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Abstract: Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS 
activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, 
and a relationship between changes in whole body aerobic capacity and changes in CS activity is often assumed. 
However, this relationship and absolute values of CS and maximal oxygen uptake ( .VO2max) has never been assessed 
across different studies. A systematic PubMed search on literature published from 1983 to 2013 was performed. 
The search profile included: citrate, synthase, human, skeletal, muscle, training, not electrical stimulation, not in-
vitro, not rats. Studies that reported changes in CS activity and 

.
VO2max were included. Different training types and 

subject populations were analyzed independently to assess correlation between relative changes in 
.
VO2max and CS 

activity. 70 publications with 97 intervention groups were included. There was a positive (r = 0.45) correlation (P 
< 0.001) between the relative change in 

.
VO2max and the relative change in CS activity. All reported absolute values 

of CS and 
.
VO2max did not correlate (r = -0.07, n = 148, P = 0.4). Training induced changes in whole body oxidative 

capacity is matched by changes in muscle CS activity in a nearly 1:1 relationship. Absolute values of CS across dif-
ferent studies cannot be compared unless a standardized analytical method is used by all laboratories. 

Keywords: Citrate synthase, endurance training, high-intensity interval training, human skeletal muscle, maximal 
oxygen uptake

Introduction

Cardiac output and not skeletal muscle enzy-
matic activity is the limiting factor to aerobic 
performance in healthy people [1]. Never- 
theless, adequate muscle enzymatic activity in 
e.g. glycolysis and Krebs cycle is necessary for 
a high performance and maximal oxygen 
uptake ( .VO2max). Enzymatic activity in human 
skeletal muscle, and in particular citrate syn-
thase (CS) activity, has been used a marker of 
cellular oxidative capacity and mitochondrial 
density following a training regimen [2, 3]. 
These enzyme activities are highly adaptable to 
aerobic training and during exercise a high 
enzymatic capacity is essential for optimal per-
formance during aerobic exercise [4]. While 
these characteristics of oxidative enzymes 
have been known for decades, there is a lack of 
literature on the relationship between training 

induced changes in CS activity and whole body .
VO2max. The relationship between 

.
VO2max and CS 

activity may provide information on whether 
cardiovascular and local metabolic adaptations 
are coupled (i.e. do both systems adapt togeth-
er), and in which subjects or training types does 
one change more than the other if one is more 
important to changes in 

.
VO2max than the other?

A relationship between changes in 
.
VO2max and 

changes in CS activity is assumed and often 
based on observations from classical endur-
ance training (ET) studies with low intensity and 
long duration. Most of these studies have 
shown increased CS activity after training [i.e. 
5, 6, see Table 1], with seemingly similar effect 
in both genders (Coggan et al., 1992). In the 
last decade high-intensity interval training (HIIT) 
has received wide interest as a time-efficient 
training modality, using a very high intensity for 
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a very short duration. HIIT has been shown to 
increase CS activity in most but not all studies 
[7-11].

Lower CS activity has been reported in elderly 
compared to equally active young subjects [12]. 
This has also been observed in a cross-section-
al study where CS activity was lower in both 
sedentary and active elderly subjects com-
pared to young sedentary and active subjects 
matched for daily activity by the Baecke ques-
tionnaire [13] but with a lower 

.
VO2max per kg fat 

free mass (FFM) in the elderly subjects [14].

CS activity have been shown to be lower in a 
group of obese, insulin resistant subjects com-
pared to a group of obese insulin sensitive sub-
jects matched for 

.
VO2max per kg FFM, but in 

none of the groups an increase in CS activity 
was seen in response to 6 weeks aerobic 
endurance training despite increases in 

.
VO2max 

per kg FFM [15]. Thus, the metabolic state of 
subject may challenge the relationship between 
training induced changes in CS activity and in  .
VO2max.

Analysis of CS in skeletal muscle requires rela-
tive small biopsy samples (approximately 15 
mg w.w.) and the assay has a relatively low 
inter- and intra assay variation (below 5% in our 
laboratory), and the analysis can be done on 
frozen samples. However, methodological vari-
ations and differences in preparation of the 
biopsies between the different studies is a pos-
sible concern. CS activity is traditionally ana-
lyzed by the methods described by Lowry and 
Passonneau [16] or by Srere [17]. The latter is 
based on a reaction between the thiolgroup in 
acetyl-CoA which react with Ellman’s reagent 
(5, 5’-dithiobis-(2-nitrobenzoic acid (DTNB)), 
which is measured spectrophotometrically [17]. 
The method by Lowry and Passoneau is based 
on the conversion of malate to oxaloacetate by 
reduction of NAD+ to NADH, where the forma-
tion of NADH is linear to the CS activity [16]. In 
this method NADH may be measured both 
spectrophotometrically and fluorometrically. 
Different laboratories use these methods with 
various modifications, different reagents or 
temperatures (range: 25-37°C) resulting in pos-
sible differences in CS activity between labora-
tories. Furthermore, the analysis may either be 
done on untreated tissue (wet weight) or tissue 
that has been freeze-dried and dissected free 
of visible connective tissue, blood and adipose 

tissue (dry weight). Using dry weight ensures 
that the analysis is done primarily on muscle 
tissue, and not on adipose or connective tis-
sue, which improves the validity of the result. In 
addition to the analytical considerations, the 
time from last exercise bout to the biopsy sam-
pling is of importance. Tonkonogi and col-
leagues showed that CS activity is increased 
immediately after acute exercise (30 sec. after 
cessation of exercise) [18]. This finding was 
later confirmed in females, but surprisingly not 
in males [19], which is in contrast to another 
study including trained and untrained males 
[20].

In the present review we have collected and 
compared the previous studies in humans in 
which CS and 

.
VO2max was measured before and 

after a training program with the purpose of 
characterizing the possible relationship 
between these two variables, and determine 
which factors that may influence this relation-
ship. Such factors may include the training 
modality, age, gender, presence of metabolic or 
other diseases, initial fitness status, and meth-
odological variations. Furthermore, the materi-
al allows for a direct comparison of absolute 
values of CS activity between the different 
studies with comparable study groups.

Methods

Data sources and search profile

A systematic search of literature on a biblio-
graphical database PubMed published from 
1983 to June 2013. We used the search pro-
file: (citrate) AND synthase) AND human) AND 
skeletal) AND muscle) AND training) NOT elec-
trical stimulation) NOT in-vitro) NOT rats.

Inclusion and exclusion

We included all available studies in which CS 
activity in skeletal muscle (vastus lateralis) was 
measured as a marker for improved skeletal 
muscle oxidative capacity. We limited the 
search to human studies that included mea-
surements of whole body oxygen uptake  
(
.
VO2max) before and after a physical training 
intervention program. Studies were excluded if 
the subjects did not complete an incremental  .
VO2max test to exhaustion. Finally, cross-section-
al studies and detraining studies were excluded 
(Table 1 and Figure 1).
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Table 1. Included studies
Reference   Group characteristics Intervention Aerobic adaptations

Author Year
Refer-
ence
[##]

Group 
number Group Group characteristics n Gender Train-

ing type

Total time 
trained 
(min)

Baseline  .
V O2max 

(ml·min-1·kg-1)

ΔCS 
activity  

(%)

Δ
.
VO2max
(%)

Allenberg et al. 1988 [64] 1 DI Patients with type 2 diabetes 7 Males ET 2232 N/A 36 7
Bakkman et al. 2007 [66] 2 CON Healthy young untrained 8 Mixed ET 480 45 21 40

Bangsbo et al. 2010 [67]
3 CON Untrained running group 25 Females ET 1920 33 11 15
4 CON Untrained football group 25 Females ET 1920 36 12 10

Barnett et al. 2004 [51] 5 CON Young healthy untrained 16 Males HIT 54 N/A 42 8
Berthon et al. 1995 [68] 6 OLD Healthy Elderly 14 Males ET 1440 35 46 6

Blomstrand et al. 2011 [49]
7 CON Healthy young sedentary 5 Mixed ET 1500 48 29 31
8 CON Healthy young sedentary 4 Mixed HIT 1080 48 7 26
9 CON Healthy young sedentary 5 Mixed HIT 1680 48 32 36

Bruce et al. 2004 [5]
10 DI T2DM patients 6 Males ET 1440 28 73 26
11 CON Healthy control 7 Males ET 1440 31 85 18

Bruce et al. 2006 [69] 12 OB Obese 9 Mixed ET 2400 24 68 26
Brønstad et al. 2012 [108] 13 DI COPD patients 12 Males HIT 288 20 28 -1
Burgomaster et al. 2005 [34] 14 CON Healthy young recreationally active 16 Males HIT 198 49 11 6

Burgomaster et al. 2008 [48]
15 CON Healthy young recreationally active 10 Mixed HIT 45 41 16 7
16 CON Healthy young recreationally active 10 Mixed ET 1500 41 30 7

Bylund et al. 1977 [4] 17 CON Young healthy untrained 20 Males ET 5040 N/A 46 26

Carter et al. 2001 [6]
18 CON Healthy young active but untrained 8 Males ET 2100 42 40 17
19 CON Healthy young active but untrained 8 Females ET 2100 32 43 24

Charifi et al. 2003 [65] 20 OLD Elderly healthy untrained 11 Males ET 2520 29 33 14

Coggan et al. 1992 [71]
21 OLD Elderly healthy untrained 12 Males ET 6864 27 29 24
22 OLD Elderly healthy untrained 11 Males ET 6864 22 17 21

Dawson et al. 1998 [9] 23 TR Young fit 9 Males HIT N/A 57 -32 6
Dubouchaud et al. 2000 [72] 24 CON Healthy young sedentary 9 Males ET 3240 44 75 15

Duscha et al. 2012 [43]
25 OLD Obese healthy middle age/elderly 40 Mixed ET 32578 28 23 7
26 OLD Obese healthy middle age/elderly 47 Mixed ET 17784 29 39 11
27 OLD Obese healthy middle age/elderly 41 Mixed ET 33670 28 48 20

Ferketich et al. 1998 [42] 28 OLD Elderly 24 Females ET 1080 18 11 24
Green et al. 1992 [103] 29 CON Healthy young active but untrained 9 Males ET 720 55 5 2

Green et al. 1999 [74] 30 CON Yong healthy with low Δ
.
VO2max

7 Males ET 120 41 21 9

Green et al. 2000 [75] 31 CON Healthy young sedentary 10 Males HIT 96 N/A -2 -2
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Green et al. 1999 [74] 30 CON Yong healthy with low Δ
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7 Males ET 120 41 21 9

Green et al. 2000 [75] 31 CON Healthy young sedentary 10 Males HIT 96 N/A -2 -2

Green et al. 2009 [76]
32 CON Young healthy 9 Males ET 600 48 14 4

33 TR Yong healthy with high Δ
.
VO2max

7 Males ET 120 51 30 2

Gurd et al. 2010 [77] 34 CON Healthy young active but untrained 9 Mixed HIT 720 45 31 11

Harmer et al. 2008 [78]
35 DI Young T1DM 8 Mixed HIT 56 N/A 11 -9
36 CON Young healthy 7 Mixed HIT 56 N/A 42 -3

Heilbronn et al. 2007 [15]
37 OB Insulin sensitive 9 Males ET 960 48 5 17
38 DI Insulin resistant 9 Males ET 960 48 5 11

Hiatt  et al. 1996 [59] 39 DI Intermittent claudication 10 Males ET 2160 15 10 17
Houmard et al. 1993 [61] 40 CON Sedentary healthy middle aged 13 Males ET 2888 30 69 21
Howarth et al. 2004 [79] 41 CON Young healthy M 8 Males ET 2100 N/A 32 6
Iaia et al. 2009 [50] 42 TR Young healthy trained 17 Males HIT 68 55 -5 -2

Irving et al. 2011 [80]
43 CON T2DM offspring 8 Mixed ET+HIT 945 26 11 0
44 CON Healthy control 8 Mixed ET+HIT 945 27 23 0

Jeppesen et al. 2006 [81] 45 DI Patients with mtDNA mutations 20 Mixed ET 1500 26 66 27

Jeppesen et al. 2012 [104]
46 CON Healthy young sedentary 8 Males ET 1560 38 36 15
47 CON Healthy matched subjects 11 Mixed ET 1500 34 65 21

Kohn et al. 2011 [10] 48 TR Young well trained 18 Males HIT 194,4 67 -4 3
Lange et al. 2000 [82] 49 DI Healthy elderly Women 8 Females HIT 2160 22 35 17
LeBlanc et al. 2004 [107] 50 CON Young healthy 8 Males ET 2400 N/A 40 15
Linossier et al. 1997 [11] 51 CON Healthy young recreationally active 8 Males HIT 1800 52 7 3
Luden et al. 2011 [83] 52 CON Active young 6 Mixed ET N/A 50 66 9
MacDougall et al. 1998 [84] 53 CON Healthy young recreationally active 9 Males HIT 84 51 25 3
Mandroukas et al. 1984 [105] 54 CON Obese 14 Females ET 1800 N/A 27 19
Martin III et al. 1989 [85] 55 CON Healthy young sedentary 6 Males ET+HIT 2520 46 40 20
Masuda et al. 2001 [86] 56 CON Healthy young sedentary 7 Males ET 1680 45 28 16

McKenzie et al. 2000 [45]
57 CON Healthy young sedentary 6 Males ET+HIT 1500 46 34 12
58 CON Healthy young sedentary 6 Females ET+HIT 1500 38 27 18

Messonier et al. 2005 [87] 59 CON Untrained young 8 Mixed ET 2880 43 54 8

Mogensen et al. 2009 [88]
60 DI Type 2 diabetics 12 Males ET 625 27 58 11
61 DI Obese 11 Males ET 625 29 37 15

Moore et al. 1987 [21]
62 CON Healthy young sedentary 4 Mixed ET 2310 45 59 22
63 CON Trained healthy 8 Mixed ET 2310 N/A -13 1

Murias et al. 2011 [53]
64 OLD Active elderly 7 Males ET 1620 29 48 27
65 CON Active young 7 Males ET 1620 49 67 16

Ngo et al. 2012 [23] 66 OLD Healthy elderly 5 Males HIT 3360 38 43 9
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Perry et al. 2008 [81] 67 CON Healthy young recreationally active 8 Mixed HIT 720 45 26 9
Perry et al. 2010 [90] 68 CON Healthy young recreationally active 9 Males HIT 420 N/A 28 12
Putman et al. 1998 [91] 69 CON Healthy young recreationally active 7 Males ET 840 45 5 3
Randers et al. 2010 [60] 70 CON Young healthy 10 Males ET 4992 40 18 8
Rud et al. 2012 [92] 71 CON Healthy young sedentary 8 Mixed ET 1960 N/A 14 6
Schantz et al. 1983 [28] 72 TR Trained 6 Males ET 15840 61 0 0
Sjödin et al. 1982 73 CON Healthy young sedentary 8 Males ET 280 N/A 11 2
Slivka et al. 2013 [93] 74 CON Young trained 10 Males ET N/A N/A 11 2

Stannard et al. 2010 [93]
75 CON Young healthy untrained 7 Mixed ET 1000 N/A 18 5
76 CON Young healthy untrained 7 Mixed ET 1000 N/A 19 5

Starritt et al. 1999 [95] 77 CON Healthy young active but untrained 7 Mixed ET 600 44 26 9
Svedenhag et al. 1983 [54] 78 CON Healthy young sedentary 8 Males ET 1280 43 62 7
Svedenhag et al. 1983 [96] 79 CON Healthy young sedentary 8 Mixed ET 1280 N/A 75 7
Talanian et al. 2007 [97] 80 CON Recreational active 8 Females HIT 280 36 20 13

Tarnopolsky et al. 2007 [44]
81 CON Healthy young active but untrained 5 Males ET 2100 43 26 9
82 CON Healthy young active but untrained 7 Females ET 2100 37 3 13

Tiidus et al. 1996 [52]
83 CON Healthy young sedentary 7 Males ET 840 48 25 12
84 CON Healthy young sedentary 6 Females ET 840 37 50 22

Tonkonogi et al. 2000 [98] 85 CON Healthy young untrained 8 Mixed ET 960 39 47 24
Trappe et al. 2006 [99] 86 CON Recreational active 7 Mixed ET 5460 50 37 5

Tynni-Lenné et al. 1999 [47]
87 DI Patients with heart failure 8 Mixed ET 480 18 23 3
88 DI Patients with heart failure 8 Mixed ET 480 16 45 19

Vogiatzis et al. 2005 [7]
89 DI COPD patients 10 Mixed HIT 1350 N/A 43 9
90 DI COPD patients 9 Mixed ET 900 N/A 40 5

Wibom et al. 1992 [100] 91 CON Healthy young untrained 9 Males ET 864 44 43 10

Yfanti et al. 2010
[101] 92 TR Moderately trained 10 Males ET+HIT 5400 50 54 18

93 TR Moderately trained 11 Males ET+HIT 5400 51 50 22

Zoll et al. 2005 [102]
94 TR Young healthy trained 9 Males ET 2013 64 1 5
95 TR Young healthy trained 6 Males ET 2090 59 -17 3

Østergård et al. 2005 [106]
96 CON Healthy untrained 29 Mixed ET 1350 38 25 14
97 CON Healthy untrained 19 Mixed ET 1350 41 25 15

All studies and intervention groups included from search. Group column describes categorization in Figure 5: CON; Young healthy sedentary subjects, DI; studies investigating train-
ing in patients with various diseases, TR; Endurance trained subjects at inclusion. Group characteristics column: The group as described by the authors. Training type column: ET; The 
subjects performed endurance training, HIIT; The subjects performed high-intense interval training. Inclusion 

.
VO2max column: N/A; not reported clearly in the study. Baseline 

.
VO2max:  .

VO2max reported before the intervention.
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Data extraction

Two authors screened the retrieved articles 
and relevant studies were independently 
assessed. One author used a standardized 
form to extract data; a second author controlled 
the data for accuracy. Discrepancies were 
resolved by consensus or third-party adjudica-
tion. We constructed tables displaying: First 
authors, publication year, group characteris-
tics, gender, number of subjects, 

.
VO2max at 

inclusion, delta CS activity and delta 
.
VO2max.

The subjects were characterized as described 
in the study and the groups were primarily strat-
ified according to men/females, young/elderly, 
trained/sedentary, healthy/disease (Table 1). If 
not defined in the article we defined elderly as 
age above 60 years and trained as a 

.
VO2max 

above 55 and 50 ml O2 min-1·kg-1 for men and 
women, respectively.

We wanted to study the isolated effect of HIIT 
and ET, therefore we excluded studies where 
detraining and resistance training was used 

[21-24], where spinal cord injuries were studied 
[25], electrical stimulation was used as stimu-
lation [26], and studies where other muscles 
(deltoid or triceps brachii) were biopsied and 
analyzed [23, 27, 28].

Furthermore, we excluded a study if the main 
estimate for changes in aerobic capacity were 
Wattmax [29-32], a time trial [33-35] or time to 
exhaustion [36]. This was done to allow a com-
parison of the relative improvement in 

.
VO2max by 

using the same units for endurance 
performance.

Some studies only reported pre values of citrate 
synthase activity and/or 

.
VO2max and hence it 

was not possible to calculate a relative change 
[37-41]. Furthermore, 5 studies reported val-
ues of CS activity that were more than a factor 
103 different from other studies, when the unit 
for CS activity was recalculated to the unit used 
in the present review, µmol·min-1.g-1. We 
assumed in those cases that the reported unit 
in the original article was erroneous, but 
accepted the reported value and included the 

Figure 1. Flow chart. Flow chart of 
literature search and inclusion/
exclusion process for Figures 2 
and 3.
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data in Figure 2 [6, 42-45]. 5 studies only 
reported relative changes, and no absolute val-
ues of either CS or 

.
VO2max pre and/or post the 

intervention, and these studies were not includ-
ed in Figure 2. Two studies [46, 47] reported 
the same results from the same study and 
Gordon et al. was excluded.

Various terms describing a HIIT training pro-
gram is used in the included publications (i.e. 
High Intense Training (HIT), High Intense Inter- 
val Training (HIIT), High Intensity Intermittent 
Exercise (HIIE), and Sprint Training (SIT)). For 
the purpose of the present review, all of these 
are termed High Intense Interval Training (HIIT).

Statistics

All statistical analyses were performed in 
Sigma Plot 12.5 (Systat software, Inc., San 

Jose, USA). The level of significance was set at 
P < 0.05. For correlations between different 
variables Pearson’s product moment correla-
tion coefficient (r) and corresponding P-value 
were obtained.

Results

Inclusion and exclusion

The literature search identified 180 articles. 
110 articles did not meet the inclusion criteria 
and were excluded. In the remaining 70 articles 
149 intervention groups were identified. But 52 
intervention groups did not meet the inclusion 
criteria and were excluded. The main reasons 
for exclusion were: the groups performed 
strength training, studied other muscle groups 
or were control groups. A total of 97 interven-

Figure 2. Absolute .VO2max and CS activity before and after interventions. 65 studies (n = 148 data points). The data 
points are divided by the sample preparation before analysis: wet (no preparation), dry (samples were freeze dried 
and dissected free of visible blood, fat and connective tissue) of not report (N/A, if the publication did not state 
clearly how the samples were prepared).



.
VO2max CS activity in skeletal muscle

91 Int J Physiol Pathophysiol Pharmacol 2014;6(2):84-101

tion groups including 1000 subjects were 
included in this review (Table 1 and Figure 1). 

Absolute CS activity values

There was no relationship between absolute 
measures of CS and 

.
VO2max when we included 

all time points (n = 148) from studies (n = 65) 
that reported both CS activity as µmol· min-1·g 
(wet or dry weight)-1 and 

.
VO2max kg-1 (r = -0.07, P 

= 0.4, Figure 2). 12 studies including 28 study 
groups reported CS activity relative to dry 
weight (freeze dried and dissected free of visi-
ble connective tissue, lipids and blood). CS 
activity normalized to dry weight as an isolated 
factor did not correlate to 

.
VO2max (r = 0.11, P = 

0.60). Neither did the 33 studies with 68 
groups that normalized CS activity to wet weight 
correlate to 

.
VO2max when analysed alone (r = 

0.18, P = 0.17). 20 studies (52 groups) did not 
report (N/A) clearly how the biopsies were treat-
ed prior to analysis, here there was no correla-
tion between CS activity and 

.
VO2max (r = -0.14, P 

= 0.33, Figure 2).

Relative CS activity values

The relative changes in 
.
VO2max and CS activity in 

response to a training intervention in 97 inter-
vention groups (Table 1 and Figure 3) were sig-
nificantly correlated (r = 0.45, P < 0.001). The 
equation for the trend line is: ΔCS = 1.1 Δ

.
VO2max 

+ 16.8. The significant correlation was present 
also when all the included study groups were 
stratified according to training type (Figure 4 
and Table 1): ET (r = 0.42, n = 69, P < 0.001), 
and combined ET and HIIT (r = 0.81, n = 7, P < 
0.05), but not with HIIT alone (r = 0.24, n = 21, 

Figure 3. Relative changes in 
.
VO2max and CS activity. The relative 

.
VO2max and CS increase pre and post a training 

intervention in the 98 included groups. Number refers to the group number in Table 1.



.
VO2max CS activity in skeletal muscle

92 Int J Physiol Pathophysiol Pharmacol 2014;6(2):84-101

P = 0.29). Stratification according to inclusion 
background (Figure 5 and Table 1) showed sig-
nificant correlations in young sedentary sub-
jects (r = 0.35, n = 63, P < 0.05), endurance 
trained subjects (r = 0.79, n = 9, P < 0.05), and 
in patients with various diseases and complica-
tions (r = 0.67, n = 14, P < 0.05), but not in 
elderly subjects (r = 0.20, n = 10, P = 0.57). By 
stratification according to gender (Figure 6 and 
Table 1) only males correlated (r = 0.63, n = 52, 
P < 0.001). In studies using females alone (r = 
0.57, n = 10, P = 0.08) or groups of mixed gen-
der (r = 0.31, n = 35, P = 0.07), there was only 
a tendency towards a correlation.

Discussion

There is a clear positive and significant correla-
tion between the relative change in 

.
VO2max and 

in CS activity in response to physical training 
(Figure 3). There was almost a 1:1 relationship 
between the relative change in CS activity and 
change in 

.
VO2max. Thus, a ≈ 9% increase in CS 

activity may be expected from a 10% increase 
in 
.
VO2max. It is noteworthy that this relationship 

was not present when the correlation analysis 
was constrained to HIIT training or in elderly 
subjects alone. Oppositely, the relationship was 
intact when considering young sedentary sub-
jects, trained subjects, and males alone. 
Likewise, both endurance training studies and 
studies combining HIIT and endurance training 
displayed a significant correlation between 
changes in 

.
VO2max and CS activity. Absolute val-

ues of 
.
VO2max and CS activity did not correlate, 

indicating that absolute measures of CS activi-
ty cannot be compared across studies and 

Figure 4. Type of training. All included groups from search expressed as the relative aerobic improvement and rela-
tive CS increase pre and post a training intervention divided by type of training used in the intervention: Endurance 
training, High-intensity interval training or a combination of Endurance training (ET) and High-intensity interval train-
ing (HIIT). The training type is divided by the description by the authors.
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hence not be used for characterization of sub-
ject groups between different studies.

Training type (ET and HIIT)

One purpose of this review was to collect and 
analyze previously published studies in order to 
determine magnitudes and interrelationships 
in changes of 

.
VO2max and CS in response to ET 

and HIIT. We found a positive and significant 
correlation between improvements in 

.
VO2max 

and increases in CS activity in response to 
endurance training. This finding was not unex-
pected, but in contrast to this is, the lack of 
relationship between improvement in 

.
VO2max 

and CS activity in response to HIIT was unex-
pected. The two forms of training elicited simi-
lar average improvements in 

.
VO2max (ET: ≈ 13% 

and HIIT: ≈ 8%) but ET (≈ 33%) lead to higher 
improvement in CS activity compared to HIIT (≈ 
19%). This underlines the major importance of 
cardiac performance for maximal oxygen 
uptake. Since CS activity in skeletal muscle is 
well correlated with mitochondrial volume in 
skeletal muscle [2, 3], the lower increase in CS 
activity with HIIT also indicate that mitochon-
drial biogenesis may not be stimulated at the 
same level as ET. In the studies where HIIT did 
not lead to an increase in CS activity, a signifi-
cant increase in 

.
VO2max was found in two [8, 9] 

of these five studies [7, 10, 11]. The differences 
in the CS response may be due a large variation 
in total training time ranging from 45 min [48] 
to 3360 min [23] and intensity ranging from 
75-95% HRmax [23] to 150 % Δ

.
VO2max [49] in the 

included HIIT studies. Another factor is that it is 

Figure 5. Subject background. All included groups from search expressed as the relative aerobic improvement and 
relative CS increase pre and post a training intervention divided the subject background included in the study: 
Young sedentary subjects, patients with various diseases, see Table 1, Obese subjects, Elderly subjects or endur-
ance trained subjects. The characteristics are listed as described by the authors and can be seen in Table 1.
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inherent in the nature of HIIT that the time 
spent training is less than that with endurance 
training (ET: ≈ 53 hr/study vs. HIIT: ≈ 12 hr/
study in the included studies). The high intensi-
ty exercise for a short period may apparently be 
sufficient to elicit a cardiac adaptation (primar-
ily an increase in maximal cardiac output), but 
not an adaptation of an important enzyme in 
the Krebs cycle in skeletal muscle.

On the other hand, the lack of significant rela-
tionship between ΔCS activity and Δ

.
VO2max in 

the collective HIIT studies may also be due to 
three distinct studies (no 8, 9, and 23 in Table 
1; the 3 triangles in Figure 4 located most low-
right) where disproportionate responses were 
seen. With exclusion of these three studies, a 
significant correlation is seen (r = 0.48, n = 18, 
P < 0.05).

Some HIIT studies have been used to induce 
improvements in endurance performance in 
already highly trained athletes, measured as 
time to exhaustion or time trial [10, 50]. But 
these athletes did not have further increases in .
VO2max or CS activity. It is possible that these 
athletes had already reached a plateau in the 
metabolic adaptations from the prior ET.

From the data it appears that a 8 wk. HIIT pro-
tocol with 3 training sessions per week each 
consisting of two to six 30 second sprint inter-
vals was a highly time-efficient study [51]. This 
resulted in a 42% increase in CS activity with a 
total of 54 min. effective training [51]. Similar 
improvements in response to HIIT were shown 
in elderly subjects but after a longer HIIT train-
ing period [7]. The largest relative improvement 
(50-75%) in CS activity was seen in studies with 
endurance training [5, 21, 52-54]. These stud-

Figure 6. Gender. All included groups from search expressed as the relative aerobic improvement and relative CS 
increase pre and post a training intervention divided by the gender included in the study.
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ies are all characterized by a high volume of 
total training and inclusion of subjects with a 
relatively low initial whole body 

.
VO2max. Even 

though it is highly speculative, it is possible that 
the nature of HIIT interventions is too short or 
extreme to allow mitochondrial biogenesis.

Ageing

The expected relationship between in improve-
ments in 

.
VO2max and CS activity was not 

observed in the studies (n = 10) with elderly 
subjects (Figure 5). A 20 % decline in CS activ-
ity has been reported with age independent of 
lifestyle in some studies [14, 55], while others 
are inconclusive [56]. In contrast, other mito-
chondrial oxidative enzyme activities, for exam-
ple the activity of complex I-IV are unaltered 
[14, 57]. Therefore, it is possible that adaptabil-
ity in CS activity is altered with aging indepen-
dently of changes in mitochondrial respiratory 
capacity, which has also been shown experi-
mentally [57, 58].

A recent study by Duscha and colleagues 
reports a discrepancy between the relative 
improvement in CS activity and 

.
VO2max in 3 

groups (40-65 years) that performed different 
amount and intensity (low amount moderate-
intensity, low amount-high intensity or high 
amount-high intensity training) of aerobic train-
ing (group # 25-27, Table 1). Only in the group 
that performed high amount-high intensity 
training (r = 0.304, n = 41) a positive correla-
tion between relative 

.
VO2max and CS activity was 

seen (group # 27, Table 1) [43, 58]. Thus, these 
findings indicate that in middle-aged and elder-
ly a high amount-high intensity training program 
is necessary for improvement in both CS and Δ.
VO2max.

Gender

We observed that only studies that included 
males alone showed significant correlation 
between 

.
VO2max and CS activity. In studies (n = 

10) including women alone the relationship was 
only nearly significant (P = 0.08), which is prob-
ably due to lack of statistical power. Is has been 
suggested [19] that transcriptional, translation-
al, and/or post-translational regulation of CS is 
different between females and males at rest 
and immediately after acute exercise. However, 
this notion is not based on sound physiological 
considerations, and it remains to be proven.

Methodological differences: dry or wet weight?

There was no correlation between absolute val-
ues of 

.
VO2max and CS activity in the included 

studies. The freeze-drying and dissection pro-
cedure of the muscle samples should have 
eliminated some variation due to contamina-
tion with non-muscle tissue/cells, but even in 
these samples, there was no correlation 
between the absolute values of 

.
VO2max and CS. 

Although the measurements and analytical 
variation of 

.
VO2max is well standardized across 

different laboratories, some day-to-day varia-
tion must be expected. Less standardized is 
the biochemical analysis CS activity. This analy-
sis requires relatively small muscle biopsies, 
approximately 2-3 mg d.w. corresponding to 
10-15 mg w.w. In the authors laboratory CS 
activity is measured spectrophotometrically as 
described by Srere [17] at 37°C. The assay has 
a low inter- and intra assay variation. We find an 
inter-assay variation of 4.2% in the low range 
(27 ± 1 (mean ± SD) µmol·min-1·g (d.w.)-1) and 
0.8% in the high range (613 ± 5 µmol·min-1·g 
(d.w.)-1) and an intra-assay variation of 2.5% in 
the low range (28 ± 1 µmol·min-1·g (d.w.)-1) and 
4.8% in the high range (589 ± 5 µmol·min-1·g 
protein (d.w.)-1) (unpublished data). These are 
lower than was has been reported for analyses 
in non-freeze dried and un-dissected tissue 
(4.9% [34], 5.4% [49] and 7.7% [6] in the low 
range of CS activity). This speaks for analyzing 
on dissected tissue. Another major factor for 
variation in absolute values of CS activity is the 
analytical temperature (usually 25-37°C), 
which is, unfortunately, not always reported. 
Increased activity with 37°C compared to 25°C 
must be expected. Finally, it would be possible 
to correct data for blood contamination with 
e.g. creatine correction or other methods, but 
this is very seldom reported.

Five studies recruited a non-training control 
group [43, 50, 59-61]. In these groups no sta-
tistical change in Δ

.
VO2max or ΔCS activity were 

reported. However, the ΔCS activity reported 
varies from 10% decrease (NS) [60] to 14% 
increase (NS) [61]. This indicates that some 
physiological time related variation should be 
expected when measuring.

Responders and non-responders

Despite a positive correlation between ∆
.
VO2max 

and ∆CS activity there is a considerable varia-
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tion in the relationship (Figure 3). We have sug-
gested that training regimes, subject back-
ground or methodological variation contributes 
to this. However, it has to be considered that 
there is a significant inter-subject variation in 
training induced adaptations in 

.
VO2max, which 

increases the variation [62, 63]. The molecular 
mechanisms underlying the variation in 
response to exercise training are still poorly 
understood, but it is possible that also adapta-
tions in CS activity may be individual. A close 
inspection of Table 1 and Figure 3 reveals that 
group 23, 31, 42, 48, 63, and 95 reported a 
negative ΔCS activity.

Limitations 

CS activity and 
.
VO2max are not always reported 

both pre and post training. This excluded a 
large number of studies, and thus removes 
valuable information. Furthermore, we decided 
to remove measures of aerobic capacity that 
was not 

.
VO2max, but measured as e.g. time trial 

or Wattmax. There is a large variation in how 
these tests are conducted, which increases the 
variation in the results between studies. Cross-
sectional studies were not taken into consider-
ation. Inclusion of the many cross-sectional 
studies in the literature may have provided 
additional information on the absolute values 
of CS activity across various studies (Figure 2). 
Finally, the lack of relationship in females and 
elderly subjects may be due to a low number of 
included studies studying these groups, which 
then may have provided a false negative result.

Conclusions

Most factors (young sedentary or trained sub-
jects, males, ET and combined ET and HIIT) 
showed a positive and significant linear rela-
tionship between ∆

.
VO2max and ∆CS activity. This 

was not the case in publications studying HIIT, 
females and elderly subjects. CS activity as a 
marker of mitochondrial density should be 
used with care in studies using very short term 
HIIT. The lack of relationship in the females and 
maybe also in the elderly is most likely a statis-
tical power problem. Finally, a large method-
ological variation in the analysis of CS activity 
between laboratories is probably the major rea-
son for a lack of significant relationship in abso-
lute values in 

.
VO2max and CS activity.
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