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tion to avoid fragility of a cost-benefit analysis to distributional assumptions.
We apply our results to economy-climate catastrophe. We specify a stochastic
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model by allowing for Weitzman-type stochasticity. We show that, under
expected power utility, the model is fragile to heavy-tailed distributional
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1 Introduction

An economist, when asked to model decision making under risk or uncer-
tainty for normative purposes, would typically work within the expected
utility framework with constant relative risk aversion (that is, power util-
ity). A statistician, on the other hand, would model economic catastrophes
through probability distributions with heavy tails. Unfortunately, expected
power utility is fragile with respect to heavy-tailed distributional assump-
tions: expected utility may fail to exist or it may imply conclusions that are
‘incredible’.

Economists have long been aware of this tension between the expected
utility paradigm and distributional assumptions (Menger, 1934), and the
discussions in Arrow (1974), Ryan (1974), and Fishburn (1976) deal explicitly
with the trade-off between the richness of the class of utility functions and the
generality of the permitted distributional assumptions. Compelling examples
in Geweke (2001) corroborate the fragility of the existence of expected power
utility with respect to minor changes in distributional assumptions.

The combination of heavy-tailed distributions and the power utility fam-
ily may not only imply infinite expected utility, but also infinite expected
marginal utility, and hence, via the intertemporal marginal rate of substi-
tution (the pricing kernel), lead to unacceptable conclusions in cost-benefit
analyses. For example, with heavy-tailed log-consumption and power utility,
the representative agent should postpone any unit of current consumption
to mitigate future catastrophes. The latter aspect was recently emphasized
by Weitzman (2009) in the context of catastrophic climate change. Weitz-
man also argues that attempts to avoid this unacceptable conclusion will
necessarily be non-robust.

In this paper we study the question of how to conduct expected utility
analysis in the presence of catastrophic risks, in the context of an economy-
climate model. Our paper is built on four beliefs, which will recur in our
analysis:

Catastrophic risks are important. To study risks that can lead to catas-
trophe is important in many areas, e.g., financial distress, traffic accidents,
dike bursts, killer asteroids, nuclear power plant disasters, and extreme cli-
mate change. Such low-probability high-impact events should not be ignored
in cost-benefit analyses for policy making.

A good model ‘in the center’ is not necessarily good ‘at the edges’. Models
are approximations, not truths, and approximations may not work well if
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we move too far away from the point of approximation. In our context
of catastrophe in an economy-climate model, the widely adopted family of
power utility functions, often appropriate when one considers large inputs
remote from zero, may not work well for decision making under heavy-tailed
risks with non-negligible support beyond the usual domain of inputs.

The price to reduce catastrophic risk is finite. Are we willing to spend
everything to avoid children being killed at a dangerous street? Or dikes to
burst? Or a power plant to explode? Or a killer asteroid to hit the Earth? Or
climate to change rapidly? No, we are not. To assume the opposite (that a
society would be willing to offer all of its current wealth to avoid or mitigate
catastrophic risks) is not credible, not even from a normative perspective. In
our context, there is a limit to the amount of current consumption that the
representative agent is willing to give up in order to obtain one additional cer-
tain unit of future consumption, no matter how extreme and irreversible an
economy-climate catastrophe may be. In other words: the expected pricing
kernel is finite.

Light-tailed risks may result in heavy-tailed risk. When x is normally dis-
tributed (light tails) then 1/x has no moments (heavy tails). Also, when x is
normally distributed then ex has finite moments, but when x follows a Stu-
dent distribution then ex has no moments. In the context of extreme climate
change: temperature has fluctuations but one would not expect heavy tails
in its distribution. This does not, however, imply that functions of tempera-
ture cannot have heavy tails. For example, it may well be reasonable to use
heavy-tailed distributional assumptions to model future (log) consumption.

We start our analysis by deriving necessary and sufficient conditions to
avoid fragility of a cost-benefit analysis to distributional assumptions. The
conditions we derive ensure that expected utility and expected marginal util-
ity remain finite also under heavy-tailed distributional assumptions.

Next, we apply our general results to the particular setting of economy-
climate catastrophe. There is an important literature on stochastic economy-
climate models (see, for example, Keller et al., 2004, Mastrandrea and Schnei-
der, 2004, and the references therein). The integrated assessment models of
climate economics, however, rarely incorporate catastrophic risk (Ackerman
et al., 2010). To allow for catastrophic risk, we specify a stochastic economy-
climate model, adapting Nordhaus’ (2008) deterministic dynamic integrated
climate and economy (DICE) model by allowing for stochasticity in the spirit
of Weitzman (2009). Next, we solve a two-period version of the model, first
with power utility and light-tailed distributional assumptions. Since the as-
sumption of expected power utility is incompatible with heavy-tailed distri-
butional assumptions, we then restrict attention to utility functions that sat-
isfy the derived compatibility conditions, and solve our stochastic economy-
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climate model with the well-known exponential utility function and also with
the less well-known (but more suitable) ‘Pareto utility’ function, under both
light-tailed and heavy-tailed distributional assumptions.

Completing the resulting empirical model requires specifying a number
of model parameters as inputs. These parameters cannot ‘simply’ be deter-
mined by conventional statistical inference based on historical data, primarily
because the stochasticity is affected by policy decisions. We discuss how to
set the model parameters in a process towards agreement, using experts’
priors on parameter values, and learning about parameters from resulting
optimal model output. The key to this learning and agreement process is
the translation of model parameters that are relatively difficult to interpret
into quantities that allow a more straightforward interpretation. Contrary
to Weitzman’s (2009) claim, we find that our optimal policies thus derived
are quite robust with respect to minor and reasonable changes to the input
parameters. This means that the policymaker is not left empty-handed when
it comes to cost-benefit analyses under catastrophic risk.

The paper is organized as follows. Section 2 discusses expected (marginal)
utility and uncertainty in a general setting, deriving results on the trade-off
between permitted distributional assumptions and the existence of expected
(marginal) utility, which may be of interest in their own right. In Section 3.1
we propose a simplified version of Nordhaus’ economy-climate model, without
losing any of its essential features. In Section 3.2 we introduce uncertainty in
the spirit of Weitzman to obtain a stochastic integrated assessment model of
climate economics. This is the first new feature added to the Nordhaus model.
In Section 3.3 we specialize the model to two periods only, and add a second
new feature to the Nordhaus model: scrap value functions. In Section 4, we
present (partial) results for power utility, which is incompatible with heavy
tails, and for exponential and ‘Pareto’ utility, which are compatible with
heavy tails. Section 5 discusses how to learn the parameters of our model and
calibrate policy using information such as the probability of catastrophe, and
reports on robustness tests. Section 6 concludes. There are two appendices:
Appendix A provides the Kuhn-Tucker conditions and Appendix B contains
proofs of the propositions.

2 Expected utility and heavy tails

We formulate our cost-benefit analysis as a decision under uncertainty prob-
lem, in Savage (1954) style. We fix a set S of states of nature and we let A
denote a σ-algebra of subsets of S. One state is the true state. We also fix
a set C of consequences (outcomes, consumption) endowed with a σ-algebra
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F . Since we are only interested in monetary outcomes, we may take C = R+.
A decision alternative (policy bundle) X is a measurable mapping from S to
C, so that X−1(A) ∈ A for all events A ∈ F . We assume that the class of all
decision alternatives X is endowed with a preference order �.

Definition 2.1 We say that expected utility (EU) holds if there exists a
measurable and strictly increasing function U : C → R on the space of conse-
quences, referred to as the utility function, and a probability measure P on A,
such that the preference order � on X is represented by a functional V of the
form X �→ ∫

S U(X(s)) dP = V (X). Thus, the decision alternative X ∈ X is
preferred to the decision alternative Y ∈ X if, and only if, V (X) ≥ V (Y ).1

Since the axiomatization of expected utility (EU) by Von Neumann and
Morgenstern (1944) and Savage (1954), numerous objections have been raised
against it. These objections relate primarily to empirical evidence that the
behavior of agents under risk and uncertainty does not agree with EU. De-
spite important developments in non-expected utility theory, EU remains
the dominant normative decision theory (Broome, 1991; Sims, 2001), and
the current paper stays within the framework of EU. Our results presented
below support the fact that expected utility theory may reliably provide
normatively appealing results, also in the presence of catastrophic risks.

Definition 2.2 We say that a risk ε : S → R is heavy-tailed to the left
(right) under P if its moment-generating function is infinite: E (eγε) = ∞
for any γ < 0 (γ > 0).

Examples of heavy-tailed risks are the Student, lognormal, and Pareto
distributions. Heavy-tailed risks provide appropriate mathematical models
for low-probability high-impact events, such as environmental or financial
catastrophes.

Proposition 2.1 If EU is to discriminate univocally among all possible al-
ternative outcome distributions, the utility function must be bounded.

Proposition 2.1 states that the EU functional is finite for all outcome
distributions if, and only if, the utility function is bounded. Moreover, the
axiomatization of EU is valid for all outcome distributions if, and only if, the
utility function is bounded. The implications are non-trivial: boundedness of

1In the Von Neumann and Morgenstern (1944) framework, utility U is subjective,
whereas the probability measure P associated with A is objective and known beforehand
(decision under risk). In the more general framework of Savage (1954) adopted here, the
probability measure itself can be, but need not be, subjective (decision under uncertainty).
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the utility function must hold not just in exotic situations but also in more fa-
miliar and economically relevant settings involving high levels of uncertainty.
(See Moscadelli, 2004, regarding operational risk.) In what follows we do not
require the utility function to be bounded. We simply assume that the class
of feasible outcome distributions is restricted (though the restriction may be
void) in such a way that the utility function permits discrimination among
them. Only a combination of utility function and outcome distribution that
leads to finite expected utility is covered by the axiomatic justification of EU.

Let RRA(x) = −xU ′′(x)/U ′(x) and ARA(x) = −U ′′(x)/U ′(x) denote
relative and absolute risk aversion, respectively, and let

α∗ = inf
x>0

RRA(x), β∗ = sup
x>0

ARA(x).

Now consider a representative agent with time-additive EU preferences and
time-preference parameter ρ > 0. We normalize (without loss of generality)
the agent’s consumption by setting C0 = 1, and we define the pricing kernel
(intertemporal marginal rate of substitution) as

P (C∗
1) =

U ′(C∗
1)

(1 + ρ)U ′(1)
, (1)

where C∗
1 is optimal consumption at t = 1. Consumption C1 is commonly re-

stricted to a budget-feasible consumption set which is subject to uncertainty
(ε1). We assume that the budget restriction takes the general form

C∗
1(ε1) ≤ B exp(Aε1), B, A > 0, (2)

which need not be best-possible. The expectation E(P ) represents the amount
of consumption in period 0 that the representative agent is willing to give up
in order to obtain one additional certain unit of consumption in period 1.

The following result states that the expectation of the pricing kernel is
finite for all outcome distributions whenever the concavity index ARA(x) is
bounded.

Proposition 2.2 Assume that EU holds and that the budget feasibility re-
striction (2) applies.
(a) If α∗ > 0 and ε1 is heavy-tailed to the left under P, then E(P ) = ∞;
(b) If β∗ <∞ and α∗ = 0, then E(P ) <∞ for any ε1.

If the EU maximizer has decreasing absolute risk aversion and increasing
relative risk aversion, as is commonly assumed, a complete and elegant char-
acterization of boundedness of the expected pricing kernel can be obtained,
as follows.
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Proposition 2.3 Assume that EU holds and that the budget feasibility re-
striction (2) applies. Assume furthermore that RRA(x) exists and is non-
negative and non-decreasing for all x ≥ 0 and that ARA(x) is non-increasing
for all x > 0. Then, E(P ) <∞ for any ε1 if and only if

∫ γ

0
ARA(x) dx <∞

for some γ > 0.

Notice that, when
∫ γ

0
ARA(x) dx = ∞ for some γ > 0, both α∗ > 0

and α∗ = 0 can hold. If α∗ > 0 then we do not need the full force of
Proposition 2.3; it is sufficient that ε1 is heavy-tailed to the left. Then
E(P ) = ∞ by Proposition 2.2(a). If α∗ = 0 then heavy-tailedness alone is
not sufficient, but we can always find an ε1 such that E(P ) = ∞. When∫ γ

0
ARA(x) dx = ∞ then β∗ = ∞. But when

∫ γ

0
ARA(x) dx < ∞, both

β∗ <∞ and β∗ = ∞ can occur.
The above propositions provide necessary and sufficient conditions on the

utility function to ensure that expected utility and expected marginal utility
(hence the expected pricing kernel) are finite, also in the presence of heavy
tails. These compatibility results are generally applicable to standard multi-
period welfare maximization problems. The importance of the results lies in
the fact that (i) if expected utility is infinite, the axiomatic justification of
EU is not valid, and (ii) if the expected pricing kernel is infinite, then the
amount of consumption in period 0 which the representative agent is willing
to give up in order to obtain one additional certain unit of consumption in
period 1 is infinite, which is not credible in most settings.

3 Extreme climate change

The results of the previous section ideas can be applied to many situations
involving catastrophic risks. We choose an economy-climate catastrophe as
our illustration. In this section we first present a simplified deterministic
Nordhaus (2008)-type economy-climate model; then introduce stochasticity
in the spirit of Weitzman (2009), but in a sufficiently general manner allowing
application in other contexts as well; and finally specialize the infinite-horizon
model to a two-period model.

3.1 A simple deterministic economy-climate model

Our framework is a simple economy-climate model in the spirit of Nordhaus
and Yang (1996) and Nordhaus (2008). It retains all essential features of
Nordhaus (2008) but is numerically easier to handle, especially under uncer-
tainty.
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Everybody works. In period t, the labor force Lt together with the capital
stock Kt generate GDP Yt through a Cobb-Douglas production function

Yt = AtK
γ
t L

1−γ
t (0 < γ < 1),

where At represents technological efficiency and γ is the elasticity of capital.
Capital is accumulated through

Kt+1 = (1− δ)Kt + It (0 < δ < 1),

where It denotes investment and δ is the depreciation rate of capital. Pro-
duction generates carbon dioxide (CO2) emissions Et:

Et = σt(1− μt)Yt,

where σt denotes the emissions-to-output ratio for CO2, and μt is the abate-
ment fraction for CO2. The associated CO2 concentration Mt accumulates
through

Mt+1 = (1− φ)Mt + Et (0 < φ < 1),

where φ is the depreciation rate of CO2 (rate of removal from the atmo-
sphere). Temperature Ht develops according to

Ht+1 = η0 + η1Ht + η2 log(Mt+1) (η1 > 0, η2 > 0).

In each period t, the fraction of GDP not spent on abatement or ‘damage’ is
either consumed (Ct) or invested (It) along the budget constraint

(1− ωt)DtYt = Ct + It. (3)

The damage function Dt depends only on temperature and satisfies 0 <
Dt ≤ 1, where Dt = 1 represents the optimal temperature for the economy.
Deviations from the optimal temperature cause damage. We specify Dt as

Dt =
1

1 + ξH2
t

(ξ > 0).

For very high and very low temperatures Dt approaches zero. The optimal
value Dt = 1 occurs at Ht = 0, the temperature in 1900, as in Nordhaus. A
fraction ωt of DtYt is spent on abatement, and we specify the abatement cost
fraction as

ωt = ψtμ
θ
t (θ > 1).

When μt increases then so does ωt, and a larger fraction of GDP will be spent
on abatement. As in Nordhaus (2008) one period is ten years. We choose
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the exogenous variables such that Lt > 0, At > 0, σt > 0, and 0 < ψt < 1.
The policy variables must satisfy

Ct ≥ 0, It ≥ 0, 0 ≤ μt ≤ 1. (4)

In Appendix A we prove that μ1 ≥ 0 and C1 ≥ 0 are automatically satisfied.
The other restrictions need to be imposed. Then, all variables will have the
correct signs and all fractions will lie between zero and one.

Given a utility function U we define welfare in period t as

Wt = LtU(Ct/Lt).

If the policy maker has an infinite horizon, then he/she will maximize total
discounted welfare,

W =

∞∑
t=0

Wt

(1 + ρ)t
(0 < ρ < 1),

where ρ denotes the discount rate. Letting x denote per capita consumption,
the utility function U(x) is assumed to be defined and strictly concave for
all x > 0. There are many such functions, but a popular choice is

U(x) =
x1−α − 1

1− α
(α > 0), (5)

where α denotes the elasticity of marginal utility of consumption. This is the
so-called power function. Many authors, including Nordhaus (2008), select
this function and choose α = 2 in which case U(x) = 1− 1/x. Also popular
is α = 1; see Kelly and Kolstad (1999) and Stern (2007).

Table 1: Comparison of stocks in Nordhaus (DICE) and our (SICE) models
2005 2055 2105 2155

DICE SICE DICE SICE DICE SICE DICE SICE
K 137 137 353 354 707 711 1317 1324
M 809 809 1048 988 1270 1233 1428 1430
H 0.7 0.7 1.8 1.5 2.7 2.4 3.3 3.2

Calibrating the parameters and initial values (presented in our back-
ground document, see Ikefuji et al., 2012b), our GAMS code produces opti-
mal values over sixty periods that are very close to the values obtained in
Nordhaus, as shown in Table 1. Hence it appears that our simplified version
of the DICE model (hereafter, SICE = simplified DICE) works as well as the
original version.
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3.2 Uncertainty

Weitzman (2009) recently noted, in a highly stylized setting, that heavy-
tailed uncertainty and power utility are incompatible, since this combination
of uncertainty and preferences implies an infinite expected pricing kernel. In
order to avoid this, Weitzman introduces a lower bound on consumption. He
then argues that this lower bound is related to a parameter that resembles
the value of a statistical life, and proves that the expected pricing kernel
approaches infinity as the value of this parameter approaches infinity (the
‘dismal theorem’). Weitzman further argues that this ‘VSL-like’ parameter
is hard to know.

We agree with Weitzman that incompatible pairs of utility functions and
distribution functions exist, in the sense that the expected pricing kernel or
other important policy variables become infinite. In fact, Section 2 presents
necessary and sufficient conditions on the utility functions for the expected
pricing kernel to exist, also under heavy tails. But we object to the dis-
mal theorem for two reasons. As we proved formally in Section 2 and shall
illustrate numerically in Section 4, the dismal theorem is based on an incom-
patible (invalid) model specification; it is avoided when the economic model
(utility function) is compatible with the statistical model (heavy tails). Fur-
thermore, as we illustrate in Section 5, more effort can be made to know an
input parameter that is ‘hard to know’, and we develop and implement a
learning-and-agreement procedure for precisely this purpose.

We now introduce uncertainty in the simplified Nordhaus model in a
Weitzman-like manner, thus obtaining a stochastic integrated assessment
model of climate economics. There is much uncertainty in the economics of
climate change (Manne and Richels, 1992; Nordhaus, 1994; Weitzman, 2009).
We model uncertainty through stochasticity. In the literature, stochasticity is
typically introduced through the damage function (Roughgarden and Schnei-
der, 1999; Mastrandrea and Schneider, 2004) or through a random shock in
temperature (Kelly and Kolstad, 1999; Leach, 2007). We follow this litera-
ture by introducing stochasticity through Equation (3), which we now write
as

ftYt = Ct + It, (6)

where ft depends not only on ωt and Ht (as in (3)), but also on a random
shock εt. In particular, we specify

ft = (1− ωt)d̄tDt, d̄t = e−τ2/2 eτεt , (7)

where εt denotes a random error with mean zero and variance one.
This specification should be interpreted as the reduced form resulting

from various types of uncertainty, in particular damage and mitigation un-
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certainty. The potential damage due to adverse climate change is one com-
ponent of the aggregate stochasticity affecting the economy, as in Weitzman
(2009), and all stochasticity is dictated by the probability law of ε, which
plays the role of logC in the reduced-form of Weitzman. We emphasize
that extreme climate change is just one example of a crisis. Another exam-
ple would be a financial crisis, where we could take ft to depend on policy,
financial institution, and risk.

If εt follows a normal distribution N(0, 1), then the moments of d̄t exist,
and we have E(d̄t) = 1 and var(d̄t) = eτ

2 − 1. Since the distribution of d̄t is
heavily skewed, more uncertainty (higher τ) implies more probability mass
of d̄t close to zero. If, however, we move only one step away from the nor-
mal distribution and assume that εt follows a Student distribution with any
(finite) degrees of freedom, then the expectation is infinite (Geweke, 2001).
This fact predicts that expected welfare may be very sensitive to distribu-
tional assumptions: random noise with finite moments (Student distribution)
may turn into random variables without moments (d̄t, d̄tYt).

3.3 A two-period model

So far we have assumed an infinite horizon. We now specialize to two periods,
as in Weitzman (2009). The two-period model captures the essence of our
problem while remaining numerically tractable in the presence of uncertainty.

If the policy maker has a (finite) T -period policy horizon, then we write
welfare as

W =

T−1∑
t=0

LtU(xt)

(1 + ρ)t
+

1

(1 + ρ)T

∞∑
t=0

LT+tU(xT+t)

(1 + ρ)t
,

where xt = Ct/Lt denotes per capita consumption in period t. If {x∗t} denotes
the optimal path for {xt}, then we define the scrap value as

ST =

∞∑
t=0

LT+tU(x
∗
T+t)

(1 + ρ)t
.

Maximizing W is then equivalent to maximizing

T−1∑
t=0

LtU(xt)

(1 + ρ)t
+

ST

(1 + ρ)T
.

The scrap value ST will depend on the state variables at time T , in particular
KT and MT , and this functional relationship is the scrap value function:
ST = S(KT ,MT ). If T is large we may ignore the scrap value ST because of
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the large discount factor (1 + ρ)T . But if T is small, then we need to model
ST explicitly, thus emphasizing the fact that the policy maker has the double
objective of maximizing discounted welfare over a finite number of periods
T , while also leaving a reasonable economy for the next policy maker, based
on the remaining capital stock and CO2 concentration.

The simplest approximation to ST is the linear function

ST = ν0 + ν1KT − ν2MT (ν1 > 0, ν2 > 0), (8)

where ν1 and ν2 denote the scrap prices of capital and pollution at the be-
ginning of period T . This scrap value function captures the idea that the
next government will be happier if there is more capital and less pollution
at the beginning of its policy period. But the linear scrap value function has
some problems. We shall therefore introduce nonlinear scrap value functions,
whose specific form depends on the form of the utility function; see our back-
ground document Ikefuji et al. (2012b) for further details on our treatment
of scrap value functions.

The simplest version of the model occurs when T = 2 in which case we
have only two periods. We can write welfare in this case as

W = W (μ0, C0, μ1, C1, ε1) = W0 +
W1

1 + ρ
+

S2

(1 + ρ)2
.

The policy restrictions (4) are explicitly imposed, so that we maximize a
restriction of expected welfare; see Appendix A. Randomness results from d̄1
only, because d̄0 at the beginning of period 0 is known to us (we set d̄0 = 1,
equal to its expectation), and d̄2 at the end of period 1 does not appear in
the welfare function. Hence, the only source of randomness is caused by the
error ε1. The policy maker has to choose the policy bundles (C0, I0, μ0) at
the beginning of period 0 and (C1, I1, μ1) at the beginning of period 1 that
will maximize expected welfare.

Realizing that d̄1 at the beginning of period 1 is observed based on the
realization of ε1, the policy maker will maximize expected welfare in three
steps as follows. First, he/she maximizes welfare W = W (μ0, C0, μ1, C1, ε1)
with respect to (μ1, C1) conditional on (μ0, C0, ε1) and under the restriction
(4). This gives (μ∗

1, C
∗
1) and concentrated welfare

W ∗(μ0, C0, ε1) =W (μ0, C0, μ
∗
1, C

∗
1 , ε1).

Then the expectation W (μ0, C0) = E (W ∗(μ0, C0, ε1)) is computed, if it ex-
ists. Finally, W is maximized with respect to (μ0, C0).
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4 Compatibility

We now have a simplified Nordhaus model with Weitzman-type uncertainty
in a two-period framework. In Table 2 we present the optimal values of
the policy and other selected variables obtained from maximizing expected
welfare. (Our background document contains the complete tables.) The
results allow for uncertainty, consider the short run (two periods) rather
than the long run (sixty periods), and also take scrap values into account.

We need values for the exogenous variables Lt, At, σt, and ψt; these
are given in our background document. We note that Y0 = 556.67 and
d0 = 0.9985 are constant over different scenarios and functions, and that the
values of μ0, C0, I0, E0, ω0, K1, M1, and H1 are optimal values. In contrast,
μ1, C1, I1, Y1, E1, ω1, d1, K2, M2, and H2 are optimal functions of ε1. What
we present in the tables are their expectations.

We also need sensible values for the uncertainty parameter τ . The stochas-
ticity, as given in (7), captures uncertainty about GDP that is due to uncer-
tainty about climate change. Historical variation in GDP may therefore serve
as an initial upper bound proxy for τ . Barro (2009) calibrates the standard
deviation of log GDP to a value of 0.02 on an annual basis. Over a 10-
year horizon this would correspond to about 0.06, under normality. Barro,
however, only considers rich (OECD) countries, which means that for our
purposes this value needs to be scaled up. In addition to the value of τ we
need to consider the question whether or not the uncertainty introduced is
indeed heavy-tailed. A (partial) answer to this question is contained in a re-
cent paper by Ursúa (2010) who claims that the growth rate of GDP indeed
features heavy tails.

In Figure 1 we plot the density of d̄t for three values of τ : 0.1, 0.3, and 0.7,
both when εt follows a N(0, 1) distribution (solid line) and when εt =

√
4/5u,

where u follows a Student distribution (as adopted in Weitzman, 2009) with
10 degrees of freedom (which implies a ‘tail index’ that is broadly consistent
with the empirical analysis in Ursúa, 2010). Notice that E(εt) = 0 and
var(εt) = 1 in both cases. When τ = 0.1, we see that almost 100% of the
distribution of d̄t lies in the interval (0.5, 2.0), both for the N(0, 1) distribution
and for the t(10) distribution. When τ = 0.3, 97.8% (97.2% for the Student
distribution) lies in the interval (0.5, 2.0); and, when τ = 0.7, only 64.9%
(67.2% for the Student distribution) lies in this interval. We conclude that
τ = 0.7 may serve as a credible upper bound for the uncertainty range, and
hence we report our results for τ = 0.0, 0.3, 0.5, and 0.7.

We consider three utility functions (power, exponential, Pareto) and two
distributions (normal, Student). Power utility, as given in (5), takes the
simple form U(x) = 1 − 1/x for α = 2. The following proposition states
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Figure 1: Density of d̄t for τ = 0.1, 0.3, and 0.7

that if the random errors εt are generated by a normal N(0, 1) distribution,
then the expectation of welfare exists for power utility, but if we move one
step away from normality and assume a Student distribution with any finite
degrees of freedom, then the expectation does not exist. It illustrates the
consequences of violating the conditions of Proposition 2.1.

Proposition 4.1 With power utility, expected welfare exists under normal-
ity of ε but not under a Student distribution.

It follows that the much-used power utility function is incompatible with
expected utility theory with heavy tails, not because utility theory itself is
at fault but because power utility is inappropriate when tails are heavy.

Motivated by the conditions derived in Section 2 and by the fundamental
insight that the economic model and the statistical model must be compati-
ble, and also because we wish to leave distributional assumptions unrestricted
at this stage, we consider two alternative utility functions: the exponential
function and the ‘Pareto’ function. Other choices are permitted but may
require restrictions on distributional assumptions. The exponential utility
function is given by

U(x) = 1− e−βx (β > 0) (9)
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with ARA(x) = β and RRA(x) = βx, and the Pareto utility function by

U(x) = 1−
(

λ

x+ λ

)k

(k > 0, λ > 0) (10)

with ARA(x) = (k+1)/(x+λ) and RRA(x) = (k+1)x/(x+λ). The Pareto
function was proposed in Ikefuji et al. (2012a), where it is shown that this
function enjoys a combination of appealing properties especially relevant in
heavy-tailed risk analysis. We choose the parameters as follows: β = 25 in
the exponential function, and k = 1.5 and λ = 0.02 in the Pareto function.
This choice of parameters is determined by the point x∗, where we want the
three utility functions to be close. Suppose we want the functions to be close
at x∗ = 0.08, which is approximately the value of C0/L0 and C1/L1. Then,
given that α = 2, we find β = 2/x∗ = 25, and, for any k > 1, λ = (k−1)x∗/2.

The power function is unbounded from below, hence violates the con-
ditions of Proposition 2.1, and has constant and positive RRA, hence vio-
lates the conditions of Proposition 2.3. Both the exponential and the Pareto
function are bounded from above and below, hence satisfy the conditions of
Proposition 2.1. The exponential function has constant and positive ARA,
hence satisfies the conditions of Proposition 2.3, while the RRA is unbounded
for large x. In contrast, the RRA in the Pareto function is bounded between
0 and k+1, and it further satisfies RRA(0) = 0 and ARA(0) <∞, hence sat-
isfies the conditions of Proposition 2.3. Notice that the fact that RRA(0) = 0
(as is the case for the exponential and the Pareto utility functions) does not
imply that the representative agent is risk-neutral at x = 0. In particular,
we have ARA(0) = β for the exponential function and ARA(0) = (k + 1)/λ
for the Pareto function.

4.1 Light tails

The first panel of Table 2 gives the results for power utility. For τ = 0 there
is no uncertainty, but for τ > 0 there is uncertainty, and the larger is τ the
higher is the uncertainty. The increase in I0 with τ can be explained by
precautionary savings. The restriction on I1 can be viewed as a penalty for
negative investment. To avoid this penalty, the policy maker can increase
the budget in period 1 by investing more in period 0 at the expense of less
abatement and consumption in period 0. The decrease in μ0 leads to higher
emissions in period 0, and increases carbon concentration and temperature
in period 1. An additional reason why investment in period 1 increases with
uncertainty is that positive shocks translate into possibly unlimited upward
shocks in I1, but negative shocks will never cause I1 to drop below zero.
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Turning now to the alternative utility functions, we first maximize (de-
terministic, hence τ = 0) welfare over sixty periods (600 years) for both
exponential and Pareto utility. A selection of the resulting optimal values is
shown in Table 3. When we compare the results with those in Table 1, we see

Table 3: Comparison of stocks in Exponential and Pareto models
2005 2055 2105 2155

Expo Pareto Expo Pareto Expo Pareto Expo Pareto
K 137 137 286 343 388 666 456 1220
M 809 809 1012 993 1328 1258 1727 1512
H 0.7 0.7 1.6 1.5 2.6 2.5 3.7 3.3

that the optimal stock values from the Pareto function closely resemble the
optimal stock values from the power function, but not those from the expo-
nential function. In contrast to power and Pareto, where RRA flattens out,
the RRA for the exponential distribution continues to increase, and hence the
growth rate of marginal utility continues to increase as well. As x increases,
consumption will therefore increase, and investment and abatement will de-
crease. Consequently, M and H are high compared to power and Pareto.
When x < x∗, RRA (Pareto) is close to RRA (exponential), so that more is
consumed and less invested when the Pareto function is used instead of the
power function. But when x > x∗, RRA (Pareto) is close to RRA (power).
The optimal path of K is slightly lower and the optimal paths of M and H
are slightly higher for Pareto than for power utility.

Since exponential utility is calibrated to be close to power utility at x =
x∗, the two-period results for the two utility functions do not differ greatly;
see the second panel of Table 2. As the uncertainty parameter τ increases,
M2 does not change much in the exponential case, while it increases in the
power case. The effect of uncertainty on the marginal scrap values is therefore
larger in the exponential case than in the power case.

4.2 Heavy tails

Suppose next that the underlying distribution has heavier tails: Student in-
stead of normal. Under power utility, expected welfare does not exist any
more. But under bounded utility, expected welfare always exists. Although
the effect of the excess kurtosis on expected welfare is large and discontinu-
ous, the effect on the optimal values is relatively small in the center of the
distribution. This is good, because the Student distribution with 10 degrees
of freedom is in fact quite close to the normal distribution as Figure 1 re-
veals, and hence it would be unreasonable if a ‘small’ change in distributional
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assumptions would lead to a large possibly ‘discontinuous’ change in optimal
policies.

All variables move in the same direction as before when τ increases. No-
tice that some variables (C1, I1, and K2) have infinite expectations even
though expected welfare is finite. This is no surprise because these variables
are unbounded and depend on d̄1 = e−τ2/2eτε1. When ε1 follows a Student
distribution, E(d̄1) = ∞ and this property carries over to the other three
variables.

We would expect that Pareto and power are relatively close in the ob-
served data range. This is indeed the case as a comparison of the first and
third panels reveals. There is little difference between the two panels in
the case of no uncertainty, and also when τ increases. The effect of excess
kurtosis is again small, as it should be.

In the observed data range, that is in the center of the distribution,
the three utility functions (power, exponential, Pareto) yield similar optimal
policy values. Apparently the center of the distribution is quite robust with
respect to the specification of the utility function and the error distribution.
This is important, because discontinuities occur caused by the non-existence
of moments. These discontinuities, however, do not cause large shocks in the
center of the distribution. The small difference between power, exponential,
and Pareto utility on the one hand, and the normal and Student distribution
on the other within the observed data range does not mean that the choice
between them does not matter in practice. The important differences be-
tween them are revealed when low levels of per capita consumption become
relevant, that is, in near-catastrophe cases.

4.3 Near-catastrophe

To study near-catastrophe we must define what we mean by a catastrophic
event. We propose to define catastrophe as the event C∗

1 ≤ C for some
given value C > 0. The probability of catastrophe is then given by π =
Pr(C∗

1 ≤ C). We shall consider three different values of C: Ca, Cb, and Cc,
corresponding to three levels of catastrophe, labeled A, B, and C. Catastrophe
A occurs when 20% of the world population live in extreme poverty, and
catastrophes B and C occur when 50% and 80% of the world population
live in extreme poverty, respectively. The definitions and priors proposed in
this subsection are based on background material provided in Ikefuji et al.
(2012b).

The last line in Table 2 gives the estimated values of πb, the probability
of type-B catastrophe. If we compare the probabilities of catastrophe of the
power and exponential distribution for the normal distribution with τ = 0.3,
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they differ by approximately a factor of 100. For exponential utility, moving
from a normal distribution to a t(10) distribution with τ = 0.3 increases
the probability of catastrophe by a factor of almost 1300. For Pareto utility,
moving from a normal to a t(10) distribution changes the probability of
catastrophe even by a factor of 43000. We conclude that results at the mean
are similar across models, which is in part a consequence of the manner
in which the models are calibrated. But the large differences between the
models, both in terms of distributional assumptions (normal versus Student)
and in terms of utility function (power, exponential, Pareto), become clear
once we consider the tails of the distribution.

5 Learning, agreement and robustness

5.1 Learning and agreement

To complete the model one needs to specify the definitive inputs, which may
differ from the inputs initially specified. We now show, in a stylized setting,
how this can be achieved in a process towards agreement, using experts’
priors. The key to this learning and agreement process is the translation
of model inputs that are relatively difficult to interpret into quantities that
allow a more straightforward interpretation, hence are easier to specify. The
definitive inputs that we arrive at below can clearly still be criticized and
investigated in further detail; this section is primarily meant to illustrate the
process of learning and agreement.

Our input parameters cannot ‘simply’ be estimated using conventional
methods and historical data, but experts will have prior ideas about these
parameters. Model output can be generated on the basis of various priors.
Then, in an iterative procedure, one learns about the parameter values from
experts’ opinions and model output, and an agreeable intersection of model
parameters may be reached.

This process is illustrated in Figure 2. In the left panel, we visualize the
contributions of two experts. One expert states that the value of input 2
should be bounded as indicated by the two vertical lines. The other expert
provides a lower and upper bound for the value of input 1, depending on
the value of input 2. The horizontally-shaded area gives the combinations
of inputs that are acceptable to both experts. The right panel is more com-
plicated. We first visualize the contributions of two policy makers regarding
two output variables. This is the vertically-shaded area, giving the combi-
nations of outputs that are acceptable to both policy makers. Next we map
the left panel onto the right panel. For every acceptable combination of in-
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Figure 2: The learning and agreement process

puts the model provides one combination of outputs, that is, one point in
the right panel. The horizontally-shaded area in the right panel is the image
of the horizontally-shaded area in the left panel. We now have two areas in
the right panel: the vertically-shaded area and the horizontally-shaded area.
If the two areas do not intersect, then the experts and policy makers must
adjust their priors in an iterative process of learning. Once the areas do in-
tersect, agreement is possible. The black triangle then contains all points for
which both inputs and outputs are acceptable. Agreement must be reached
on the three policy variables (μ0, C0, I0), and we recall that expected welfare
is maximized in three steps as described at the end of Section 3.3, yielding
the optimal policy (μ∗

0, C
∗
0 , I

∗
0 ).

5.1.1 Inputs

Our analysis requires prior beliefs about various inputs, in particular: form of
the utility function (Pareto or otherwise), degree of risk-aversion (k, λ), dis-
count rate (ρ), form of the distribution (Student or otherwise), and volatility
(τ). If agreement is to be reached, then the policy makers must be willing to
adjust their individual priors on each of these inputs, based on the experts’
opinions and the generated output.

We want a distribution which allows heavy tails (Ursúa, 2010), such as
the Student distribution (Weitzman, 2009). Given our treatment of stochas-
ticity, power utility is not compatible with the Student distribution, because
the required expectations don’t exist. Also, exponential utility has the disad-
vantage that RRA increases without bound. Pareto utility provides a useful
compromise: it exhibits exponential-like features when per capita consump-
tion is small, and power-like features otherwise (Ikefuji et al., 2012a). We
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therefore confine ourselves to Pareto utility, assume that ε1 follows a Student
distribution, and take the following parameter values as our benchmark:

k = 1.5, λ = 0.02 τ = 0.3, df = 10, ρ = 0.1605.

Note that the value of λ is linked to k through λ = 0.04(k− 1), as explained
in Section 4. Priors regarding risk aversion are based on our background
document. The symbol df denotes the degrees of freedom in the Student
distribution, and the discount rate of 0.1605 per decade corresponds to an
annual discount rate of 0.015.

Table 4: Parameter calibration: Pareto utility and Student distribution
Agreement Robustness

a b c d e f g

Parameter values
τ 0.3 0.3 0.5 0.3 0.5 0.7 0.5
df 10 25 10 10 25 10 10
k 1.5 1.5 1.5 2.0 1.5 1.5 2.0
Policy instruments, beginning of period 0
μ0 0.0910 0.0910 0.0888 0.1192 0.0887 0.0861 0.1163
C0 424.33 424.31 413.71 438.01 413.50 400.67 427.56
I0 131.46 131.47 142.08 117.73 142.29 155.12 128.19
Capital stock and expectations
K1 179.23 179.25 189.86 165.50 190.06 202.89 175.96
μ1 0.1135 0.1135 0.1154 0.1604 0.1154 0.1175 0.1655
H2 1.0413 1.0413 1.0429 1.0309 1.0430 1.0449 1.0323
Probabilities of catastrophe π�
πa 5.0E−03 3.3E−03 5.2E−02 5.1E−03 5.3E−02 1.4E−01 5.2E−02
πb 2.3E−05 5.9E−07 1.4E−03 2.6E−05 5.5E−04 1.2E−02 1.5E−03
πc 2.5E−07 5.0E−11 2.8E−05 2.6E−07 8.2E−07 4.9E−04 3.0E−05
Values of statistical subsistence V� = VSS�/C0

Va 2.8E+01 2.9E+01 4.8E+00 2.4E+01 4.1E+00 2.9E+00 4.1E+00
Vb 1.3E+04 2.8E+05 3.1E+02 1.1E+04 5.3E+02 5.2E+01 2.6E+02
Vc 1.9E+06 4.2E+09 2.0E+04 1.6E+06 3.6E+05 1.4E+03 1.7E+04

Our benchmark is column a in Table 4. The model outputs are within
credible bounds: policy variables at the beginning of period 0 (μ0, C0, I0);
stock variables at the beginning of period 1 (K1 and also M1 = 834.42 and
H1 = 0.8845); and expectations (E(μ1), E(H2), and also E(M2) = 869.38). If
we consider temperature H2 as a function of ε1 we find relatively low volatil-
ity in comparison to the confidence intervals proposed by the IPCC (2007,
Chapter 10). The reason for this is twofold. First, the IPCC determines con-
fidence intervals by considering multiple deterministic climate models, not a
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single stochastic one as we do. Second and more importantly, the IPCC con-
fidence intervals are based on non-mitigation scenarios, while our model takes
policy effects into account. For both reasons, the volatility in temperature
found by the IPCC is higher than what we find.

5.1.2 Outputs

In addition to the ‘direct’ outputs of our model we also have ‘derived’ out-
puts, in particular the probability of catastrophe. These derived outputs are
functions of the direct outputs and they represent important policy variables
on which prior information is available. Hence, they also require agreement.

We must agree on acceptable values for the probability π of catastrophe.
We have studied acceptable risks in various situations, and we conclude that
an acceptable probability for an economy-climate catastrophe in the next
10-year period is in the range 10−5–10−6. Given the definition of catastrophe
we propose: πa = 0.1, πb = 0.001, and πc = 0.00001 as reasonable values.

In the benchmark model we find πa = 0.005, πb = 0.00002, and πc =
0.0000003, which is much lower than the acceptable values. Given the asso-
ciated costs, it seems unnatural that policies would be chosen that mitigate
the probability of a global economy-climate catastrophe far beyond accept-
able levels. What can one do about this? One possibility is to make the tails
heavier or lighter, that is, to adjust the degrees of freedom. If we set df = 25
then π becomes even smaller. In general, π becomes smaller as the tails
become lighter (df increases), as one would expect. For df = ∞ (the nor-
mal distribution) we find πa = 2.3E−03, πb = 5.3E−10, and πc = 1.5E−24.
Interestingly, the policy variables are hardly affected (column b), not even
when df = 200 or df = ∞. If we set df = 3, which is the minimum value
where var(ε1) exists, then πa = 0.008, a little higher than for df = 10, but
not enough. So, adjusting the degrees of freedom hardly changes the results.

Perhaps the fact that the heaviness of the tail (degrees of freedom) has
little effect on the optimal policy is caused by the Pareto utility function.
Maybe this function does not distinguish well between different tails? In
fact, this is not so. It follows from Figure 1 (and Section 4) that τ has much
more impact than df. Hence the Pareto function does distinguish between
different tails.

Perhaps we should then adjust the value of τ . In our benchmark we set
τ = 0.3 as a reasonable starting point. We could revise τ upwards. We
argued in Section 3.2 and Figure 1 that τ = 0.7 is an upper bound to the
volatility. Let us therefore consider the case τ = 0.5. A larger value of τ
means more volatility and hence one would expect less consumption and more
investment. This is indeed what happens (column c). Also, the probabilities
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are affected and are now much closer to our prior ideas.
We can also adjust the curvature k (and λ). If k increases, then agents

become less risk-averse and, as expected, there is more consumption and less
investment (column d). The probabilities are not much different from our
benchmark in a, but the values of μ0 and μ1 are very high and the capital
stock accumulation rate is only 1.9% per year, which is too low.

Finally, we could adjust the discount rate ρ. This is an important issue
(see, for example, Gollier, 2002, 2008, and the references therein), with pos-
sibly significant (yet not ‘discontinuous’) impact on the optimal policies. It
is, however, beyond the scope of this study.

Based on these comparisons it seems that policy c should be recom-
mended. There is, however, one other derived output which is often dis-
cussed, namely the value of statistical life. If we agree on the definition of
catastrophe, then we can also define the ‘value of a statistical subsistence’
(VSS) as the amount of consumption in period 0 that the government is will-
ing to trade off in order to change the probability of catastrophe; see Ikefuji
et al. (2012b) for further details. The VSS is similar to the value of statistical
life (VSL), except that it refers to the condition of just having enough food
to stay alive (more than $1/day) rather than to life. We propose VSSa = C0,
VSSb = 10C0, and VSSc = 100C0 as reasonable orders of magnitude. The
VSS (and the VSL) is a difficult concept to measure, and the VSS priors
may be unreliable. As such it should not carry too much weight as a derived
output. Still we notice that the VSSs of our preferred policy c are much
closer to our reasonable values than the VSSs in columns a, b, and d.

5.2 Robustness

If we believe that column c is the best, then we should do some further ro-
bustness checks, starting from column c rather than column a. We have done
extensive robustness checks and some representative results of this analysis
is reported in columns e–g of Table 4. If we adjust the degrees of free-
dom (column e), then not much happens. There is little to choose between
columns c and e. The optimal policy (μ∗

0, C
∗
0 , I

∗
0 ) is hardly affected, which is

a good thing, because it means that our policy is not too sensitive to changes
in the heaviness of the tail (degrees of freedom). In column f we consider
τ = 0.7. Here the probabilities of catastrophe seem to be too large. For ex-
ample, we have πc = 0.0005 and it is doubtful if the government would find
this acceptable. The choice of volatility τ does, however, affect the policy,
and hence is important. In column g we adjust the curvature of the Pareto
utility function. The probabilities are hardly affected but there will be more
consumption, less investment, and in particular more (perhaps too much)
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abatement. On the basis of these and other robustness checks we conclude
that policy c is robust against small changes in the underlying assumptions
and parameter values.

6 Concluding remarks

Our strategy in this paper has been to specify a stochastic economy-climate
model, building on Nordhaus’ deterministic economy-climate model while al-
lowing for Weitzman-type stochasticity. We show that, under expected power
utility, the model is fragile with respect to distributional assumptions. Based
on general results regarding the relationship between the richness of the class
of utility functions and the generality of the permitted distributional assump-
tions, we restrict ourselves to utility functions that are compatible with our
distributional assumptions. Thus we avoid the unacceptable conclusion that
society should sacrifice an unlimited amount of consumption to reduce the
probability of catastrophic climate change by even a small amount. After
reaching agreement on the model parameters, a sensitivity analysis shows
that our completed model and the resulting optimal policies are quite robust
and sensibly sensitive.

The fragility of the model under expected power utility to heavy-tailed
distributional assumptions is not unexpected. Weitzman (2009) summarizes
this fragility and the perceived non-existence of a robust solution in a ‘dis-
mal theorem’. While we agree with Weitzman that incompatible pairs of
utility functions and distribution functions exist, our objections to the dis-
mal theorem are twofold. First, the result is implied by using an incompat-
ible (invalid) model specification. A key ingredient in Weitzman’s model is
the power utility function. This popular utility function is characterized by
constant relative risk aversion (CRRA). The assumption of CRRA, hence
RRA(0) > 0, is not appropriate when dealing with extremely low levels of
consumption, and it is exactly the behavior at these low consumption levels
that leads to the dismal theorem. As we have demonstrated formally in Sec-
tion 2 and numerically in Section 4, Weitzman’s result is avoided when the
economic model (utility function) is compatible with the statistical model
(heavy tails).

Second, more effort can be made to know an input parameter that is ‘hard
to know’, and we have described a (stylized) learning-and-agreement proce-
dure for precisely this purpose in Section 5. Although it is difficult to state
upper and lower bounds for the ‘VSL-like’ input parameter of Weitzman,
we can still obtain reasonable constraints on difficult-to-know parameters of
interest indirectly. The economic model translates the parameter of interest
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into output variables with an easier interpretation (such as the optimal poli-
cies and the probability of catastrophe). Bounds on these output variables,
together with the economic model, imply bounds on the input parameter of
interest.

Much of the analysis in our paper is not limited to extreme climate change.
A similar analysis could apply in other policy making settings involving catas-
trophic risks, such as the development of new financial incentive schemes to
mitigate the risk of extreme systemic failures and resulting financial economic
crises, or policies concerning medical risks (pandemic flu and vaccination
risks).

Let us finally admit four limitations of our paper, and indicate possi-
ble generalizations. First, in Section 4 we have focussed our attention on
bounded utility functions, so as to avoid having to restrict distributional
assumptions. In general, one could assume more structure on stochasticity
(yet still allow for heavy tails) and broaden the constraints on utility. In
particular, unbounded utility is also permitted under additional assumptions
on stochasticity. Second, for simplicity and clarity of presentation, we have
restricted our numerical analysis to only two periods. Conceptually, much
of our analysis will remain intact when considering more than two periods.
Third, to account for the fact that the policy maker has the double objective
of maximizing current consumption, while also leaving a reasonable economy
for the next policy maker, we have used scrap values in our analysis. We
ignore, however, stochasticity in the scrap value function after the second
period. The development of a numerically tractable economy-climate model
with multi-period stochasticity and stochasticity in scrap values after the last
period is a subject for further research. Finally, the equations making up our
stochastic economy-climate model are of a simple and stylized nature, and
each one of them, including the specification of stochasticity, leaves room for
generalizations and extensions.

Appendices

A Kuhn-Tucker conditions under positive in-

vestment

Consider the economy-climate model of Section 3.1 in a two-period set-up.
Let U be a general well-behaved utility function and let S(1) and S(2) be
general well-behaved scrap value functions. At the beginning of period 1 our
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welfare function, conditional on (C0, μ0, ε1), is

W = L1U(C1/L1) + ν1S
(1)(K2)− ν2S

(2)(M2).

We have four constraints: C1 ≥ 0, I1 ≥ 0, μ1 ≥ 0, and μ1 ≤ 1, but only
two of these can be binding as we shall see. Hence, we define the Lagrangian
L = L(C1, μ1) as

L = L1U(C1/L1) + ν1S
(1)(K2)− ν2S

(2)(M2) + κ1I1 + κ2(1− μ1),

and we find
∂L
∂C1

= U ′(C1/L1)− (ν1g1 + κ1)

and
∂L
∂μ1

=
(−(ν1g1 + κ1)ψ1θμ

θ−1
1 d1 + ν2g2σ1

)
Y1 − κ2,

where

g1 = g1(C1, μ1) =
∂S(1)(K2)

∂K2
, g2 = g2(μ1) =

∂S(2)(M2)

∂M2
.

This leads to the Kuhn-Tucker conditions:

κ1 = U ′(C1/L1)− ν1g1 ≥ 0,

I1 = (1− ψ1μ
θ
1)d1Y1 − C1 ≥ 0,

and

κ2 =
(−U ′(C1/L1)ψ1θμ

θ−1
1 d1 + ν2g2σ1

)
Y1 ≥ 0,

μ1 ≤ 1,

together with the slackness conditions κ1I1 = 0 and κ2(1− μ1) = 0.
Under the assumption that I1 > 0 we have κ1 = 0 and we distinguish

between two cases, as follows.

Case (1): κ2 > 0. We have μ1 = 1 and g2 = g2(1), and we solve two
equations in two unknowns:

U ′(C1/L1) = ν1g1, g1 = g1(C1, 1),

under the restrictions:

C1

(1− ψ1)Y1
≤ d1 <

ν2g2σ1
ν1g1ψ1θ

.
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Case (2): κ2 = 0. We solve four equations in four unknowns:

U ′(C1/L1) = ν1g1, μθ−1
1 d1 =

ν2g2σ1
ν1g1ψ1θ

,

g1 = g1(C1, μ1), g2 = g2(μ1),

under the restrictions:

C1 ≤ (1− ψ1μ
θ
1)d1Y1, μ1 ≤ 1.

The following two points are worth noting. First, we see that the restrictions
μ1 ≥ 0 and C1 ≥ 0 are automatically satisfied, so that they do not need to
be imposed. Second, we see that U ′(C1/L1) = ν1g1 in both cases. This fact
will be used in the proof of Proposition 4.1.

B Proofs of the propositions

Proof of Proposition 2.1: See Menger (1934, p. 468) in the context of St.
Petersburg-type lotteries, and also Arrow (1974, p. 136) and Gilboa (2009,
pp. 108-109). Menger (implicitly) assumes boundedness from below and
demonstrates that boundedness from above should hold, and it is straight-
forward to generalize his result to an a priori unrestricted setting.

Proof of Proposition 2.2: Let α∗ > 0. The EU maximizer is then more
risk-averse in the sense of Arrow-Pratt than an agent with power (CRRA)
utility of index α∗. It follows from (1) that

P ′(C∗
1)

P (C∗
1)

=
U ′′(C∗

1 )

U ′(C∗
1)

= −ARA(C∗
1 ).

Since ARA(x) = RRA(x)/x ≥ α∗/x, we then have

E(P ) =
1

1 + ρ
E exp

(
−
∫ 1

C∗
1

d logP (x)

)
=

1

1 + ρ
E exp

(∫ 1

C∗
1

ARA(x) dx

)

≥ 1

1 + ρ

∫
C∗

1≤1

exp

(∫ 1

C∗
1

(α∗/x) dx

)
dF (ε1)

=
1

1 + ρ

∫
C∗

1≤1

(C∗
1)

−α∗
dF (ε1) ≥ B−α∗

1

1 + ρ

∫
C∗

1≤1

e−τα∗ε1 dF (ε1) = ∞,

with

B1 =
e−τ2/2Y1
1 + ξH2

1

,
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using (2) and the fact that ε1 is heavy-tailed to the left. This proves part (a).
Intuitively, if agent 1 is more risk-averse in the sense of Arrow-Pratt than
agent 2, and if it is optimal to postpone all consumption for agent 2, then
this will also be optimal for agent 1.

Next let α∗ = 0 and β∗ <∞. The EU maximizer is then less risk-averse
in the sense of Arrow-Pratt than an agent with exponential (CARA) utility
of index β∗. Since α∗ = 0, we have 0 ≤ ARA(x) ≤ β∗ and hence

E(P ) =

∫
C∗

1≤1

P dF (ε1) +

∫
C∗

1>1

P dF (ε1)

≤ 1

1 + ρ

∫
C∗

1≤1

exp

(∫ 1

C∗
1

β∗ dx

)
dF (ε1)

+
1

1 + ρ

∫
C∗

1>1

exp

(
−
∫ C∗

1

1

ARA(x) dx

)
dF (ε1)

≤ eβ
∗
Pr(C∗

1 ≤ 1) + Pr(C∗
1 > 1)

1 + ρ
<∞.

Proof of Proposition 2.3: To prove the ‘only if’ part, we assume that∫ γ

0
ARA(x) dx is infinite for every γ > 0, and then show that there exist

(S,A,P) and ε1 defined on it such that E(P ) = ∞. We note that β∗ = ∞.
Define a function g : (0, 1] → [1,∞) by

g(y) = exp

(∫ 1

y

ARA(x) dx

)
.

Then,

E(P ) ≥ 1

1 + ρ

∫
C∗

1≤1

g(min(C∗
1 , 1)) dF (ε1).

Recall from (2) that C∗
1 ≤ B1e

τε1 , and let ε∗1 be such that B1e
τε∗1 = 1, so that

0 < B1e
τε∗1 ≤ 1 if and only if ε1 ≤ ε∗1. Define u : (−∞,∞) → [0,∞) by

u(ε1) =

{
g(B1e

τε1)− 1 if ε1 ≤ ε∗1,

0 if ε1 > ε∗1.

Since ARA(1) > 0, g is monotonically decreasing and we obtain∫
C∗

1≤1

g(min(C∗
1 , 1)) dF (ε1) ≥

∫
ε1≤ε∗1

g(B1e
τε1) dF (ε1)

=

∫
ε1≤ε∗1

(u+ 1) dF (ε1) = E(u) + Pr(ε1 ≤ ε∗1).
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Strict monotonicity of g implies its invertibility. Hence we can choose u to
be any non-negative random variable whose expectation does not exist (for
example, the absolute value of a Cauchy distribution), and then define ε1
through B1e

τε1 = g−1(u+ 1). With such a choice of ε1 we have E(P ) = ∞.
To prove the ‘if’-part we assume that

∫ γ

0
ARA(x) dx is finite. This implies

that
∫ 1

0
ARA(x) dx is finite, so that

E(P ) =
1

1 + ρ

∫
C∗

1≤1

exp

(∫ 1

C∗
1

ARA(x) dx

)
dF (ε1)

+
1

1 + ρ

∫
C∗

1>1

exp

(
−
∫ C∗

1

1

ARA(x) dx

)
dF (ε1)

≤ Pr(C∗
1 ≤ 1)

1 + ρ
exp

(∫ 1

0

ARA(x) dx

)
+

Pr(C∗
1 > 1)

1 + ρ
<∞,

using the fact that α∗ = RRA(0) = 0.

Proof of Proposition 4.1: We shall prove the proposition both for the
linear scrap and the non-linear scrap case. In both cases the inequality
constraints (4) are imposed. Since

d1Y1 = B1e
τε1, B1 =

e−τ2/2Y1
1 + ξH2

1

,

we obtain
C∗

1 ≤ C∗
1 + I∗1 = (1− ω∗

1)d1Y1 ≤ B1e
τε1, (11)

I∗1 ≤ C∗
1 + I∗1 ≤ B1e

τε1 ,

(1− δ)K1 ≤ K∗
2 ≤ (1− δ)K1 +B1e

τε1 ,

and
M∗

2 ≤ (1− φ)M1 + σ1Y1.

We distinguish between three cases.

Linear scrap under normality. Linear scrap implies that S(1)(K2) = K2

and S(2)(M2) =M2. Since E(eτε1) exists under normality, it follows that C∗
1 ,

I∗1 , K
∗
2 , and M

∗
2 all have finite expectations, and therefore that E(W ∗) exists

if and only E(1/C∗
1) exists. For notational convenience we do not distinguish

between the random variable ε1 and its realization. With this slight abuse of
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notation, we write

E(1/C∗
1) =

∫ ∞

−∞
(1/C∗

1) dF (ε1) =

∫
I∗1=0

(1/C∗
1) dF (ε1) +

∫
I∗1>0

(1/C∗
1) dF (ε1)

= (1/B1)

∫
I∗1=0

e−τε1

1− ω∗
1

dF (ε1) +

∫
I∗1>0

(1/C∗
1) dF (ε1)

≤ 1

(1− ψ1)B1
E(e−τε1) +

∫
I∗1>0

(1/C∗
1) dF (ε1).

Since E(e−τε1) is finite, it suffices to show that
∫
I∗1>0

(1/C∗
1) dF (ε1) is finite.

Now, it follows from Appendix A that, under the assumption that I∗1 > 0,
U ′(C∗

1/L1) = L2
1/C

∗
1
2 = ν1g

∗
1 = ν1, because g

∗
1 = 1. Hence,

∫
I∗1>0

(1/C∗
1) dF (ε1) =

ν
1/2
1

L1
Pr(I∗1 > 0) ≤ ν

1/2
1

L1
<∞.

Nonlinear scrap under normality. Nonlinear scrap implies that

S(1)(K2) = −K0

p

(
K2

K0

)−p

, S(2)(M2) =
M0

q

(
M2

M0

)q

where p > 0 and q > 1. Since

(K∗
2)

−p ≤ ((1− δ)K1)
−p

and
(M∗

2 )
q ≤ ((1− φ)M1 + σ1Y1)

q ,

we see that E(W ∗) exists if and only E(1/C∗
1) exists. As in the linear scrap

case, it suffices to show that
∫
I∗1>0

(1/C∗
1) dF (ε1) is finite. Since

g1 = g1(K2) =
∂S(1)(K2)

∂K2
=

(
K0

K2

)p+1

,

it follows from Appendix A that, under the assumption that I∗1 > 0,

U ′(C∗
1/L1) = L2

1/C
∗
1
2 = ν1g

∗
1 = ν1

(
K0

K∗
2

)p+1

≤ ν1

(
K0

(1− δ)K1

)p+1

,

and hence that∫
I∗1>0

(1/C∗
1) dF (ε1) ≤

ν
1/2
1

L1

(
K0

(1− δ)K1

)(p+1)/2

<∞.
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Student distribution. From (11) we have 1/C∗
1 ≥ e−τε1/B1. Under a Student

distribution, the right-hand side has no finite expectation, and hence the
left-hand side has no finite expectation either. In the non-linear scrap case,
this is sufficient to prove the non-existence of E(W ∗) because S(1)(K∗

2) and
S(2)(M∗

2 ) are both bounded. In the linear scrap case, M∗
2 is bounded, but

K∗
2 is not. Now, since

C∗
1 ≤ B1e

τε1 , K∗
2 ≤ (1− δ)K1 +B1e

τε1 ,

we obtain

L1(1−L1/C
∗
1 )+ν1K

∗
2 ≤ L1−(L2

1/B1) e
−τε1+ν1(1−δ)K1+ν1B1e

τε1 ≡ G(ε1).

Since G is monotonically increasing from −∞ to +∞, there exists a unique
ε∗1 defined by G(ε∗1) = 0. Hence, G(ε1) ≤ 0 for all ε1 ≤ ε∗1 and

E |(L1(1− L1/C
∗
1) + ν1K

∗
2)| ≥

∫
ε1≤ε∗1

|G(ε1)| dF (ε1)

≥ −L1 − ν1(1− δ)K1 + (L2
1/B1)

∫
ε1≤ε∗1

e−τε1 dF (ε1)− ν1B1e
τε∗1 = ∞.
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