
ξ ) (2.38)

φε ≡ R−1q?σ−2
ε (2.39)

Proof. See Supplemental Material A.

Using the consumption growth result in Theorem 1, we can derive the autoco-
variance structure of consumption growth and the covariance of consumption and
income growth. These covariances are useful for determining identifying moments
for the variance of the households’ private signal, σ2

ε , i.e. their degree of knowledge.
Corollary 1 shows that the standard result of consumption growth being a ran-
dom walk is preserved under imperfect information about permanent income.6

However, the variance of consumption growth, given R > 1, is increasing in the
noise of the private signal, σε, through its positive effect on the variance of the
mean-belief, q?.

Corollary 1. The variance and autocovariances of consumption growth are

cov(∆ct,∆ct+k) =

σ
2
ψ + (R−1)2

R2 σ2
ξ + R2−1

R2 q? if k = 0

0 else

Proof. Follows from Theorem 1 and Lemma 2. See Supplemental Material A.

Corollary 2 shows the covariances of consumption growth with past, current and
future income growth. The standard results that consumption growth is uncor-

6 The random walk result is only broken if we assume that the household does not observe its
own income perfectly.
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related with past income growth (i.e. no excess sensitivity7) and future income
growth beyond the first lead (i.e. no indication of advance information8) is pre-
served.

The covariance of consumption growth with current income, however, increases
with the noise of the private signal, σε, though its positive effect on the variance
of the mean-belief, q?. The covariance of consumption growth with next-period
income, on the other hand, becomes even more negative through the effect of σε
on the variance of the mean-belief q?.

Corollary 2. The covariances of consumption growth and income growth are

cov(∆ct,∆yt+k) =


−R−1(σ2

ξ (R− 1) + q?) if k = 1

σ2
ψ + R−1

R
σ2
ξ + q? if k = 0

0 else

Proof. Follows from Theorem 1 and eq. (2.4).

In sum, we have thus shown in Corollary 1 and 2 that three central moments
for identifying σε are var(∆ct), cov(∆ct,∆yt) and cov(∆ct,∆yt+1). We return
to identification of σε after discussing the implications of σε on the transmission
parameters in eq. (2.37)–(2.39).

2.4 Transmission parameters

The parameters φψ, φξ and φε in the consumption growth eq. (2.36) are in-
formative with respective to how consumption responds to different shocks. In
particular, φψ and φξ have similar interpretations as the transmission parame-
ters estimated in BPP. Corollary 3 shows that in the limit with perfect informa-
tion, σε → 0, the household optimally responds one-to-one to permanent shocks,
φψ = 1, and only marginally to transitory shocks, φξ = R−1

R
. This is the standard

result from BPP. In the limit where the information sets of the household and the
econometrician coincide, σε → ∞, we instead have that φψ = φξ such that the

7 Excess sensitivity can e.g. be due to liquidity constraints (Flavin, 1981) or precautionary
saving (Commault, 2017) which we have both ruled out here. In the general CRRA model
studied below we allow for both these elements in the model.

8 Primiceri and van Rens (2009) and Kaufmann and Pistaferri (2009) argue in favor of ad-
vance information about one year ahead shocks. BPP do not find any evidence for advance
information.
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transmission parameters to the permanent and transitory shocks are the same.
Note, however, that when σε > 0 the interpretation of φψ and φξ as transmission
parameters is not correct in the usual sense. Specifically, we always have, irre-
spective of σε, that the marginal propensity to consume (MPC) is R−1

R
and the

marginal propensity to consume out of permanent shocks (MPCP) is 1, while φψ
and φξ vary systematically with σε. The imperfect information thus opens up a
wedge between the MPC and MPCP and the respective transmission parameters.

Corollary 3. The transmission parameters φψ, φξ and φε vary with σε as follows:

1. For φψ we have

lim
σε→0

φψ = 1

lim
σε→∞

φψ = R−1(R− 1 + q?σ−2
ξ )

∂φψ
∂σε

< 0

2. For φξ we have

lim
σε→0

φξ = R− 1
R

lim
σε→∞

φξ = R−1(R− 1 + q?σ−2
ξ )

∂φξ
∂σε

> 0

3. For φε we have

lim
σε→0

φε = 1
R

lim
σε→∞

φε = 0
∂φε
∂σε

< 0

Proof. Follows from Theorem 1 and Lemma 1. See Supplemental Material A.

BPP showed that the transmission parameters were identified under the assump-
tion that the household has perfect information about its permanent income,
σε = 0. Using the same moment condition, the parameter φξ can still be recovered
under the assumption of imperfect information. This follows from eq. (2.40) in
Corollary 4. The coefficient φψ can, however, not be recovered using the moment
condition suggested by BPP when information is imperfect. The reason is that the
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lagged shocks have a non-zero covariance with the lagged prediction error, κt−1,

present in the equation for the change in consumption, eq. (2.36). Specifically,
the BPP estimate of φψ is upwards biased as seen in eq. (2.41) Corollary 4.

Corollary 4. Using the moments proposed by BPP to estimate the transmission
parameters we get

φ̂BPPξ ≡ cov(∆ct,−∆yt+1)
cov(∆yt,−∆yt+1) = φξ, (2.40)

and

φ̂BPPψ ≡ cov(∆ct,∆yt−1 + ∆yt + ∆yt+1)
cov(∆yt,∆yt−1 + ∆yt + ∆yt+1) (2.41)

= φψ[1 + (1−K?)(1 +K?
1
σ2
ξ

σ2
ψ

)] > φψ.

Proof. Follows from Theorem 1 and eq. (2.4). See Supplemental Material A.

This further implies the surprising result in Corollary 5 that while the actual φψ is
decreasing in the noise of the private signal, ∂φψ

∂σε
< 0 (Corollary 3), the estimated

φ̂BPPψ is increasing in it, ∂φ̂BPPψ

∂σε
> 0.

Corollary 5. We have

∂φ̂BPPξ

∂σ2
ε

= ∂φξ
∂σ2

ε

= 1
R
Q?

∂φ̂BPPψ

∂σ2
ε

= R− 1
R

σ2
ξ

σ2
ψ

Q?,

where
Q? ≡

σ2
ξ (2q? + σ2

ψ)
(σ2

ε + σ2
ξ )(4σ2

ε + (σ2
ε + σ2

ξ )σ2
ψ) .

Proof. See Supplemental Material A.

2.5 Identification of σ2
ε

We now turn to identification of the households’ degree of knowledge with panel
data on income and consumption. Lemma 4 shows how to estimate the variance
of the private signal, σ2

ε , given estimates of the variance of the mean-belief q̂?, and
the income shocks variances, σ̂2

ψ and σ̂2
ξ .
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Lemma 4. Given estimates q̂?, σ̂2
ψ > 0 and σ̂2

ξ > 0 the variance of the private
signal is

σ̂2
ε = q?−1(q̂?, σ̂2

ψ, σ̂
2
ξ ), (2.42)

where

q?−1(q?, σ2
ψ, σ

2
ξ ) ≡


0 if q? ≤ 0
q?σ2

ξ (q?+σ2
ψ)

σ2
ξ
σ2
ψ
−q?(q?+σ2

ψ
) if q? ∈ (0,

(√
σ2
ξ/σ

2
ψ + 1

4 −
1
2

)
σ2
ψ).

(2.43)

If q? ≥
(√

σ2
ξ/σ

2
ψ + 1

4 −
1
2

)
σ2
ψ there does not exist any σ2

ε for the given σ2
ξ and σ2

ψ

that is consistent with q?.

Proof. q?−1(•) is the solution in σ2
ε to eq. (2.19). For σε > 0, we always have

σ2
ξσ

2
ψ − q?(q? + σ2

ψ) > 0.

Theorem 2 next shows that the degree of noise in the private signal, σ2
ε , is point

identified with panel data on income and consumption even when consumption is
subject to measurement error.

Theorem 2. Consider a panel data set where income, ỹt, is observed without mea-
surement error, and consumption, c̃t, is observed with additive iid measurement
error with variance σ2

c .
The variance of the mean-belief, q?, is point identified as

q̂? = −Rcov(∆c̃t,∆ỹt+1)− (R− 1)σ̂2
ξ . (2.44)

where

σ̂2
ξ = max{cov(∆ỹt,−∆ỹt+1), 0} (2.45)

σ̂2
ψ = max{cov(∆ỹt,∆ỹt−1 + ∆ỹt + ∆ỹt+1), 0} (2.46)

σ̂2
c = max{cov(∆c̃t,−∆c̃t+1), 0}. (2.47)

The degree of noise in the private signal, σ2
ε , is point identified as

σ̂2
ε = q?−1(q̂?, σ̂2

ψ, σ̂
2
ξ ). (2.48)

Proof. See Supplemental Material A.

With unknown measurement in income, the transitory shock variance is not point
identified. However, Corollary 6 shows that the estimate of σ2

ε is monotonically
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decreasing in the variance of measurement error of income. Assuming no measure-
ment error in income thus provides a lower bound on σ2

ε . In practice, the amount
of measurement in income can be bounded by the observed variance of income
growth, and we can thus also provide an upper bound.

Corollary 6. Consider the same case as Theorem 2, but assume that there addi-
tionally also is additive iid measurement error in income, ỹit, with variance σ2

y.

For any σ̃2
y ∈ [0, cov(∆ỹt,−∆ỹt+1)) we can estimate the degree of knowledge by

σ̂2
ε (σ̃2

y) = q?−1(q̂?(σ̂2
ξ (σ̃2

y)), σ̂2
ψ, σ̂

2
ξ (σ̃2

y)), (2.49)

where

σ̂2
ξ (z) = cov(∆ỹt,−∆ỹt+1)− z (2.50)

q̂?(x) = −Rcov(∆c̃t,∆ỹt+1)− (R− 1)x. (2.51)

We have that the estimated degree of knowledge will be increasing in the measure-
ment error of income

∂σ̂2
ε (σ̃2

y)
∂σ̃2

y

=
∂q?−1(q̂?(σ̃2

y), σ̂2
ψ, σ̂

2
ξ (σ̃2

y))
∂σ̃2

y

> 0. (2.52)

Proof. See Supplemental Material A.

3 Buffer-stock Model and Monte Carlo

In this section, we present a more general model where households have CRRA
preferences and face a life-cycle income process with potentially persistent rather
than fully permanent shocks, and a MA(1) term. In the limit where the households
information about their permanent income is perfect, the model nests the canonical
buffer-stock model of Deaton (1991, 1992) and Carroll (1992, 1997, 2012). After
describing the model details, we show how to estimate the degree of knowledge
with the Simulated Method of Moments (SMM) using panel data on consumption
and income, and present an encouraging Monte Carlo study.
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3.1 General model

Specifically, we consider the following specification for log-income

pt = Γt + αpt−1 + µψ + ψt, α ∈ [−1, 1] (3.1)

yt = pt + ξt + ωξt−1. (3.2)

Because the income process is still linear-Gaussian it is still optimal for the house-
hold to use the Kalman filter. The transition and measurement equations can be
written as

pt

ηt

ξt

 =


α 0 0
0 0 ω

0 0 0


︸ ︷︷ ︸

≡F


pt−1

ηt−1

ξt−1

+


Γt + µψ

µξ

µξ


︸ ︷︷ ︸

≡µ

+


σψ 0 0
0 σξ 0
0 σξ 0


︸ ︷︷ ︸

≡W


π1t

π2t

0

(3.3)

 yt

zt

 =
 1 1 0

1 0 0


︸ ︷︷ ︸

≡H


pt

ηt

ξt

+
 0 0

0 σε


︸ ︷︷ ︸

≡R

 0
π3t

 (3.4)

πjt ∼ iid.N (0, 1).

The prediction step becomes
p̂t+1|t

η̂t+1|t

ξ̂t+1|t

 = F


p̂t

η̂t

ξ̂t

+ µ (3.5)

Q̂t+1|t = FQ̂tF
T +WWT . (3.6)

The optimal Kalman gain vector becomes

Kt+1 = Q̂t+1|tH
TS−1

t+1, (3.7)

where
St+1 = HQ̂t+t|tH

T +RRT . (3.8)
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The update step becomes
p̂t+1

η̂t+1

ξ̂t+1

 =


p̂t+1|t

η̂t+1|t

ξ̂t+1|t

+Kt+1∆t+1 (3.9)

Q̂t+1 = (I −Kt+1H) Q̂t+1|t. (3.10)

where

∆t+1 =
 yt+1

zt+1

−
 p̂t+1|t + η̂t+1|t

p̂t+1|t

 . (3.11)

The vector of belief errors is

κt ≡


κpt

κηt

κξt

 ≡

p̂t

η̂t

ξ̂t

−

pt

ηt

ξt

 ∼ N (0, Q̂t)

We denote the diagonal matrix of the sorted (low to high) eigenvalues of Q̂t by D
and the associated matrix with the eigenvectors as the columns by V . We make
the following conjecture which we test numerically in practice

Conjecture 1. The smallest eigenvalue of Q̂t is zero for all t if it is zero for Q̂0.

The household retires in period TR, and hereafter they receive retirement benefits
equal to a fixed ratio of the permanent income,

t > TR : yt = pTR + log λ (3.12)
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The full recursive formulation of the household’s problem then becomes

Vt(Mt, p̂t, ξ̂t) = max
Ct

C1−ρ
t

1− ρ + βẼt
[
Vt+1(Mt+1, p̂t+1, ξ̂t+1)

]
(3.13)

s. t.

At = Mt − Ct
pt+1

ηt+1

ξt+1

 ∼ F



p̂t

η̂t

ξ̂t

+ V D
1
2


ι1t+1

ι2t+1

0


+ µ+W


ι3t+1

ι4t+1

0


 yt+1

zt+1

 ∼

 pt+1 + ηt+1

pt+1

+R

 0
ι5t+1



p̂t+1

•
ξ̂t+1

 = F


p̂t

η̂t

ξ̂t

+ µ


p̂t+1|t

η̂t+1|t

ξ̂t+1|t

+Kt+1∆t+1

Mt+1 = R · At + exp(yt+1)

At ≥ 0

ιjt ∼ i.i.d.N (0, 1), j ∈ {1, 2, 3, 4, 5}.

where R is the return factor and the households are not allowed to borrow. We
always assume Q̂0 = 0.

The standard Euler-equation applies,

C−ρt = βRẼt
[
C−ρt+1

]
, (3.14)

and the model can be solved using the Endogenous Grid Method (EGM) proposed
by Carroll (2006) extended to allow for multiple states. The model is, however,
still computationally demanding as it contains three continuous states and the
expectation is a five dimensional integral.9 Assuming ω = 0 reduces the dimen-
sionality of the state space to two and make the expectation three dimensional.
Further assuming α = 1 reduce the state space to just one dimension and the
expectation to just two dimensions.

9 Numerically, we approximate the integral with Gauss-Hermite quadrature.
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3.2 Estimation

We imagine having panel data on income and consumption for i = 1, . . . , N in-
dividuals in t = 1, . . . , T periods with potentially missing observations of either
income or consumption or both. We define wit ≡ (yit, cit) such that w denotes the
stacked data. In addition to the standard deviation of the private signal, σε, we
also wish to estimate preferences parameters and the income process parameters.
We denote the vector of parameters to be estimated by θ ∈ Θ ⊂ Rdimθ. In our
empirical investigation below we have θ = (σε, β, σc, σξ, σψ, g0, g1, α, ω), where we
allow income growth to be age dependent through Γt = g0 + g1(aget − 25)/100.
We use the Simulated Method of Moments (SMM) pioneered by McFadden (1989)
to estimate θ. Let Λ(w) be a K × 1 vector of moments calculated based on
observed data. For each value of θ, we solve the model and simulate income and
consumption trajectories for theN households forward from age 25 through 65. We
use data from age 30 to mimic the PSID data used in the empirical investigation
below.10 We can then calculate the same moments using the simulated data.
Denote as = 1

J

∑J
j=1 Λj(θ) the average of the same K moments calculated from J

simulated data sets from the model for a given value of θ.
We estimate θ as

θ̂ = arg min
θ∈Θ

(Λ(w)− Λ(θ))′W (Λ(w)− Λ(θ)),

where W is a K ×K weighting matrix. As a baseline we choose W as the inverse
of the covariance matrix of Λ(w).
We explicitly utilize our theoretical results from the certainty equivalence case in
the previous section for identification of σε. Particularly, we use the following 82
(K = 82) moments to uncover the parameters in θ:

• Moments 1-31: Age profile of log income from age 30 through 60
(demeaned), mean(y)|t=a−mean(y) , a = 30, . . . , 60. These moments are
included primarily for identification of the income growth parameters, g0

and g1.

• Moments 32-62: Age profile of log consumption from age 30 through
60 (demeaned), mean(c)|t=a −mean(c) , a = 30, . . . , 60. These moments
are included primarily for identification of the discount factor, β.

10Households are initialized with q̂0 = 0, At = 0 and p0 = 1.
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• Moments 63-68: The autocovariances of log income growth, cov(∆yt,∆yt+k)
for k = 0, . . . , 5. These moments are primarily included for identifica-
tion of the transitory and permanent income shock variances and the
AR(1) and MA(1) parameters of the income process, σ2

ξ , σ2
ψ, α and ω,

respectively.

• Moments 69-74: The autocovariances of log consumption growth,
cov(∆ct,∆ct+k) for k = 0, . . . , 5. These moments are primarily included
for identification of the measurement error in consumption, σ2

c .

• Moments 75-82: The covariances of log consumption growth with log
income growth, cov(∆ct,∆yt+k) for k = −2, . . . , 5. These moments are
primarily included for identification of the noise in the private signal, σ2

ε .

3.3 Monte Carlo

We now present results from a Monte Carlo study mimicking our empirical analysis
on PSID in Section 4. Specifically, we simulate N = 1, 765 households from age
25 through 65 from the general CRRA model. We impose the same patterns of
missing observations as in the PSID resulting in a total of 7,604 household-time
observations.

Due to the computational complexity, we focus our attention on a restricted model
with a unit root and no MA(1) term, i.e. α = 1 and ω = 0. Furthermore, we
do not estimate the income growth parameters, g0 and g1, or the measurement
error in income, σ2

y, but keep them fixed at their true values. In sum, we estimate
θ = (σε, β, σc, σξ, σψ) by SMM using the moments specified above. The parameter
values are chosen according to our calibration and empirical estimates from the
PSID, see column one of Table 4.2. The sole exception is the standard deviation
of the noise in the private signal, which we pick to be σε = 0.10.
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Figure 3.1: Monte Carlo Results.

(a) Private signal (std.), σε (b) Discount factor, β

(c) Transitory shock (std.), σξ (d) Permanent shock (std.), σψ

(e) Meas. error, cons. (std.), σc

Notes: Figure 3.1 reports histograms of Monte Carlo estimates of the five parameters θ =
(σε, β, σξ, σψ, σc). We use 200 replications, fix α = 1, ω = 0, and assume g0, g1 and σ2

y to be
known. We pick a standard deviation for the noise in the private signal of σε = 0.10, and choose
the remaining parameter values from our calibration and estimates on PSID data, see column
one of Table 4.2.

Figure 3.1 reports the marginal distributions of the estimated parameters. For all
parameters, we find that our estimator on average uncovers the true value. This
is reassuring because it indicates that we can uncover the parameters of the model
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with the suggested moments. The income shock variances and the measurement
error in consumption are moreover very precisely estimated, while the estimates
of the discount factor and the noise in the private signal is a bit more dispersed.

We now turn to the closed-form results derived for the CEQ model in Corollary 6.
While the data is still simulated from the CRRA model, and is identical to that
used to generate Figure 3.1, we see in Figure 3.2 that the degree of noise in the
private signal, σε, is on average estimated close to the true value. We also estimate
permanent and transitory income shock variances and the degree of measurement
error in consumption to be close to their true values. In total, this is encouraging
for the use of this simple estimation strategy.

Figure 3.2: Monte Carlo Results. CEQ.

(a) Private signal (std.), σε (b) Transitory shock (std.), σξ

(c) Permanent shock (std.), σψ (d) Meas. error, cons. (std.), σc

Notes: Figure 3.2 reports histograms of Monte Carlo estimates of the five parameters θ =
(β, σε, σξ, σψ, σc) using the CEQ model, but with data simulated from the CRRA model studied
in Figure 3.1. We use 200 replications. We pick a standard deviation for the noise in the
private signal of σε = 0.10, and choose the remaining parameter values from our calibration and
estimates on PSID data, see column one of Table 4.2.

21



4 Empirical Investigation

In this section, we present an empirical investigation regarding whether consumers
can distinguish persistent from transitory income shocks. We use data from the
Panel Study of Income Dynamics (PSID) and the model and estimation approach
validated by the Monte Carlo study in the previous section.

4.1 Data

We use the same PSID data as BPP, including their exact variable definitions and
sample selection criteria. We use their imputed total non-durable consumption
as our consumption measure and the income measure is total family income net
of financial income and taxes. Both measures are deflated using the CPI. We
exclude the low-income sample (SEO) and focus on stable married households of
opposite sex in which the head is male and aged 30-65. We keep households in
which the husband was born between 1920 and 1959. We discard a few income
observations due to top-coded tax or income. In turn we have 17,604 household-
time observations from 1,765 households. We refer the reader to the Appendix of
BPP for more details on the data and sample selection criteria.

We follow BPP and remove predictable variation due to demographics from the
income and consumption series through regression. As BPP, we include dummies
for educational level, race, number of children, number of family members, region
of residence, employment status and external income source. All these dummies
are allowed to be varying over time. Finally, we include time and age dummies
in the regressions.11 Throughout the remainder of this paper we refer to yt and
ct as log income and log consumption, respectively, with all predictable variation
removed.

4.2 Estimation Results: CEQ Model

As a first step, we apply the closed form estimator derived in Corollary 6 under
the assumption of a certainty equivalence (CEQ) model. We assume that the real
interest rate is 3 percent (R = 1.03) like in e.g. Gourinchas and Parker (2002), and

11We include age dummies rather than birth cohort dummies as done in BPP. This is, however,
identical because year dummies are also included. The age dummies provide us with an
estimate of the life-cycle profiles of income and consumption which we utilize as moments in
the estimation of the model.
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that measurement error in income accounts for 25 percent (τ = 0.25) of the total
variance of log income growth in the PSID data (σ2

y = 0.5 · τ · 0.0907 = 0.0113).
This strategy is identical to that employed in Meghir and Pistaferri (2004) and is
in part based on the result in Bound, Brown, Duncan and Rodgers (1994) that
around 22 percent of the overall income growth variance in the PSID is attributed
to measurement error.12

Table 4.1: Estimates, CEQ Model.

Whole sample No college College
Parameter (1) (2) (3)
σε Private signal (std.) 0.031 0.043 0.011

(0.026) (0.039) (0.025)
σc Meas. error, cons. (std.) 0.264 0.296 0.230

(0.008) (0.013) (0.007)
σψ Persistent shock (std.) 0.165 0.172 0.158

(0.005) (0.008) (0.008)
σξ Transitory shock (std.) 0.135 0.143 0.126

(0.005) (0.007) (0.007)
Notes: Bootstrapped standard errors based on 5000 bootstrap replications re-
ported in brackets.

Table 4.1 reports the reduced-form estimates of the CEQ model. The first column
reports estimates for the whole sample and columns (2) and (3) report estimation
results for the no college and college groups. In all cases we get small positive
estimates of the standard deviation of the private signal, σε, which, however, are
clearly insignificant at the 5 percent level.13 The point estimate is higher for the
group with no college education.

The other estimated parameters are in the ranges typically found in the literature.
The measurement error in consumption is substantial with a variance around 0.07,
which is in the same range as reported in BPP.14 The transitory and permanent
income shock variances are estimated to be around 0.018 and 0.027, also close to
the estimates reported in BPP.

12 The results are robust to these calibrations.
13Figure C.1 in the Supplemental Material report the distributions of bootstrapped estimates

showing that we with τ = 0.25 get σε = 0 in 30 percent of the samples.
14The measurement error variance in BPP is allowed to be time-varying and the authors write

that the imputation error variance is estimated in the range 0.05 to 0.10.

23



In the Supplemental Material, Table C.1 and C.2, we report the effect of assuming
either no measurement error in income (τ = 0.0) or a higher measurement error
(τ = 0.50). As expected, we find that the estimated transitory income shock
variance is falling in the assumed degree of measurement error in income, while
the noise in the private signal is increasing in it. In the high measurement error
case we estimate σε = 0.040 with a standard deviation of 0.046, i.e. still small and
insignificant.

As the estimates above is derived under the (arguably unrealistic) assumptions of
the CEQ model, we now turn to the more general model with CRRA preferences
and a more general income process

4.3 Estimation Results: General CRRA Model

We fix a few parameters of the model while estimating the remaining. Particu-
larly, we set the real interest rate to three percent (R = 1.03) and fix the degree
of measurement error in income to account for 25 percent of the total variance of
log income growth in the PSID data as above. The replacement rate in retirement
is fixed at 50 percent (λ = 0.5) and retirement happens with certainty at age 65
and agents die with certainty at age 85. Finally, we fix the constant relative risk
aversion coefficient at ρ = 1.5 (Attanasio and Weber, 1995). We perform robust-
ness checks below in sub-section 4.5 where changing these calibrated parameters
does not change our results.

We estimate the parameters, θ = (σε, β, σc, σξ, σψ, g0, g1, α, ω), by Simulated Method
of Moments (SMM) pioneered by McFadden (1989) as discussed in Section 3. Ta-
ble 4.2 reports the estimated parameters. The first three columns are based on
the whole PSID sample. In column (1), we consider a model with a permanent-
transitory income process with a unit root and no MA(1) term (α = 1 and ω = 0).
In column (2), we allow for a non-unit root (α free, ω = 0), and in column (3)
we additionally allow for a MA(1) term (α free, ω free). Columns (4) and (5) are,
respectively, for the sub-sample with no college degree and with a college degree
using the preferred model from column (2).
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Table 4.2: Estimates, General Model.

Whole sample No college College
Parameter (1) (2) (3) (4) (5)
σε Private signal (std.) 0.000 0.000 0.000 0.000 0.000

− − − − −
β Discount factor 0.958 0.962 0.963 0.958 0.967

(0.001) (0.002) (0.002) (0.003) (0.002)
σc Meas. error, cons. (std.) 0.268 0.272 0.272 0.305 0.237

(0.004) (0.004) (0.004) (0.007) (0.004)
σψ Persistent shock (std.) 0.138 0.172 0.150 0.191 0.155

(0.006) (0.008) (0.010) (0.012) (0.010)
σξ Transitory shock (std.) 0.148 0.129 0.156 0.126 0.127

(0.003) (0.006) (0.008) (0.010) (0.007)
g0 Income growth, constant 0.031 0.087 0.061 0.127 0.076

(0.002) (0.019) (0.013) (0.052) (0.021)
g1 Income growth, age −0.096 −0.036 −0.053 −0.016 −0.046

(0.010) (0.015) (0.015) (0.022) (0.021)
α AR(1) component − 0.835 0.883 0.777 0.861

− (0.029) (0.029) (0.048) (0.036)
ω MA(1) component − − 0.154 − −

− − (0.035) − −

Objective 115.772 70.046 60.891 52.296 63.614
p-value for σε = 0 0.497 0.500 0.499 0.500 0.500

Notes: Asymptotic standard errors reported in brackets for all parameters in the interior of
their domain.

The low estimated noise in the private signal, σε ≈ 0, suggests that PSID house-
holds have a high degree of knowledge about their own permanent income. In fact,
we cannot reject the one-sided hypothesis that H0 : σε = 0 against HA : σε > 0
with any standard confidence levels.15 This is true for all specifications and across
all robustness checks, reported below.

15Because our hypothesis is on the boundary of the parameter space, we employ a modified
quasi likelihood ratio (QLR) test. Particularly, define the objective function to be minimized
as Q = (Λ(w)− Λ(θ))′V −1(Λ(w)− Λ(θ)) where the inverse of V = var(Λ(w)) is the optimal
weighting matrix (see the Supplemental Material on the calculation of V ). The test statistic
QLR = Q(θ̂σε=0) − Q(θ̂) where Q(θ̂σε=0) and Q(θ̂), are the estimated objective functions
under the null and with all parameters estimated, respectively, follows a mixture of two χ2

distributions such that the p-value related to the null hypothesis can be found as 1−F (QLR)
where F (z) = 1

2 + 1
2χ

2
1(z) and χ2

1(z) is the CDF of a χ2 distribution with 1 degree of freedom
evaluated at z (Andrews, 2001, Theorem 4).
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While the estimated variance of the private signal is zero (i.e. perfect information)
for both educational groups, we estimate a slightly higher discount factor for the
college group. The no college group have a higher degree of measurement error in
consumption and a more volatile but less persistent shocks. The income growth
rates also differ. Since we do not find important differences in the estimated degree
of knowledge across educational groups, our preferred specification, and the focus
in the remainder of the paper, is the results from the whole sample in column (2)
of Table 4.2. The improvement in fit from adding the MA(1) term in column (3)
is limited, and makes the model computationally much more demanding.

4.4 Model Fit and Sensitivity Analysis

Figure 4.1 reports the used moments calculated from the PSID with bootstrapped
95% confidence bands along with the same moments calculated using simulated
data from the estimated model for the specification with α free and θ = 0.16 Given
the amount of structure the estimated model places on the data, the model seems
to fit the PSID data quite well. The moments calculated using synthetic data
simulated from the estimated model is very close to the moments calculated using
the PSID. Particularly, all moments except two are within the bootstrapped 95
percent confidence intervals. The only two moments outside the 95% confidence
bands are two moments of the income age profile.

16The fit of the remaining specifications are shown in the Supplemental Material.
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Figure 4.1: Model Fit (α free, θ = 0).

(a) Log Income, yt (b) Log Consumption, ct

(c) cov(∆yt,∆yt+k) (d) cov(∆ct,∆ct+k)

(e) cov(∆ct,∆yt+k)

Notes: Figure 4.1 illustrates the average age profiles of log income and log consumption together
with the covariance moments. Both age profile series are normalized by the overall mean of
each series. Hollow dots are calculated using the PSID, Λ(w), solid lines are bootstrapped 95%
confidence intervals, and solid dots are calculated using simulated data from the model, Λ(θ̂).
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Figure 4.2: Model Sensitivity (α free, θ = 0).

(a) Log Consumption, ct (b) cov(∆ct,∆ct+k)

(c) cov(∆ct,∆yt+k)

Notes: Figure C.4 illustrates the average age profiles of log income and log consumption together
with the covariance moments. Both age profile series are normalized by the overall mean of each
series. Hollow dots are calculated using the PSID, Λ(w), solid lines are bootstrapped 95%
confidence intervals and solid colored dots are calculated using simulated data from the model,
Λ(θ).

To investigate which moments the degree of knowledge, σε, is sensitive to, Figure
4.2 illustrates the effect of increasing σε on the moments involving consumption.
While decreasing the degree of knowledge, we keep all other parameters at their
estimated values in column (2) in Table 4.2. We see that cov(∆ct,∆ct+k) changes
insignificantly when varying the degree of knowledge. The same is true for the
consumption age profile. The moments that seem to be changing the most are
the covariances between consumption and income growth, cov(∆ct,∆yt+k). Espe-
cially for k = 0 and k = 1. This is in line with the theoretical results from the
certainty equivalence model. We see that even with σε = 0 the covariance between
current income growth and current consumption growth is already a bit too large
in the estimated model, and decreasing the degree of knowledge, a higher σε, only

28



exacerbates this problem. Likewise, the covariance between current consumption
growth and future income growth is too negative in the model, and decreasing the
degree of knowledge, a higher σε, also only worsens this problem.

Figure 4.3: Transmission parameters and propensities to consume.

(a) Transitory (α = 1, θ = 0) (b) Permanent (α = 1, θ = 0)

(c) Transitory (α free, θ = 0) (d) Permanent (α free, θ = 0)

(e) Transitory (α free, θ free) (f) Permanent (α free, θ free)

Notes: Figure 4.3 report estimates of the transitory (φ̂ξ) and permanent (φ̂ψ) transmission
parameters in the PSID data and in simulated data. We calculate the transmission parameters
using φ̂ξ = cov(∆ct,−∆yt)/((1− θ̂)σ̂2

ξ ) and φ̂ψ = cov(∆ct,∆yt−1 + ∆yt + ∆yt+1)/σ̂2
ψ. We also

report the corresponding average marginal propensity to consume (MPC) and average marginal
propensity to consume out of a persistent income shock, (MPCP).
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The intuition for these results are that reducing the degree of knowledge first and
foremost increase the transmission of income growth to consumption growth, but
that the model already fit this transmission with perfect information, σε = 0.
This is also illustrated in Figure 4.3. In the left column we show the transitory
transmission parameters estimated as in BPP by φ̂ξ = cov(∆ct,−∆yt)/((1− θ̂)σ̂2

ξ )
in both the data (using the estimated income parameters) and simulations from
the model with varying degrees of knowledge.17 In the right column, we similarly
show the permanent transmission parameters estimated by φ̂ψ = cov(∆ct,∆yt−1 +
∆yt + ∆yt+1)/σ̂2

ψ. In the first row we consider the model with a permanent-
transitory income process (α = 1 and θ = 0), where the BPP estimator is known
to work well in the perfect information case. We see that the estimated transitory
transmission parameter should be much larger than what we see in the data if
there was even limited imperfect knowledge. If e.g. σε = 0.10 the transitory
transmission parameter should be around 0.25 rather than the 0.08 observed in
the data. This is also the case with the more general formulations of the income
process in the remaining rows.

Figure 4.4 additionally shows the results of an experiment, where the discount
factor, β, is fixed at various values prior to re-estimating the model (and α is not
re-estimated). The left column shows the resulting objective function, while the
right column shows the estimate of the degree of noise in the private signal, σε. We
see that when the discount factor is fixed at a high value, we estimate a substantial
degree of imperfect information. The explanation is that when the households are
forced to be patient the covariances between income growth and consumption
growth falls, which implies that imperfect information is then required to fit the
observed covariances.18 Note, however, that fixing the discount factor just slightly
above the estimated value leads to a substantial increase in the objective function.

17All remaining parameters remain fixed at their estimated values while varying σε.
18If we re-estimate α (not reported) we find that this parameter change drastically when changing
β, while σε remain around zero.
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Figure 4.4: Identification. Fixing β.

(a) Objective function (α = 1, θ = 0) (b) Private signal (std.), σε (α = 1, θ = 0)

(c) Objective function (α free, θ = 0) (d) Private signal (std.), σε (α free, θ = 0)

Notes: The figure reports the objective function and the estimate of σξ when fixing β to various
values prior to the estimation and not re-estimating α.

4.5 Robustness Checks

Table 4.3 reports a series of robustness checks. Firstly, we see in column (1)-
(6) that neither varying the choice of risk aversion, ρ, the measurement error
in income, τ , or the replacement rate in retirement, λ, affect the main result of
perfect information about permanent income. Secondly, in columns (7)–(8), we
consider an extension of the model where the household each period is allowed
to borrow up to a fraction ζ of the mean-belief of its persistent income; again
we estimate no noise in the private signal. Finally, in columns (9)–(10) we see
that our results are not affected by either choosing a diagonal weighting matrix
with the inverse of the variances of the moments on the diagonal, or the identity
matrix. In the Supplemental Material we show that our results survive the same
robustness checks when fixing α = 1 and ω = 0.
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5 Conclusions

We have developed a novel consumption-saving model with a flexible specification
of the households’ ability to distinguish persistent from transitory income shocks.
We showed that the assumption about the households’ degree of knowledge has
important implications for our interpretation of consumption-saving behavior in
general and estimated transmission parameters in particular. If households, like
an econometrician, need to solve a filtering problem to distinguish persistent from
transitory income shocks, it eradicates the correspondence between transmission
parameters estimated as in Blundell, Pistaferri and Preston (2008), and the true
marginal propensity to consume. Based on a theoretical analysis of a certainty
equivalence model we were able to show that the households’ degree of knowledge
is identifiable from panel data of income and consumption. In a Monte Carlo
study we validated that our approach works for a general model with a complex
income process using a sample similar to the Panel Study of Income Dynamics
(PSID) both in terms of size and measurement error.

Finally, we estimated the general model using the PSID. We estimate a large degree
of knowledge and cannot reject that households can distinguish persistent from
transitory income shocks. This is reassuring in terms of validating the standard
interpretation of estimated transmission parameters of persistent and transitory
income shocks.
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A Proofs

A.1 Proof of Lemma 1

Taking the limit σε → ∞ in eq. (2.19) using L’Hôpital’s rule gives the result in
eq. (2.27),

lim
σε→∞

q? =

√√√√ lim
σε→∞

σ2
ξσ

2
ε

(σ2
ξ + σ2

ε )σ2
ψ

+ 1
4 −

1
2

σ2
ψ (A.1)

=

√√√√σ2

ξ

σ2
ψ

+ 1
4 −

1
2

σ2
ψ ≤ σ2

ξ .

Similarly, taking the limit σξ →∞ gives

lim
σξ→∞

q? =
√√√√σ2

ε

σ2
ψ

+ 1
4 −

1
2

σ2
ψ ≤ σ2

ε . (A.2)

Further noting that the derivatives of q? wrt. σ2
ξ and σ2

ε are always positive,

∂q?

∂σ2
ξ

= ∂q?

∂σ2
ε

=
σ2
ξ

2(σ2
ε + σ2

ξ )(q?/σ2
ψ + 1

2) > 0, (A.3)

give the result q? ≤ min(σ2
ξ , σ

2
ε ) in eq. (2.21). The results in eq. (2.22) and (2.23)

follow from eq. (2.20).

The remaining limits in eq. (2.24)-(2.29) follow directly from taking the respective
limits of eq. (2.19) and (2.20).

The sign of the derivatives in eq. (2.31)-(2.33) are found using Mathematica.
See Supplemental Material D under the heading “Lemma 1: sign of q and K
derivatives”.
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A.2 Proof of Lemma 2

Using the definition of κt = p̂t − pt in eq. (2.8) with eq. (2.14) and the Kalman
updating relations in eq. (2.10)-(2.12) gives

κt = p̂t − pt
= p̂t|t−1 +K?∆t − pt
= p̂t|t−1 +K?

1(yt − ŷt|t−1) +K?
2(zt − ẑt|t−1)− pt

= p̂t|t−1 +K?
1(yt − p̂t|t−1) +K?

2(zt − p̂t|t−1)− pt
= p̂t|t−1(1−K?) +K?

1yt +K?
2zt − pt

= p̂t|t−1(1−K?) +K?
1(pt + ξt − µξ) +K?

2(pt + εt)− pt
= p̂t|t−1(1−K?) + pt(K? − 1) +K?

1ξt +K?
2εt

= p̂t−1(1−K?) + (pt−1 + ψt)(K? − 1) +K?
1ξt +K?

2εt −K?
1µξ

= (K? − 1)(pt−1 − p̂t−1) + (K? − 1)ψt +K?
1ξt +K?

2εt

= (1−K?)κt−1 + (K? − 1)ψt +K?
1ξt +K?

2εt.

The autocovariance then is

cov(κt, κt−1) = cov((1−K?)κt−1 + (K? − 1)ψt +K?
1ξt +K?

2εt, κt−1)

= (1−K?)cov(κt−1, κt−1)

= (1−K?)q?.

A.3 Proof of Lemma 3

Inserting (2.11) and (2.4) and noting that yt|t = yt (households perfectly observe
their income) and using eq. (2.10) gives

et ≡ (yt+1|t − yt|t)− (yt+1 − yt)

= (p̂t+1|t − yt)− (ψt+1 + ξt+1 − ξt)

= (p̂t − yt)− (ψt+1 + ξt+1 − ξt)

= (p̂t − pt)− (ψt+1 + ξt+1)

= κt − ψt+1 − ξt+1.

We see that because all elements are mean zero that Et[et] = 0. Because all
components are iid, the variance of the sum of components are the sum of the
variances of the components, var(et) = q? +σ2

ψ +σ2
ξ and since q? ≥ 0 we have that
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var(et) ≥ σ2
ψ + σ2

ξ .

Finally, the autocovariance is

cov(et, et+1) = cov(κt − ψt+1 − ξt+1, κt+1 − ψt+2 − ξt+2)

= cov(κt − ψt+1 − ξt+1,

(1−K?)κt + (K? − 1)ψt+1

+K?
1ξt+1 +K?

2εt+1 − ψt+2 − ξt+2)

= cov(κt, (1−K?)κt) + cov(−ψt+1, (K? − 1)ψt+1) + cov(−ξt+1, K
?
1ξt+1)

= (1−K?)q? − (K? − 1)σ2
ψ −K?

1σ
2
ξ ,

where inserting K? and re-organizing gives

cov(et, et+1) = q? + σ2
ψ −K?

1(q? + σ2
ψ + σ2

ξ )−K?
2(q? + σ2

ψ)

= q? + σ2
ψ −

σ2
ε (q? + σ2

ψ)(q? + σ2
ψ + σ2

ξ )
(σ2

ξ + σ2
ε )(q? + σ2

ψ) + σ2
ξσ

2
ε

−
σ2
ξ (q? + σ2

ψ)(q? + σ2
ψ)

(σ2
ξ + σ2

ε )(q? + σ2
ψ) + σ2

ξσ
2
ε

= q? + σ2
ψ − (q? + σ2

ψ)
σ2
ε (q? + σ2

ψ + σ2
ξ ) + σ2

ξ (q? + σ2
ψ)

(σ2
ξ + σ2

ε )(q? + σ2
ψ) + σ2

ξσ
2
ε

= q? + σ2
ψ − (q? + σ2

ψ)
(σ2

ε + σ2
ξ )(q? + σ2

ψ) + σ2
ξσ

2
ε

(σ2
ε + σ2

ξ )(q? + σ2
ψ) + σ2

ξσ
2
ε

= 0.

Since it holds for t+ 1, it holds for t+ k.

A.4 Proof of Theorem 1

The No-Ponzi game condition ensures that the intertemporal budget constraint
(IBC) must hold with equality,

∞∑
k=0

R−(t+k)ct+k = a0 +
∞∑
k=0

R−(t+k)yt+k. (A.4)

The Euler equation further implies that the expected future level of consumption
is the same as today,

ct = Et[ct+1]⇒ Et[ct+k] = ct, ∀k > 0. (A.5)
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Combining (A.4) and (A.5)

ct
1

1−R−1 = a0 + Et

[ ∞∑
k=0

R−(t+k)yt+k

]
⇔

ct = (1− β)
(
a0 + Et

[ ∞∑
k=0

R−(t+k)yt+k

])
, (A.6)

so that consumption differences evolve as

∆ct = (R− 1)
∞∑
k=0

R−k(Et[yt+k]− Et−1[yt+k])

= R− 1
R

[yt − p̂t−1] + R− 1
R

∞∑
k=1

R−k(p̂t − p̂t−1)

= R− 1
R

[yt − p̂t−1] +R−1(p̂t − p̂t−1). (A.7)

From eq. (2.4) and (2.8) we derive

yt − p̂t−1 = κt−1 + ψt + ξt. (A.8)

From eq. (2.8) and (2.34) we derive

p̂t = p̂t−1 +K?(ψt − κt−1) +K?
1ξt+K?

2εt. (A.9)

Combing eq. (A.8) and (A.9) with eq. (A.7) yields the result in (2.36).

A.5 Proof of Corollary 1

See Mathematica output in Supplemental Material D under the heading “Corollary
1: cov(∆c,∆c)”.

A.6 Proof of Corollary 2

First inserting for the leaded income growth, we get for k = 1,

cov(∆ct,∆yt+1) = cov(φψ(ψt − κt−1) + φξξt + φεεt, ψt+1 + ξt+1 − ξt)

= −φξσ2
ξ
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and for k = 0,

cov(∆ct,∆yt) = cov(φψ(ψt − κt−1) + φξξt + φεεt, ψt + ξt − ξt−1)

= φψσ
2
ψ + φξσ

2
ξ + cov(−φψκt−1,−ξt−1)

= φψσ
2
ψ + φξσ

2
ξ + φψK

?
1σ

2
ξ

which we use Mathematica to show that cov(∆ct,∆yt) = σ2
ψ + R−1

R
σ2
ξ + q?. See

Supplemental Material D under the heading “Corollary 2: cov(∆c,∆y)”.

A.7 Proof of Corollary 3

The limits of φψ, φξ and φε follow directly from the limits of K? in Lemma 1.
Signing the derivatives of φψ, φξ and φε with respect to σε is done in Supplemental
Material D showing Mathematica output under the heading “Corollary 3: sign of
φ derivatives”.

A.8 Proof of Corollary 4

Inserting the result from Corollary 2 and cov(∆yt,∆yt+1) = −σ2
ξ , we get that

φ̂BPPξ ≡ cov(∆ct,−∆yt+1)
cov(∆yt,−∆yt+1)

=
φξσ

2
ξ

σ2
ξ

= φξ,
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and for the permanent transmission parameter, we use that

cov(∆ct,∆yt−1 + ∆yt + ∆yt+1)

= cov(φψ(ψt − κt−1) + φξξt + φεεt,

[ψt−1 + ξt−1 − ξt−2] + [ψt + ξt − ξt−1] + [ψt+1 + ξt+1 − ξt])

= cov(φψψt − φψκt−1 + φξξt + φεεt, ψt−1 − ξt−2 + ψt + ψt+1 + ξt+1)

= cov(φψψt − φψ[(1−K?)κt−2 + (K? − 1)ψt−1 +K?
1ξt−1 +K?

2εt−1] + φξξt + φεεt,

ψt−1 − ξt−2 + ψt + ψt+1 + ξt+1)

= φψσ
2
ψ + cov(−φψ(1−K?)κt−2 + φψ(1−K?)ψt−1, ψt−1 − ξt−2)

= φψσ
2
ψ + φψ(1−K?)σ2

ψ + φψ(1−K?)K?
1σ

2
ξ

= φψσ
2
ψ[1 + (1−K?)(1 +K?

1
σ2
ξ

σ2
ψ

)],

and insert cov(∆yt,∆yt−1 + ∆yt + ∆yt+1) = σ2
ψ to get

φ̂BPPψ ≡ cov(∆ct,∆yt−1 + ∆yt + ∆yt+1)
cov(∆yt,∆yt−1 + ∆yt + ∆yt+1)

=
φψσ

2
ψ[1 + (1−K?) + (1−K?)K?

1
σ2
ξ

σ2
ψ

]

σ2
ψ

= φψ[1 + (1−K?)(1 +K?
1
σ2
ξ

σ2
ψ

)] > φψ.

A.9 Proof of Corollary 5

See Mathematica output in Supplemental Material D under the heading “Corollary
5: Derivatives of Φξ and Φψ”. We divide by

Q? ≡
σ2
ξ (2q? + σ2

ψ)
(σ2

ε + σ2
ξ )(4σ2

ε + (σ2
ε + σ2

ξ )σ2
ψ)

and then show that

∂φ̂BPPξ /Q?

∂σ2
ε

= 1
R

∂φ̂BPPψ /Q?

∂σ2
ε

= R− 1
R

σ2
ξ

σ2
ψ

implying the result.

42



A.10 Proof of Theorem 2

The assumptions on measurement error imply that

cov(∆ỹt,−∆ỹt+1) = cov(∆yt,−∆yt+1) = σ2
ξ

cov(∆ỹt,∆ỹt−1 + ∆ỹt + ∆ỹt+1) = cov(∆yt,∆yt−1 + ∆yt + ∆yt+1) = σ2
ψ

cov(∆c̃t,−∆c̃t+1) = cov(∆ct,−∆ct+1) + σ2
c = σ2

c

cov(∆c̃t,∆ỹt+k) = cov(∆ct,∆yt+k)

Eq. (2.4)–(2.5) and Corollary 1–2 imply the results in eq. (2.44). The results in
eq. (2.48) hereafter follow from Lemma 4.

A.11 Proof of Corollary 6

The composite function q?−1(q̂?(x), σ̂2
ψ, x) is strictly decreasing in x. This is shown

in the Mathematica output in Supplemental Material D under the heading “Corol-
lary 6”.

B Estimation Details

In order to compute standard errors we use that

θ̂ − θ0
d→ N(0, (G′WG)−1G′W [V · (1 + 1

J
)]WG(G′WG)−1) (B.1)

where G is the dim(θ)× dim(θ) Jacobian and V is the K ×K covariance matrix
of the moments. In practice, we compute standard errors as

SE(θ̂) =
√

diag((Ĝ′WĜ)−1Ĝ′W [V̂ · (1 + 1
J

)]WĜ(Ĝ′WĜ)−1) (B.2)

where
Ĝ = ∂Λ(w)− Λ(θ)

∂θ |θ=θ̂
(B.3)

and the elements in V̂ are computed differently depending on whether it is an
element related only to the life-cycle profile moments, the moments involving the
covariances between income and consumption growth, or a combination.

Define the indicator function 1q{q is not missing}. Let z1
a and z2

b be generic life-
cycle profile variables (e.g. mean(z1

a) = mean(y)|t=a − mean(y) and mean(z2
b ) =
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mean(c)|t=b−mean(c)). Let x1, x2, x3 and x4 be generic variables in the covariances
(e.g. cov(x1, x2) = cov(∆ct,∆ct+2), and cov(x3, x4) = cov(∆ct,∆yt+1)).

For elements in V only involving the life-cycle profiles, we then have

V̂1:62,1:62 =
∑N
i=1 1z1

ia
1z2
ib

[z1
ia −mean(z1

a)][z2
ib −mean(z2

b )]
[∑N

i=1 1z1
ia

][∑N
i=1 1z2

ib
]

For elements in V only involving the covariances between income and consumption
growth, we further have

V̂63:81,63:81 =
∑N
i=1

∑T
t=1 1x1

it
1x2

it
1x3

it
1x4

it
[x1
itx

2
it − cov(x1x2)][x3

itx
4
it − cov(x3, x4)]

(∑N
i=1

∑T
t=1 1x1

it
1x2

it
)(∑N

i=1
∑T
t=1 1x3

it
1x4

it
)

Finally, for the cross elements we have

V̂1:62,63:81 =
∑N
i=1 1z1

ia
1x3

ia
1x4

ia
[z1
ia −mean(z1

a)][x3
iax

4
ia − cov(x3, x4)]

(∑N
i=1 1z1

ia
)(∑N

i=1
∑T
t=1 1x3

it
1x4

it
)

V̂64:81,1:62 =
∑N
i=1 1x1

ib
1x2

ib
1z2
ib

[x1
ibx

2
ib − cov(x1x2)][z2

ib −mean(z2
b )]

(∑N
i=1

∑T
t=1 1x1

it
1x2

it
)(∑N

i=1 1z2
ib

)

C Additional Tables and Figures

C.1 CEQ

Table C.1: Estimates, CEQ Model (τ = 0.0).

Whole sample No college College
Parameter (1) (2) (3)
σε Private signal (std.) 0.024 0.037 0.000

(0.023) (0.034) (0.022)
σc Meas. error, cons. (std.) 0.264 0.296 0.230

(0.008) (0.013) (0.007)
σψ Persistent shock (std.) 0.165 0.172 0.158

(0.005) (0.008) (0.008)
σξ Transitory shock (std.) 0.172 0.181 0.162

(0.005) (0.006) (0.007)
Notes: Bootstrapped standard errors based on 5000 bootstrap replications re-
ported in brackets.
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Table C.2: Estimates, CEQ Model (τ = 0.50).

Whole sample No college College
Parameter (1) (2) (3)
σε Private signal (std.) 0.040 0.053 0.022

(0.046) (0.101) (0.048)
σc Meas. error, cons. (std.) 0.264 0.296 0.230

(0.008) (0.013) (0.007)
σψ Persistent shock (std.) 0.165 0.172 0.158

(0.005) (0.008) (0.008)
σξ Transitory shock (std.) 0.082 0.091 0.073

(0.007) (0.009) (0.010)
Notes: Bootstrapped standard errors based on 5000 bootstrap replications re-
ported in brackets.

Figure C.1: Bootstrap, CEQ Model.

(a) Private signal (std.), σε (b) Transitory shock (std.), σξ

Notes: Figure C.1 reports histograms of estimates of σε and σξ for 5000 bootstrap repli-
cations and various assumption regarding the degree of measurement error in income, τ ∈
{0.0, 0.25, 0.50}.
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C.2 Fit

Figure C.2: Model Fit (α = 1, θ = 0).

(a) Log Income, yt (b) Log Consumption, ct

(c) cov(∆yt,∆yt+k) (d) cov(∆ct,∆ct+k)

(e) cov(∆ct,∆yt+k)

Notes: Figure C.2 illustrates the average age profiles of log income and log consumption together
with the covariance moments. Both age profile series are normalized by the overall mean of each
series. Hollow dots are calculated using the PSID, Λ(w), solid lines are 95% confidence intervals,
and solid dots are calculated using simulated data from the model, Λ(θ̂).
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Figure C.3: Model Fit (α free, θ free).

(a) Log Income, yt (b) Log Consumption, ct

(c) cov(∆yt,∆yt+k) (d) cov(∆ct,∆ct+k)

(e) cov(∆ct,∆yt+k)

Notes: Figure C.3 illustrates the average age profiles of log income and log consumption together
with the covariance moments. Both age profile series are normalized by the overall mean of each
series. Hollow dots are calculated using the PSID, Λ(w), solid lines are 95% confidence intervals,
and solid dots are calculated using simulated data from the model, Λ(θ̂).
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C.3 Sensitivity

Figure C.4: Model Fit (α = 1, θ = 0).

(a) Log Consumption, ct (b) cov(∆ct,∆ct+k)

(c) cov(∆ct,∆yt+k)

Notes: Figure C.4 illustrates the average age profiles of log income and log consumption together
with the covariance moments. Both age profile series are normalized by the overall mean of each
series. Hollow dots are calculated using the PSID, Λ(w), solid lines are 95% confidence intervals
and solid colored dots are calculated using simulated data from the model, Λ(θ).
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Figure C.5: Model Fit (α free, θ free).

(a) Log Consumption, ct (b) cov(∆ct,∆ct+k)

(c) cov(∆ct,∆yt+k)

Notes: Figure C.4 illustrates the average age profiles of log income and log consumption together
with the covariance moments. Both age profile series are normalized by the overall mean of each
series. Hollow dots are calculated using the PSID, Λ(w), solid lines are 95% confidence intervals
and solid colored dots are calculated using simulated data from the model, Λ(θ).

C.4 Robustness
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D Mathematica Calculations

Below we include output from Mathematica. These calculations involve a signifi-
cant amount of tedious algebra and we have thus relegated these tasks to reliable
software and report the results here. We refer to the relevant parts of the proofs
in Appendix A.
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Quit��
The changes in notation are: 

 

  �1� all stars, �, are omitted
  �2� instead of e.g. ΣΞ

2 we just have Ξ
  �3� the estimate of ΦΨ is denoted �Ψ 

Calculations.nb |   1
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Lemma 1: sign of q and K derivatives

q�Ε�� :� Ξ Ε
�Ξ � Ε	 Ψ � 1

4
� 1

2
Ψ;

FullSimplify�q'�Ε� � �q�Ε� 
 Ψ � 1 
 2	�
fac�Ε�� :� q�Ε� � Ψ

�Ξ � Ε	 �q�Ε� � Ψ	 � Ξ Ε ;
K1�Ε�� :� fac�Ε� Ε;
K2�Ε�� :� fac�Ε� Ξ;
K�Ε�� :� K1�Ε� � K2�Ε�;
FullSimplify�K1�Ε� 
 q�Ε��
FullSimplify�K2�Ε� 
 q�Ε��
FullSimplify�K1'�Ε� 
 q'�Ε��
Assuming��Ξ � 0, Ψ � 0, Ε � 0�, Refine�Reduce�q�Ε� � Min�Ε, Ξ����
Assuming��Ξ � 0, Ψ � 0, Ε � 0�, Refine�Reduce�Limit�q�Ε�, Ε � �� � Min�Ψ����
Assuming��Ξ � 0, Ψ � 0, Ε � 0�, Refine�Reduce�q'�Ε� � 0���
Assuming��Ξ � 0, Ψ � 0, Ε � 0�, Refine�Reduce�K1'�Ε� � 0���
Assuming��Ξ � 0, Ψ � 0, Ε � 0�, Refine�Reduce�K2'�Ε� � 0���
Assuming��Ξ � 0, Ψ � 0, Ε � 0�, Refine�Reduce�K'�Ε� � 0���

Ξ2

2 �Ε 
 Ξ�2

1

Ξ
1

Ε
1

Ξ

True

Ψ �
Ξ
2

True

True

True

True
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Corollary 3: sign of Φ derivatives

ΦΨ�Ε�� :� R�1 �R � 1 � K1 �Ε� � K2�Ε�	;
ΦΞ�Ε�� :� R�1 �R � 1 � K1 �Ε�	;
ΦΕ�Ε�� :� R�1 K2�Ε�;
Assuming��Ξ � 0, Ψ � 0, Ε � 0, R � 0�, Refine�Reduce�ΦΨ '�Ε� � 0���
Assuming��Ξ � 0, Ψ � 0, Ε � 0, R � 0�, Refine�Reduce�ΦΞ'�Ε� � 0���
Assuming��Ξ � 0, Ψ � 0, Ε � 0, R � 0�, Refine�Reduce�ΦΕ'�Ε� � 0���
True

True

True

Corollary 1: cov��c,�c	
varc�Ε�� :� ΦΨ�Ε�2 �q�Ε� � Ψ	 � ΦΞ�Ε�2 Ξ � ΦΕ�Ε�2 � Ε;
covc�Ε�� :� ΦΨ�Ε� �1 � K�Ε�	 q�Ε� � ΦΨ�Ε� �1 � K�Ε�	 Ψ � ΦΞ�Ε� K1 �Ε� Ξ � ΦΕ�Ε� K2 �Ε� Ε;
FullSimplify varc�Ε� � Ψ � R � 1

R

2

Ξ  q�Ε�
FullSimplify�covc�Ε��
1 �

1

R2

0
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Corollary 2: cov��c,�y	
covcylead�Ε�� :� �ΦΞ�Ε� Ξ;
covcy�Ε�� :� ΦΨ�Ε� Ψ � �ΦΞ�Ε� � K1 �Ε� ΦΨ�Ε�	 � Ξ;
covcylag�Ε�, k�� :� ΦΨ�Ε� �1 � K�Ε�	k Ψ � ΦΨ�Ε� K1 �Ε� K�Ε� �1 � K�Ε�	k�1 � Ξ;

FullSimplify
covcy�Ε� � Ψ � R�1

R
Ξ

q �Ε� 

FullSimplify�covcylag�Ε, k��
1

0

Corollary 4: �Ξ and �Ψ  
�Ξ�Ε�� :� covcylead�Ε� 
 ��Ξ	;
�Ψ�Ε�� :� �covcylag�Ε, 0� � covcy�Ε� � covcylead�Ε�	 
 Ψ;
FullSimplify �Ξ�Ε�ΦΞ�Ε�



FullSimplify�Ψ�Ε�  ΦΨ�Ε� � 1 � �1 � K�Ε�	 � �1 � K�Ε�	 K1 �Ε�
Ξ
Ψ 

1

1

4   | Calculations.nb

56



Corollary 5: Derivatives of �Ξ and �Ψ  
qbar�Ε�� :� Ξ �2 q�Ε� � Ψ	

�Ε � Ξ	 �4 Ε Ξ � �Ε � Ξ	 Ψ	 ;

FullSimplify ΦΞ'�Ε�
qbar�Ε�

FullSimplify �Ψ'�Ε�
qbar�Ε�

1

R

��1 
 R� Ξ
R Ψ
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Lemma 4: Estimate of Ε given q
sol � Solve�q�Ε� � y, Ε�
Assuming�Ξ � 0, Ψ � 0, Ε � 0�, RefineReduceq�Ε�2 � q�Ε� Ψ � Ξ Ψ � 0

Ε �
�y2 Ξ � y Ξ Ψ
y2 
 y Ψ � Ξ Ψ



True
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Corollary 6

f�q�, Ξ�� :� �q2 Ξ � q Ξ Ψ
q2 � q Ψ � Ξ Ψ

gcyp�Ξ�� :� f��R � Ζ � Ξ �R � 1	, Ξ�
Assuming�R � Ζ � Ξ �R � 1	 � 0, Ξ � 0, Ψ � 0, R � 1, Ζ � 0,

�Ξ � R �Ζ � Ξ		2 � R �Ζ � Ξ	 Ψ2 ! 0, Refine�FullSimplify�gcyp'�Ξ� � 0��
Assuming�Ξ � 0, Ψ � 0, R � 1, Ε � 0�,
RefineReduce�Ξ � R �covcylead�Ε� � Ξ		2 � R �covcylead�Ε� � Ξ	 Ψ � 0

True

True
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