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of Bern for helpful comments.
†50 Memorial Dr., Cambridge, MA, USA. E-mail: sfanelli@mit.edu
‡DK-1455 Copenhagen, Denmark. E-mail: mge@alum.mit.edu
§Av. Córdoba 2122, (1120) Buenos Aires, Argentina. E-mail: dheymann@udesa.edu.ar

1



1 Introduction

In times of crisis, financial intermediation may have major effects in the propagation
and amplification of large macroeconomic fluctuations.1 Among the mechanisms through
which these effects take place, changes in the supply of credit for productive uses resulting
from shifts in collateral constraints seem particularly salient. A negative shock that
affects the net worth of levered borrowers has persistent effects as it can take time for
productive agents to return to their original production plan with resources generated
through retained earnings. If productive agents are forced to sell capital to less efficient
users this depresses asset prices. Current prices are further depressed by the negative
impact that the persistence of temporary shocks has on future prices, leading potentially
to significant amplification of the initial shock. Such a “dynamic multiplier” effect was
formalized in the celebrated model of Kiyotaki and Moore (1997) (hereafter KM). A
question arises, both for analytical and practical concerns, about the conditions that
generate that remarkable result and, more generally, about those that may determine the
intensity of financial multipliers.

In KM, productive firms face a credit limit given by the expected value of their capital
stock. They cannot commit their effort to production, so that lenders do not consider
output prospects as adequate collateral. At the same time, impatient business owners,
acting on the belief that their expectations are error free, have incentives to borrow up to
the collateral constraint.2 If now, after work has been engaged, a wholly unanticipated ag-
gregate “rare event” disturbs for one period the production of levered firms, the promised
debt repayments exceed the post shock value of their capital. By construction, the debt
contract is assumed to be specified unconditionally in terms of quantities of output. Then,
in order to fulfill its promises, the firm not only needs to deliver back its available capital,
but must also use some of its current output for debt servicing. Interestingly, in this
setup, the potential of default constrains ex ante the supply of credit below the capital
stock, but once the shock is realized, debtors honor their commitments in full even when
ex post the value of capital turns out to be insufficient.

This asymmetry is crucial for the large multiplier effect. The strong financial ampli-
fication is caused by the combination of fears of default that limit the supply of credit
with the absence of actual default when the economy is hit by the unforeseen shock. In
contrast we show that, if debt repayment is bounded by capital (e.g., because the legal
environment is such that creditors can appropriate fixed assets, but are unable to get
hold of produced goods unless willingly delivered), so that the whole volume of current
output remains available to borrowers, a transitory fall in productivity has second order
effects on asset prices, which moderates the multiplier linking the negative shock to the
fall in output.3 Thus, when the collateral constraint applies both ex ante and ex post,

1See for example the empirical findings of Aikman et al. (2010), and Jordà et al. (2011).
2This is a result of the simplifying assumptions in KM. In a more general setting producers would

hold liquidity buffers to partially insure against the risk of hitting the borrowing constraint. See e.g.
Brunnermeier et al. (2011).

3However, the strong amplification would still hold for positive displacements, as long as productive
agents do not hold a liquidity buffer, i.e. as long as shocks are zero probability events.
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the financial accelerator is much weaker. Default on the seemingly unconditional contract
smoothes the adjustment to the negative shock. However, this result depends on the
costlessness for debtors of limiting repayments below the promised amounts.

Even without outside sanctions, and without reputation concerns, borrowers may have
incentives to avoid situations where the liquidation of their firm brings about their sep-
aration from the productive assets that they have been holding. It seems reasonable to
assume that entrepreneurs are more productive running a firm they are “familiar” with,
than they would be working with other assets having the same market value. This speci-
ficity increases the bargaining power of creditors in potential repayment negotiations, by
strengthening the threat of liquidation.4 Thus, a shock would create a tension between
the non-appropriability of output by creditors and their ability to extract resources from
debtors who try to maintain access to the assets that they have learned to operate ef-
fectively. This added feature implies that the financial multiplier is larger than in the
costless default case, but there is a bound such that further amplification does not occur.
For small shocks, 0 < ∆ < ∆̄ (where −∆ is the percentage change in productivity), the
desire to keep their assets induces productive entrepreneurs to repay in full their debts
(which tends to depress asset prices), while for larger shocks, ∆̄ < ∆, the threat of default
is credible and induces lenders to renegotiate debt repayments. The threshold ∆̄ is higher,
so that more deleveraging takes place and asset prices fall more intensely, the stronger
the specificity of assets.

We obtain the main results for the case in which asset specificity affects the produc-
tivity of non-tradable output. We then show in two extensions the effects of asymmetric
information about default costs, and the effects of reduced productivity of tradable out-
put. In the former we find that the more dispersed the probable costs for a borrower, the
less willing is a lender to renegotiate the debt contract as this will result in capital losses
with little impact on the margin of borrower that would accept the new terms. Thus more
asymmetric information results in less amplification of the initial shock. In the latter we
show that more asset specificity leads to more persistence since in this case the borrower
has less output to pledge on the market, and thus needs more time to rebuild her initial
working capital.

Economies that have reached states where the business sector has accumulated exces-
sive debts can adapt in several ways. Leaving aside government interventions (like bailouts
or legislated write offs), the process of debt reduction may take two polar forms: a gradual
deleveraging and a sudden burst of defaults and debt restructurings. In the first instance,
firms go through a prolonged period where they use current income for the purpose of
servicing debts; consequently, their access to productive resources is diminished. In the
other extreme, after bankruptcy procedures have been completed, the restoration of sol-
vency would bring about a relief of the financial constraints on production and investment.
Our model can depict in broad terms these two scenarios, and specifies conditions (linked
to asset specificity) that may make an economy go one way or another. However, the

4Note that this concept is broader than the usual one for “asset specificity” (related to their market
liquidity) since it involves the specificity of the relation between a given entrepreneur and the assets she
uses for production. Alternatively one can interpret this friction as a “learning by doing” effect in the
production process.
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simplifying assumption of immediate and costless debt renegotiations results in a overly
benign picture of the case of default, which leaves aside the drama and the macroeconomic
disruptions associated with large-scale redrawings of assets and liabilities.5

The association found between the degree of asset specificity and the form and in-
tensity of the financial propagators of economic downturns allows parallels with features
of observed behaviors in macroeconomic crises. A long-drawn process of corporate debt
reductions in a stagnant economy with, at the same time, few breakdowns or restruc-
turings of large business firms or groups, like that experienced in the 1990’s in Japan
(e.g. Koo, 2003; Chang, 2006a; Ahmadjian, 2006) would seem to correspond to a case
with highly specific productive assets, which motivates strong efforts to repay debts on
the parts of owner/managers of assets and, as a counterpart, accentuates the effect of
financial multipliers. By contrast, large-scale transfers of property and control took place
in other cases, such as that of Indonesia in the late 1990’s, with a macroeconomic crisis
characterized by a very agitated period with numerous renegotiations of private debts.
This pattern would roughly correspond to a low specificity scenario. It has been suggested
(e.g. Chang, 2006b; Hanani, 2006) that the shifts of assets that happened in the Indone-
sian case were often linked to political influences: political contacts are more “portable”
across business activities than technological or managerial expertise.

Beyond this qualitative analysis of balance sheet recessions, our model provides testable
implications of its transmission mechanism, i.e., of the relation between the degree of ex
post capital losses incurred by creditors (affected by the level of protection of creditor
rights, and the degree of asset specificity in a given industry) and the behavior of credit
constrained firms over the business cycle. We intend to test these relations using U.S.
firm level data.6 For this we will exploit heterogeneity in the levels of debtor protection
in personal bankruptcy procedures across U.S. states, and in real asset redeployability
across industries.7 It is well known that personal bankruptcy law affects small firms’
access to credit (see e.g. Berkowitz and White (2004) or Berger et al. (2011)). Combining
this result with the model’s predictions of more debt renegotiation in industries with low
asset specificity, and in environments with less protection of creditor rights, we expect to
find differential effects in small firms’ response to their business cycle (as measured by the
fluctuations in output of large firms) across industries and states.

XXXXX FOR US ASSET-ENTREPRENEUR SPECIFICITY IS A CATCH-ALL
FOR DISTRIBUTION OF BURDEN EXPOST OR OF RELATIVE BARGAINING
POWER OF BORROWER VS LENDER XXXX

The large multiplier effects found in KM have been discussed in the literature. Kocher-
lakota (2000) builds an economy with a representative agent who has an incentive to

5A more realistic treatment of the complications of default and renegotiation may extend the model
to encompass relevant effects of disorganization (to recall, in another context, the notions presented in
Blanchard and Kremer (1997)), and permit to incorporate in the analysis transitional output costs of
redefining contracts.

6For example, the Longitudinal Business Database described by Jarmin and Miranda (2002) that
has a long series of annual observations of employment and payroll for private firms, or the National
Establishment Time Series, described in Neumark et al. (2007).

7We use real asset redeployability as a proxy of asset specificity. We take this measure from Beutler
and Grobéty (2011).
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smooth consumption, making it optimal to hold liquid assets to self insure against neg-
ative shocks. In that setting, the quantitative significance of the amplification effects
generated by collateral constraints hinges on the parameters of the economy, in particular
on factor shares. In the same spirit, Cordoba and Ripoll (2004) show in a calibrated closed
economy with heterogeneous agents that the amplification and propagation generated by
credit constraints need not be quantitatively large if preferences allow for risk aversion and
the capital share in production has values similar to those in actual economies. Moreover
they find that there exists a trade-off between amplification and persistence. In con-
trast, Liu et al. (2009) show that when economic shocks impact directly upon the price
of collateral assets, quantitatively significant amplification is restored.

More recently, Brunnermeier and Sannikov (2010) build a continuous time two sector
model which is solved without using a log-linear approximation. The resulting dynamics
feature highly non-linear amplification effects and, unlike KM, multipliers are asymmetric,
stronger for negative shocks. Entrepreneurs are aware that they might experience adverse
shocks, and choose to hold liquidity buffers. This mitigates moderate shocks dampening
their amplification. However, in response to more severe shocks, entrepreneurs reduce
their asset demand, affecting their price and triggering amplification loops, thus resem-
bling a balance sheet crisis. The stationary distribution has a double-humped shape
suggesting that crises are highly persistent.

Our model is related to the literature on the macroeconomic implications of financial
frictions (See e.g. Bernanke and Gertler, 1989; Bernanke et al., 1999; Carlstrom and
Fuerst, 1997), and of limited enforceability (see Cooley et al. (2004)). For a survey of these
literatures see Brunnermeier et al. (2011), Freixas and Rochet (1997), or Bhattacharya
et al. (2004).

The reminder of the paper is organized as follows. Section 2 shows that when there
are no costs to default, productive agents prefer to renege on their debts after negative
shocks, thus eliminating KM dynamic amplification effects. In section 3 we introduce
endogenous default costs by making new assets less productive. This gives an incentive
to entrepreneurs to repay their debts in the face of moderate adverse shocks, and relates
the degree of asset specificity to the form and intensity of the financial multiplier. Section
4 develops an extension with asymmetric information about default costs. In section 5
we show that asset specificity also leads to an increase in shock persistence. Section 6
presents an empirical strategy to test the model’s transmission channel using U.S. firm
level data. Section 7 concludes.

2 Credit Cycles with Default

A salient feature of KM is the existence of a dynamic multiplier that amplifies productivity
shocks through collateral prices. In this section, we show that this result depends on the
distribution of the debt burden. In KM, farmers have to fully repay their debt after the
shock. We change their model in just this crucial but essential aspect: we allow farmers
to default. This modeling assumption implies an assymmetric effect of shocks, as it shuts
down the amplification mechanism after a negative shock.
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We briefly outline here the setup of KM. There are two types of producers, farmers
and gatherers, of measure one and m respectively. Both are risk neutral and maximize
their expected utility given by

Et

∞∑
s=0

βsxt+s and Et

∞∑
s=0

β′sx′t+s,

where 0 < β < 1, 0 < β′ < 1, xt+s and x′t+s are their respective discount factors and
consumption of a perishable good, fruit, in period t+ s.

Farmers have access to a linear production technology that yields a units of tradable
fruit and c units of non-tradable fruit per unit of land. Gatherers’ production technology
exhibit decreasing returns to scale in the use of this asset:

y′t+1 = G(k′t), where G′ > 0, G′′ < 0, G′(0) > aR > G′
(
K

m

)
,

where R is the equilibrium interest rate, and K is the total amount of land in the economy,
assumed to be in fixed supply. There is a financial friction in the model, farmers cannot
precommit to work, and as a result find themselves credit-constrained by the value of
their collateral. Specifically, if at date t a farmer has land kt, then she can borrow bt in
total, as long as the repayment does not exceed the market value of her land at date t+1:

Rbt ≤ qt+1kt,

where q is the asset’s market price. KM explicitly make two assumptions that deliver their
results: farmers are relatively more impatient than gatherers, and non-tradable output
is sufficiently large to ensure farmers always want to reinvest all their tradable output.
Mathematically,

β < β′,

c >

(
1

β
− 1

)
a.

The intuition for making these assumptions is the following. Since gatherers have linear
utility functions and are not credit-constrained, the equilibrium interest rate reflects their
rate of impatience (R = 1

β′
). Even though farmers are relatively impatient and want to

borrow all they can at this interest rate, they would rather invest the funds collected than
consume because the return of investing in their linear technology is even higher than
their own rate of impatience.8

There is, however, an implicit assumption: an enforcement technology exists that
precludes default after production has been realized. Although KM allow farmers to re-
pudiate their debt contracts at any time, they assume that the unexpected shock happens
after farmers’ labor supply decision was made (see footnote 13 in KM). Thus implicitly

8This is true around the steady state. If land prices were very high and expected to decline, the capital
losses of holding land could outweigh the “technological” benefits of investing.
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they are assuming that farmers’ debt repayments can be collected against both the assets
and tradable output. We lift this assumption and allow farmers to default while keep-
ing the whole of their current production. This implies the farmers’ and the gatherers’
flow-of-funds are respectively given by

qtkt + IND (Rbt−1 − qtkt−1) + xt = (a+ c)kt−1 + bt , (1)

qtk
′
t + IND(Rb′t−1 − qtk′t−1) + x′t = G(k′t−1) + b′t,

XXXXXXX IS SECOND EQ CORRECT? XXXXXXXX
where IND is an indicator variable that takes the value one when the farmer does not

default.9 As argued, under these assumptions farmers want to invest all their income in
the neighborhood of the steady state. With perfect foresight this implies

Rbt−1 = qtkt−1

Therefore, having the option to default in the steady state equilibrium is irrelevant: the
value of debt always matches the value of the collateral. However, our modification is
essential to understand the dynamics around the steady state. Clearly, after a positive
(negative) shock, the value of the collateral will be above (below) the value of debt. Since
in this simple model there is no cost of default, this implies that, given the opportu-
nity, farmers will always choose to default after a negative shock. This has important
consequences for the dynamic behavior of asset prices and farmers’ net worth.

Figure 1: Default dampens the amplification mechanism.

To illustrate this point, consider an unexpected negative shock of percentage size ∆
on farmers’ tradable output productivity, a. In this case, farmers always default. As in
KM, farmers consume only their non-tradable fruit around the steady state (xt = ckt)

9Note that this is a control variable for the farmer but not for the gatherer.
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and max out their credit constraint (bt = qt+1kt
R

). In appendix 8.1 we show that, in this

case, the deviations of total farmers’ asset holdings (K̂t) and asset price (q̂t) with respect
to their steady state values are respectively given by

K̂t = − η

η + 1
∆,

q̂t = − R− 1
R−1
η

+R
∆, (2)

where η ≡ d log u(K)
d logKt

|K=K∗ is the elasticity of the residual supply of the asset with respect

to the user cost, u, evaluated at the steady state (the user cost of land depends, through
the gatherers’ technology, on the distribution of the asset among farmers and gatherers:

u(Kt) = qt − qt+1

R
= 1

R
G′
(
K̄−Kt
m

)
, thus is represented as a function of farmers’ total land

holdings). As (2) shows, prices fall less than R−1
R

∆. In contrast, in KM farmers, having to
fully repay their debt, depress prices further (q̂t = − 1

η
∆ in KM). Since farmers are more

productive than gatherers, this generates an amplification mechanism by significantly
reducing the amount of land in hands of farmers (K̂t = − η

η+1
(1 + 1

η
R
R−1

)∆ in KM). It is
clear that with default the “dynamic” amplification effect through collateral prices is not
operative. Hence, the amplification mechanism depends crucially on the fact that debtors
bear the full burden of the capital losses. Figure 1 compares the evolution of output when
default is possible and when borrowers pay the full value of their debts.

3 Amplification and land specificity

In the model of the previous section farmers face no costs of default and, thus, repudiate
their debt after any unforeseen negative shock. In this section we introduce a cost of
default related to asset specificity. We assume that new assets yield less non-tradable
output the first period of usage (thus one can think of this friction as a “learning by
doing” effect in farmers’ technology).10 Hence, if a farmer defaults, she must buy new
land, which is less valuable to her. This implies that, on the steady state, the farmer is
strictly better off by avoiding default. Formally, land yields αc non-tradable output the
first period of usage

yt+1 = F (knewt , koldt ) = (a+ αc)knewt + (a+ c)koldt ,

where 0 < α < 1 can be interpreted as a measure of “asset specificity”.11 In industries in
which changing assets is more (less) costly to the farmer/entrepreneur, more (less) non-
tradable output is lost the first period if she decides to default and leave her land/capital
to buy a new one. This translates into a lower (higher) α.

10Assuming that productivity is reduced for only one period results in small quantitative effects. We
will later explore the case that it takes more time for productivity of new assets to converge to its long
run value.

11To avoid spurious differences with KM the fruit (1 − α)c is not lost, but redistributed uniformly
among the rest of the farmers. This will lead to the same total output while affecting farmers’ incentive
to default.
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As in KM, this model presents a steady state where farmers reinvest all their proceeds,
while keeping their asset holdings constant. However, unlike the case of the previous
section, now farmers strictly prefer not to default. If they did so, their assets would be
less productive the following period while having no capital gains (since Rb∗ = q∗k∗).
Therefore there is a region of productivity shocks (0 < ∆ < ∆) where nobody wants to
default and, hence, the KM amplification mechanism operates.

We enrich the model further to include the possibility of renegotiation. To prevent
farmers from declaring default, gatherers may make an offer to pardon a fraction ϕ of
the debt. Then, farmers decide whether to take the offer or default. Thus, a farmer’s
flow-of-funds-constraint is given by:

qtkt + IND ((1− ϕ)Rbt−1 − qtkt−1) + xt − c(αknewt−1 + koldt−1) = akt−1 + bt , (3)

On the other hand, the gatherer’s flow-of-funds-constraint is given by:

qtk
′
t + IND

(
(1− ϕ)Rb′t−1 − qtk′t−1

)
+ x′t = G(k′t−1) + b′t.

When farmers and gatherers renegotiate, they share the burden of the shock.12 Clearly,
the larger the shock, the more attractive the outside option of the farmer. Intuitively,
as shocks become larger, the burden of the shock is transferred from the debtor to the
creditor. This, in turn, will affect the size of the amplification effect and the response of
the economy to these shocks.

3.1 Response to an unexpected negative shock

Suppose now that the economy was on the steady state and is hit by an unforeseen
negative productivity shock (∆ in percentage terms) that reduces the quantity of tradable
output produced by farmers in period t. This affects the farmers’ flow-of-funds (3), which
becomes:

qtkt + IND ((1− ϕ)Rb∗ − qtk∗) + xt − ck∗ = (a−∆a)k∗ + bt . (4)

To ensure farmers do not want to consume more than their bruised fruit, even after
defaulting, we make the following assumption which echoes KM’s Assumption 213

(α + β(1− α)) c >

(
1

β
− 1

)
a.

In appendix 8.2 we show that this assumption guarantees farmers choose to invest all
available funds below the steady state (xt = ck∗), which, in turn, implies farmers’ credit
constraint is binding every period, in particular Rb∗ = q∗k∗. Replacing in (4),

qtkt + IND ((1− ϕ)q∗k∗ − qtk∗) = (a−∆a)k∗ +
qt+1kt
R

.

12As in KM we give the lenders full bargaining power ex post. This ensures that the debt renegotiation
offer leaves farmers indifferent between accepting it or defaulting, thus simplifying the analysis.

13Since the output of bruised fruit is lower for new land, our framework requires a more stringent
assumption on the returns of investment. Actually, this assumption ensures that investing as much as
possible is the optimal strategy around the steady state, even after defaulting. Note, additionally, that
negative shocks make investing even more attractive.
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Manipulating terms, and using the user cost, u(Kt) = qt − qt+1

R
,

u(Kt)kt = (a−∆a)k∗ + IND(qt − (1− ϕ)q∗)k∗.

Note that prices depend on aggregate capital, which is affected by the share of farmers
that default, µ. Thus, in making a decision the farmer will have to form expectations of
this share µ.

If the farmer does not default,

u(Kt)k
ND
t = (a−∆a+ qt − q∗ + ϕq∗)k∗.

Log-linearizing this equation around the steady state,

1

η
K̂t + k̂NDt =

R

R− 1
q̂t −∆ +

R

R− 1
ϕ. (5)

If the farmer defaults,
u(Kt)k

D
t = (a−∆a)k∗.

Log-linearizing this equation around the steady state,

1

η
K̂t + k̂Dt = −∆. (6)

As in KM, we assume there are no more shocks to the economy. Since agents have perfect
foresight Rbt = qt+1k

i
t (for i = D,ND).Thus, in the following periods the flow of fund

becomes
u(Kt+s)k

i
t+s = akit+s−1.

Log-linearizing this equation around the steady state,

1

η
K̂t+s + k̂it+s = k̂it+s−1. (7)

Note from the previous equation that the rate of convergence to the steady state after a
shock is independent of the degree of asset specificity.14

3.1.1 Dynamics when a proportion µ of the farmers defaults

A fraction 1 − µ of the farmers follows (5) in t and a fraction µ follows (6). Summing
both laws of motion weighted by their proportions yields(

1

η
+ 1

)
K̂t = (1− µ)

R

R− 1
(q̂t + ϕ)−∆,

in t and, summing the corresponding equations (7)(
1

η
+ 1

)
K̂t+s = K̂t+s−1. (8)

14A different assumption on asset specificity would change this result, to have new assets produce less
tradable output. We explore this later.
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Using the transversality condition, u(Kt) = qt − qt+1

R
, and linearizing around the steady

state yields

q̂t =
1

η

R− 1

R

1

1− 1
R

η
1+η

K̂t.

Solving for K̂t and q̂t,

K̂t = −

(
1 +

(1− µ)R
η

R− 1 + µ
η
R

)
η

η + 1

(
∆− (1− µ)

R

R− 1
ϕ

)
, (9)

q̂t = −1

η

(
R− 1

R− 1 + µ
η
R

)(
∆− (1− µ)

R

R− 1
ϕ

)
. (10)

Using the aggregate law of motion of capital and prices and equations (5) and (6) we can
obtain the law of motion of individual capital in each case,

k̂NDt = − η

η + 1

(
1 +

1

η2

R(η + µ)

R− 1 + µ
η
R

)(
∆− (1− µ)R

R− 1
ϕ

)
+

µR

R− 1
ϕ, (11)

k̂Dt = − η

η + 1

(
∆− (1− µ)R

R− 1
ϕ

)(
1−

(
R
η2

(1− µ)

R− 1 +Rµ
η

))
− (1− µ)R

R− 1
ϕ (12)

3.1.2 Implied Utilities

Now we are ready to compute the implied utilities of default and renegotiation, given the
level of the shock, ∆, expectations about the general level of default, µ, and the proposed
debt-reduction, ϕ. If the farmer decides to accept the proposed debt write-off, then in the
future she only pays a penalty for the new assets that she buys. In this case her expected
utility is given by

UND(µ; ∆, ϕ) = cK∗ + βckNDt + β2(cα(kNDt+1 − kNDt ) + ckNDt )

+...+ lim
s→∞

βs(cα(kNDt+s−1 − kNDt+s−2) + ckNDt+s−2).

Let ŨND(·) = UND(·)
βcK∗

− 1
β
. In appendix 8.3 we show ŨND(·) can be expressed as a function

of individual and aggregate capital:

ŨND(µ; ∆, ϕ) =
1

1− β

(
1 + k̂NDt − βK̂t

(α + β(1− α))

(1 + η(1− β))

)
.

On the other hand, if the farmer defaults, all her land in t+ 1 is new. Hence, she faces a
tougher productivity penalty. In this case her expected utility is given by

UD(µ; ∆, ϕ) = cK∗ + βcαkDt + β2(cα(kDt+1 − kDt ) + ckDt )

+...+ lim
s→∞

βs(cα(kDt+s−1 − kDt+s−2) + ckDt+s−2).
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Let ŨD(·) = UD(·)
βcK∗

− 1
β
. In appendix 8.3 we show ŨD(·) can be expressed as a function of

individual and aggregate capital:

ŨD(µ; ∆, ϕ) =
α + β(1− α)

1− β

(
1 + k̂Dt − βK̂t

(α + β(1− α))

(1 + η(1− β))

)
.

Since lenders moves first, and have all the bargaining power ex post, each one will
offer the lowest debt reduction such that the farmer is indifferent between defaulting and
renegotiating. Note that

UD = UND ⇔ (α + β(1− α))
(

1 + k̂Dt

)
= 1 + k̂NDt . (13)

As we have already shown, k̂Dt and k̂NDt depend on ∆, µ and ϕ. Although at first sight
it may seem quite complex to derive optimal combinations of ϕ and µ for each ∆, the
following proposition simplifies the problem.

Proposition 1. There is no equilibrium with µ > 0.

Proof. First we will show that there cannot be any equilibrium where 0 < µ < 1. Suppose
0 < µ < 1 for some ϕ̃. If this is an equilibrium, then farmers must be indifferent between
renegotiating and defaulting. This implies that, if a farmer were offered ϕ > ϕ̃, he would
not default (ceteris paribus aggregate ϕ̃). Hence, an individual gatherer knows that if
he offers ϕ̃ + ε with a tiny ε > 0 he can avoid the capital losses he expects to face with
probability µ when offering ϕ̃. Therefore, any individual gatherer would have an incentive
to deviate from such an equilibrium.

Now we will show that µ = 1 is not possible either. Using (11) and (12) evaluated
at µ = 1 and replacing in (13) we can derive the ϕ̃ the gatherer would need to offer the
farmer in order to make her accept his renegotiation offer:

ϕ̃ = max

[
0,

1

η

(
R− 1

R− 1 + R
η

)
∆− (1− α)(1− β)(R− 1)

R

(
1−∆

η

η + 1

)]
.

Note that ∆ ≤ 1 (so that a(1 − ∆) ≥ 0), which implies ϕ̃ < 1. If the gatherer lets
the farmer default, he gets the collateral qtk

∗ while, if he offers a debt pardon of ϕ̃, he
gets (1− ϕ̃)q∗k∗. Then, using the fact that qt = (1 + q̂t)q

∗, the gatherer will offer ϕ < ϕ̃
(prompting default) if and only ϕ̃ > −q̂t. Evaluating (10) at µ = 1 yields

q̂t = −1

η

(
R− 1

R− 1 + 1
η
R

)
∆.

Since ∆ ≤ 1, ϕ̃ < −q̂t. Thus, whenever the farmer prefers to default, the gatherer has an
incentive to improve his debt-relief offer.

Proposition 1 states that there are no equilibria where a share of farmers wants to
default. Thus, if an equilibrium exists no farmer would find it optimal to default. Using

12



(11) and (12) evaluated at µ = 0 and replacing in (13) we can derive the lowest ϕ̃ the
gatherer must offer the farmer to make her accept his renegotiation offer:15

ϕ = max

0,
R− 1(

α + β(1− α) + A η
η+1

)
R

(
η

η + 1
A∆−B

) , (14)

A ≡ 1− (α + β(1− α)) +
1

η2

R

R− 1
((α + β(1− α)) + η) > 0,

B ≡ 1− (α + β(1− α)) > 0.

Clearly, the larger the shock, the larger the debt-reduction required to make farmers
indifferent between defaulting and renegotiating. Moreover, as we had anticipated, it
follows directly from (14) that there is a lower bound for productivity shocks ∆ such
that, when ∆ < ∆, ϕ hits the zero lower bound. Hence, there is a region of productivity
shocks (0 < ∆ < ∆) where gatherers do not need to reduce farmers’ debt to ensure
repayment. The threshold ∆ is given by

∆ =
B

A

η + 1

η
.

From the expressions for A and B above it is clear that ∂∆/∂α < 0, i.e. industries
characterized by higher asset specificity will present significant amplification for a larger
range of initial negative shocks. This is illustrated in figure 2, which shows the level of
debt reduction as a function of the size of the productivity shock for an economy with low
asset specificity and for another with high asset specificity. Figure 3 displays the initial
change in GDP for these two economies.

The stylized analysis of the previous sections suggests that the nature and the extent
of the financial accelerator depend not only on the size of the shock, but also on the level
of protection of creditor rights, and the specificity of productive assets. From the point
of view of the consequences of the disturbance, the argument points to a mechanism that
may limit the financial multiplier, by placing bounds on the fall of asset prices. The
moderating effects relying on costless debt renegotiations.

Although the model is highly stylized, it is a matter of observation that in some debt
crises, either through government intervention or bankruptcy procedures that preserve
financially troubled firms, constraints on the access to resources for production get some-
how relieved (even if this happens after a period of turmoil). At the same time, other
“balance sheet crises” show long periods of deleveraging where firms hold to their capital
but investment and production are financially restricted and asset prices stay depressed.
This corresponds qualitatively with the KM argument, and in the context of our model it
would be the case of strong asset specificity, where debtors have incentives to use current
proceeds to diminish their obligations while maintaining business arrangements.

The long recession of Japan in the 1990’s fits that description. As indicated by Koo
(2003), many firms made long and sustained efforts to reduce their debts. Furthermore,

15Note that, since ϕ is increasing in ∆ and ϕ(1) < 1, we do not need to worry about the natural upper
bound of ϕ.
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Figure 2: Debt-reduction and asset-specificity.

Ahmadjian (2006) has found, through an analysis of ownership ties within business groups,
that although some peripheral relationships were disrupted, the links between core firms
remained robust. The image is that of a collection of physical and relational capital that
incumbents find costly to take apart, and prefer to go through the painful process of debt
reduction to preserve them.

The evidence of other crises points in the other direction: that of disaggregations of
assets and business relationships. Thus, for example, Gomez (2006) finds that in the
Malaysian crisis some major capitalists lost control of their corporate assets since they
were burdened with enormous debts and depended too much on a state leader, while
business groups with better political connections thrived. Hanani (2006) paints a similar
picture for Indonesia. In those instances, the degree of asset-entrepreneur specificity
appears to have been affected by political influences.

4 Asymmetric Information about Default Costs

In this section we extend the model to allow for heterogeneity among farmers’ default
costs, which are now private information. The population distribution of α is known and
given by a cumulative distribution function F (x) ∈ C2 with support [0, 1]. Since gatherers
don’t know the type of farmers they have lent to, they face a trade-off in the event of an
unforseen negative shock: a higher level of debt-pardon makes more borrowers willing to
accept, but the rent extracted from each farmer is lower.

We keep the timing of the previous section: first gatherers make an offer and then
farmers decide whether to accept it or not.16 Hence, we will solve it by backward induction.

16Given gatherers’ risk neutrality, we proceed as if each one of them faces a continuum of farmers. This
makes the amount of borrowers that default for a given debt level deterministic from the point of view
of the gatherer, not only at an aggregate level.
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Figure 3: Initial output drop and asset specificity.

First, a farmer must decide whether to accept or decline her debt-pardon offer ϕ, taking
as given the dynamics of aggregate capital and prices (which, from (9) and (10), depend
on aggregate default share, µ̃, and aggregate debt-offer, ϕ̃).

Equation (13) shows that a farmer is indifferent between defaulting and renegotiating
when

(α + β(1− α)) (1 + k̂Dt (ϕ; ϕ̃, µ̃)) = (1 + k̂NDt (ϕ; ϕ̃, µ̃))

Manipulating terms we can derive a productivity threshold α̂ for a given ϕ such that if a
farmer has α > α̂(ϕ), given µ̃ and ϕ̃, then she will prefer to default on its debt:

α̂(ϕ) =
1

1− β

(
1 + k̂NDt (ϕ; ϕ̃, µ̃)

1 + k̂Dt (ϕ; ϕ̃, µ̃)
− β

)
(15)

This implies that the gatherer making debt pardon offer ϕ (given µ̃ and ϕ̃) faces a default
probability µ(ϕ) = 1− F (α̂(ϕ)). Next, note that from equations (5) and (6):

k̂NDt (ϕ; ϕ̃, µ̃) =
R

R− 1
q̂t(µ̃, ϕ̃)−∆ +

R

R− 1
ϕ− 1

η
K̂t(µ̃, ϕ̃),

k̂Dt (ϕ; ϕ̃, µ̃) = −∆− 1

η
K̂t(µ̃, ϕ̃).

Replacing in (15) and rearranging,

α̂(ϕ) =
R
R−1

(q̂t(µ̃, ϕ̃) + ϕ)

(1− β)(1−∆− 1
η
K̂t(µ̃, ϕ̃))

+ 1, (16)

dα̂(ϕ)

dϕ
=

R
R−1

(1− β)(1−∆− 1
η
K̂t(µ̃, ϕ̃))

(17)
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Moreover, we can invert (16)

ϕ(α̂) = −q̂t(µ̃, ϕ̃)− (1− α̂)(1− β)
R
R−1

(1−∆− 1

η
K̂t(µ̃, ϕ̃)) (18)

Thus, ϕ(α̂) is the required debt-pardon to generate a threshold of α̂.
Finally, taking this into account the gatherer wishes to reduce his losses to a minimum.

For a given debt pardon offer ϕ, he faces capital losses (in percentage terms) given by
−q̂t(µ̃, ϕ̃) on a fraction 1−F (α̂(ϕ)) of his borrowers, whereas if renegotiation takes place
he loses ϕ (in percentage terms) on the complementary fraction F (α̂(ϕ)). Since q̂t is a
constant for the gatherer - there is a continuum of them - we can write the gatherers’
problem as

min
ϕ

(ϕ+ q̂t)F (α̂(ϕ))

In an interior optimum the first-order condition is

F (α̂(ϕ)) + f(α̂(ϕ))
dα̂(ϕ)

dϕ
(ϕ+ q̂t) = 0.

From (17), noting that this implies dα̂(ϕ)
dϕ

(ϕ + q̂t) = −(1 − α̂(ϕ)), replacing in the first

order condition, and dividing the whole expression by f(α̂(ϕ)) yields

F (α̂(ϕ))

f(α̂(ϕ))
− (1− α̂(ϕ)) = 0 (19)

We now assume F (x) and its corresponding density, f(x), satisfy the following properties:

A1. F (x) has a continuous increasing Mills’ ratio and satisfies

F (x)

f(x)
→ 0 (∞) when x→ 0 (1).

A2. f(x)→ 0 when x→ 0 (1).

A symmetric Beta distribution with parameter γ > 1 satisfies these two conditions, as
we show in Appendix 8.4. We will derive several results for this particular distribution,
whose density is given by

f(x; γ) =
xγ−1(1− x)γ−1

B(γ, γ)
,

where B(γ, γ) is the beta function evaluated at (γ, γ).
Note that under assumptions A1 and A2, as α → 0, the LHS goes to −1 while, as

α → 1, the LHS goes to +∞. Since the Mills’ ratio is continuous and increasing, the
LHS is strictly increasing with α. By continuity there is a unique 0 < α∗ < 1 such that
the first-order-condition is satisfied with equality. Under assumptions A1 and A2, α∗ is
in fact a global minimum (see Appendix 8.5).

Unfortunately, it is not possible to characterize any further the solution without re-
sorting to numerical methods, unless we consider a uniform distribution. Equation (19)
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allows us to find the optimal α∗, which only depends on characteristics of the distribution,
F (·). This in turn implies that the share of defaulting farmers in equilibrium is also in-
dependent of aggregate capital and prices: µ = 1− F (α∗). Using (18) we can recover the
equilibrium level of debt pardon. In a symmetric equilibrium ϕ̃ = ϕ(q(ϕ̃, µ∗), K(ϕ̃, µ∗)).
Hence, using equilibrium expressions for aggregate capital and prices, (9) and (10),

ϕ̃ =
1

η

(
R− 1

R− 1 + µ∗

η
R

)(
∆− (1− µ∗) R

R− 1
ϕ̃

)

−(1− α∗)(1− β)
R
R−1

(
1−∆ +

1

η

(
1 +

(1− µ∗)R
η

R− 1 + µ∗

η
R

)
η

η + 1

(
∆− (1− µ∗) R

R− 1
ϕ̃

))

Let A ≡ 1
η

(
R−1

R−1+µ∗
η
R

)
> 0, B ≡ (1−α∗)(1−β)

R
R−1

> 0 and C ≡ 1
η

(
1 +

(1−µ∗)R
η

R−1+µ∗
η
R

)
η
η+1

. Replac-

ing,

ϕ̃ = (A−BC)∆−B(1−∆) + (BC − A)(1− µ∗) R

R− 1
ϕ̃

Solving for ϕ̃

ϕ̃ =
(A−B(C − 1))∆−B

1 + (A−BC)(1− µ∗) R
R−1

.

It is straightforward to verify that a more severe negative shock leads to a higher level of
debt forgiveness, dϕ̃

d∆
> 0, and that there is a threshold level, ¯̄∆, such that shocks below

this level meet no renegotiation offer from lenders. The more severe is the problem of
asymmetric information the more default is observed in equilibrium and thus there is less
amplification of the initial shock. Finally, in the limit of perfect information, γ →∞, the
level of debt pardon is the same as the one obtained in the previous section when α = 1

2
.

5 Renegotiation and persistence

In this section we assume that the productivity penalty of buying new land reduces the
amount of tradable output available in the first period by an amount ε, increasing other
farmers’ nontradable output by the same amount.17 Hence, if farmers are expanding
production, they must do so at a lower rate than before, since new land now provides
less tradable output that may be used in market transactions.18 In this context, using
the fact that the farmer consumes her bruised fruit, a farmer’s flow-of-funds-constraint is
given by:

qtkt + IND ((1− ϕ)Rbt−1 − qtkt−1) = akt−1 − εknewt−1 + bt , (20)

Gatherer’s flow-of-funds-constraint is unaffected.

17As before, this assumption is made to have no effects on aggregate output directly due to asset
specificity.

18This is consistent with the data, as crisis that are resolved without debt renegotiations on average
take longer to recover.
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5.1 Response to an unexpected negative shock

As usual, we assume that the economy is at the steady state when hit by an unforeseen
negative productivity shock (∆ in percentage terms) that reduces the quantity of tradable
output produced by farmers in period t. This affects the farmers’ flow-of-funds (20), which
becomes:

qtkt + IND ((1− ϕ)Rb∗ − qtk∗) + xt − ck∗ = (a−∆a)k∗ + bt . (21)

As before, we make the assumption that preferences guarantee that farmers choose
to invest all available funds below the steady state (xt = ck∗), which, in turn, implies
farmers’ credit constraint is binding every period, in particular Rb∗ = q∗k∗. Replacing in
(21),

qtkt + IND ((1− ϕ)q∗k∗ − qtk∗) = (a−∆a)k∗ +
qt+1kt
R

.

As in KM, we assume there are no more shocks to the economy. Since agents have perfect
foresight Rbt = qt+1k

i
t (for i = D,ND). In the periods following the shock, when farmers

seek to increase their landholdings, they incur a cost as new land has lower productivity
of tradable output. If the farmer does not default, in t+ 1 all his land is old

u(Kt+1)kNDt+1 = akNDt

while, if he does default, all his land is new:

u(Kt+1)kDt+1 = (a− ε)kDt .

Log-linearizing these equations:

1

η
K̂t+1 + k̂NDt+1 = ak̂NDt

1

η
K̂t+1 + k̂Dt+1 =

(
a− ε
a

)
k̂Dt

In t+2 and beyond, some land is new and some old. Given that convergence is monotonic
and log-linearizing:

1

η
K̂t+s + k̂it+s =

(a− ε)
a

k̂it+s−1 +
ε

a
k̂it+s−2 (22)

Intuitively we can see that convergence will be slower the larger ε, since this gives a higher
weight on land holdings in t+ s− 2, which are smaller.

5.1.1 Dynamics when nobody defaults

Now we assume µ = 0 (ie. nobody defaults). In this case, aggregate capital follows(
1

η
+ 1

)
K̂t+1 =

(
a− ε
a

)
K̂t (23)
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(
1

η
+ 1

)
K̂t+s =

(
a− ε
a

)
K̂t+s−1 +

ε

a
K̂t+s−2 for s > 1 (24)

Note that (24) is an homogeneous difference equation of second order. Hence, it has a
solution of the form

K̂s = A1b
s
1 + A2b

s
2 (25)

The roots are given by

b1,2 =

a−ε
a
±
√(

a−ε
a

)2
+ 4η+1

η
ε
a

2η+1
η

Using the fact that b1b2 < 0 and that b1 + b2 > 0, we know there is a positive root,
b1, which is the largest in absolute value and a negative one. In appendix 8.6 we show
that b1 < 1, which implies convergent dynamics, that b1 ≤ η

1+η
, which implies that the

convergence rate is lower than the case with default costs in non-tradable output, and we
solve for A1(K̂t) = ξ1K̂t and A2(K̂t) = ξ2K̂t.

Next we need to solve for the dynamics of individual capital if a farmer decides to
default. After t+ 2, this is given by (22), which we repeat here for the sake of exposition,

1

η
K̂t+s + k̂it+s =

(a− ε)
a

k̂it+s−1 +
ε

a
k̂it+s−2

Note that now there is a non-homogeneous term given by K̂t+s, which we can substitute

using (25):

k̂it+s =
(a− ε)
a

k̂it+s−1 +
ε

a
k̂it+s−2 −

1

η

(
ξ1K̂tb

s
1 + ξ2K̂tb

s
2

)
(26)

In appendix 8.7 we solve for this dynamics.

5.2 Implied Utilities

Now we are ready to compute the implied utilities of default and renegotiation, given the
level of the shock, ∆, expectations about the general level of default, µ, and the proposed
debt-reduction, ϕ. The farmer’s expected utility is given by

U i(µ; ∆, ϕ) = cK∗ + βckit + β2ckit+1 + ...+ lim
s→∞

βsckit+s−1.

U i(µ; ∆) = cK∗ + cβ
∞∑
s=0

βsK∗(1 + k̂it+s)

Since lenders moves first, and have all the bargaining power ex post, each one will
offer the lowest debt reduction such that the farmer is indifferent between defaulting and
renegotiating. Note that

UD = UND ⇔
∞∑
s=0

βs(1 + k̂Dt+s) =
∞∑
s=0

βs(1 + k̂NDt+s ). (27)
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Since nobody defaults k̂NDt+s = K̂ND
t+s . Using the solution to the differential equations, we

can write

1 +

(
−∆ +

1

η
K̂t

)
+ β

(
1 +

(
a− ε
a
− η

η + 1

)
1

η
K̂t −

(
a− ε
a

)
∆

)
+

β2

∞∑
s=0

βs(ξ3K̂tb
s
1 + ξ4K̂tb

s
2 + ξ5K̂t + ξ6K̂t

(
− ε
a

)s
) =

1 + K̂t + β

(
1 +

η

η + 1

)
K̂t + β2

∞∑
s=0

βs(ξ1K̂tb
s
1 + ξ2K̂tb

s
2)

6 Empirical evidence

6.1 Testable implications of the transmission mechanism

According to our model, the strength of the amplification mechanism depends on the
distribution of the ex post capital losses between debtors and creditors, which is affected
by the level of protection of creditor rights, and the degree of asset specificity. In this
section, we posit an empirical strategy that would allow us to test the implications of this
transmission mechanism using U.S. data.

We explore the first aspect, related to the protection of creditor rights, using state
variability in the homestead exemption in the personal bankruptcy procedures under
chapter 7 in the U.S. Hynes et al. (2011) show that the only relevant determinant of
current exemption levels is inertia. Thus, in the context of our model, heterogeneity in
exemption levels can be seen as a source of exogenous variation in the distribution of the
debt burden, at least for small firms for which chapter 7 procedures are relevant. Those
states with lower exemption levels put the burden on the debtor, thus amplifying their
losses. Conversely, states with unlimited exemption levels put the burden on creditors
thus shutting down the dynamic amplification mechanism.

Berger et al. (2011) show that the variation in exemption levels affects the access to
credit for proprietorships, while this is not an issue for big firms. In this sense, propri-
etorship are affected by the “collateral” constraint, given by exemption levels. Hence,
we expect proprietorships to behave like farmers in our model. Since big firms are not
affected by this legislation, we will use them to control for the corresponding (exoge-
nous) productivity trend. Using U.S. firm level data, such as the Longitudinal Business
Database described by Jarmin and Miranda (2002) or the NETS database described by
Neumark et al. (2007), we would like to test whether the response of small firms over
the business cycle (controlling by the cyclical fluctuations of big firms) is more volatile in
low-exemption states.19 Additionally, we would follow Berger et al. (2011) and control for
economic and institutional differences across states using the state median income and a

19Arguably, this result could also follow if the pool of small firms is less risky in high-exemption states.
However, previous works suggest the opposite is true (Berger et al., 2005). Moreover, the NETS database
also provides credit ratings for each establishment, which would allow us to control for firm riskiness.
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dummy equal to one for those states where lenders must go through courts to foreclose
on a property.

Furthermore, our model provides a testable implication between the degree of asset
specificity in a given industry and the behavior of credit constrained firms over the business
cycle. We will take Beutler and Grobéty (2011)’s measure of real asset redeployability as
a proxy for asset specifity. Beutler and Grobéty (2011) use cross country data to estimate
the impact of the degre of debt contract enforcement on economic activity through the
collateral channel. For this they exploit the heterogeneity of expenditures in new and
used capital across U.S. industries, constructing “technological” indicators of the ease
with which real assets used in one industry can be transferred to alternative uses. We
expect to see more amplification over the business cycle for firms whose assets are less
redeployable. Moreover, our model also implies that the rate of births and deaths should
be smaller in high specificity sectors, an implication we could also take to the data.20

7 Conclusions

We showed that Kiyotaki and Moore (1997)’s “dynamic amplification” result depends on
the assumption that ex post debtors must pay their debts in full, even when the value of
assets posted as collateral is below the value of debt. In contrast, we lift this assumption,
which seems reasonable in the presence of bankruptcy procedures that limit the ability of
creditors to collect debts, or the fact that debt renegotiations are common after aggregate
shocks. Doing this highlights the relation between the amplification of shocks and the
degree of asset specificity, understood as the differential in productivity of an ongoing
firm and a new one that an entrepreneur must set up after defaulting and delivering her
previous assets to her creditors.

To study the implications of implicit default costs on the business cycle we considered
three simple model variations from the basic Kiyotaki and Moore (1997)’s model. First,
we had defaulting firms incurring reduced productivity on non-tradable output. We find
that amplification is larger for firms with higher costs, and that persistence is unaffected.
Second, we considered the case when these default costs are private information and
found that amplification is larger when there are less problems of asymmetric information,
because amplification is inversely related to the amount of equilibrium default and this
is higher when there is more uncertainty about default costs. Finally we considered the
case when defaulting firms face a reduction in productivity of tradable output. In this
case the more severe is this problem the more persistence after a negative shock.

Our model provides testable implications of its transmission mechanism. We described
an empirical strategy to test these relations using U.S. firm level data exploiting hetero-
geneity in the levels of debtor protection in personal bankruptcy procedures across U.S.
states, and in real asset redeployability across industries. We expect to find differential
effects in small firms’ response to their business cycle (as measured by the fluctuations in

20As a robustness check we could build a variable that summarizes the difficulty of establishing a new
business (measured in time, capital, and technological requirements). This proxy measure for the model’s
asset specificity would serve as a robustness check, since it relates to the cost of starting a new business.
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output of large firms) across industries and states.
The basic model that we consider here is apt to be extended in several ways. The

treatment of the shock as a zero probability bolt from the blue is a useful analytical
device in first approximation, but it certainly leaves aside behaviors that can modify the
results of the model, especially by moderating the impacts of small disturbances if, for
instance, debtors find it convenient to leave a slack in the collateral constraint (as in
Brunnermeier and Sannikov (2010)). Then, the macroeconomic responses may show two
types of non-linearities: one, an increase in the financial multipliers with the size of the
shock (evocative of a corridor effect) as the blow gets harder and, in the other extreme, a
moderation as debts are renegotiated in the event of a very strong shock.

A representation of deep macroeconomic crises would require a closer attention to the
ways in which parties in financial contracts, and the legal system itself, process situations
of widespread broken promises. In particular we would like to introduce a cost to rene-
gotiation, e.g. modeled as a war of attrition between lenders and borrowers, that might
produce stronger immediate output drops followed by steeper recoveries.
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8 Appendix

8.1 Computation of q̂t and K̂t in KM with default.

If the economy is in a steady state and is hit by an unforeseen negative shock, the farmer
defaults and losses the collateral qtk

∗ but does not have to pay her debt Rb∗. Thus, her
flow-of-funds, given by (1), becomes:

qtkt = (a−∆)k∗ +
qt+1kt
R

.

Defining, as KM, the user cost of land ut ≡ qt − qt+1

R
,

utkt = (a−∆)k∗.

In equilibrium, this user cost of land depends, through the gatherer’s production function,
on the amount of land in the hands of gatherers,

u(Kt) =
1

R
G′
(

1

m
(K −Kt)

)
,

where Kt is the aggregate amount of land owned by farmers. Since all farmers behave in
the same way in equilibrium:

ut(Kt)Kt = (a−∆)K∗.

Log-linearizing, (
1 +

1

η

)
K̂t = −∆, (28)

where η is, as in KM, d log u(K)
d logKt

|K=K∗ . Land prices are equal to the discounted stream of

the user cost of land ut. Using the transversality condition, the relation u(Kt) = qt− qt+1

R
,

and linearizing around the steady state yields

q̂t =
1

η

R− 1

R

1

1− 1
R

η
1+η

K̂t.

From the expression for K̂t, given by (28), this gives

q̂t = − R− 1
R−1
η

+R
∆.

8.2 Investing is optimal for the farmer close to the steady state

When the farmer decides to default, she has to pay a productivity penalty in t + 1.
Nevertheless, under our assumption 2 the farmer still decides to consume only his bruised
fruit. To see this, consider a marginal unit of fruit at date t. If she invests it to buy
1
ut

units of land, tomorrow she will have αc 1
ut

units of nontradable fruit and a 1
ut

units
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of tradable fruit. This fruit allows the farmer to increase her land-holdings in t + 1 to
a 1
ut

1
ut+1

. Some of this land is old ( 1
ut

) and some (a 1
ut

1
ut+1
− 1

ut
) is new. In t+ 2, this land

yields a2 1
ut

1
ut+1

tradable fruit and (1 − α)c 1
ut

+ αca 1
ut

1
ut+1

bruised fruit. Reinvesting the

tradable fruit enables the farmer to increase her land holdings to a2 1
ut

1
ut+1

1
ut+2

, and so on.
Evaluating this utility in steady state,

u(invest) = β
∑

cβs
α

a
+ β2

∑ c

a
βs(1− α),

u(invest) =
β

(1− β)

cα

a
+

β2

(1− β)

c

a
(1− α),

u(invest) =
c

a

β

(1− β)
(α + β(1− α)) .

Saving yields
u(saving) = Rβu(invest),

and consumption
u(consumption) = 1.

In equilibrium R = 1
β′

. Thus, investment is preferred to saving. Moreover, by assumption
2, investment is better than consumption. This means that, in the neighborhood of the
steady state the farmer will decide to consume only her bruised fruit.

8.3 Computation of ŨD(µ; ∆, ϕ) and ŨND(µ; ∆, ϕ)

8.3.1 Case of no default

UND(µ; ∆) = cK∗ + βckt + β2(cα(kt+1 − kt) + ckt)

+...+ lim
s→∞

βs(cα(kt+s−1 − kt+s−2) + ckt+s−2),

UND(µ; ∆) = cK∗ + βcK∗(1 + k̂t)(1− α)

+βc(α + β(1− α))
∞∑
s=0

βsK∗(1 + k̂t+s),

UND(µ; ∆) = cK∗ + βcK∗(1 + k̂t)(1− α)

+βc(α + β(1− α))
∞∑
s=0

βsK∗(1 + k̂t+s).

Let ŨND(∆) = UND(∆)
βcK∗

− 1
β

ŨND(µ; ∆) = (1 + k̂t)(1− α) + (α + β(1− α))
∞∑
s=0

βs(1 + k̂t+s),
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ŨND(µ; ∆) = (1 + k̂t)(1− α)

+(α + β(1− α))
∞∑
s=0

βs(1 + k̂t −
s∑
j=1

1

η
K̂t+j),

ŨND(µ; ∆) = (1 + k̂t)(1− α) +
(α + β(1− α))

1− β
(1 + k̂t)

−(α + β(1− α))

η

∞∑
s=0

βs
s∑
j=1

K̂t+j,

Using equation (8),

ŨND(µ; ∆) = (1 + k̂t)

(
1− α +

(α + β(1− α))

1− β

)
−(α + β(1− α))K̂t

η

∞∑
s=0

βs
s∑
j=1

(
η

η + 1

)j
,

ŨND(µ; ∆) =
1 + k̂t
1− β

+
(α + β(1− α))K̂t

η + 1

∞∑
s=0

βs
s−1∑
j=0

(
η

η + 1

)j
,

ŨND(µ; ∆) =
1 + k̂t
1− β

+
(α + β(1− α))K̂t

η + 1

∞∑
s=0

βs

(
η
η+1

)s
− 1

η
η+1
− 1

,

ŨND(µ; ∆) =
1 + k̂t
1− β

+ (α + β(1− α))K̂t

∞∑
s=0

βs
(

1−
(

η

η + 1

)s)
,

ŨND(µ; ∆) =
1 + k̂t
1− β

+ (α + β(1− α))K̂t

(
1

1− β
− 1

1− βη
η+1

)
,

ŨND(µ; ∆) =
1 + k̂t
1− β

+ K̂t

(
1

1− β
− η + 1

1 + η(1− β)

)
,

ŨND(µ; ∆) =
1 + k̂t
1− β

+ K̂t

(
1 + η(1− β)− (1− β) (η + 1)

(1− β)(1 + η(1− β))

)
,

ŨND(µ; ∆) =
1 + k̂t
1− β

+ K̂t

(
(α + β(1− α))β

(1− β)(1 + η(1− β))

)
,
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8.3.2 Case of default

UD(µ; ∆, ϕ) = cK∗ + βcαkDt + β2(cα(kDt+1 − kDt ) + ckDt )

+...+ lim
s→∞

βs(cα(kDt+s−1 − kDt+s−2) + ckDt+s−2),

UD(µ; ∆, ϕ) = cK∗ + cβkDt (α + β(1− α))

+...+ c lim
s→∞

kDt+s−1β
s(α + β(1− α)),

UD(µ; ∆, ϕ) = cK∗ + βc(α + β(1− α))
∞∑
s=0

βskDt+s−1,

UD(µ; ∆, ϕ) = cK∗ + βc(α + β(1− α))
∞∑
s=0

βs(K∗(1 + k̂Dt+s)),

UD(µ; ∆, ϕ) = cK∗ + βcK∗(α + β(1− α))
∞∑
s=0

βs(1 + k̂Dt −
s∑
j=1

1

η
K̂t+s).

Let ŨD(·) = UD(·)
βcK∗

− 1
β
,

ŨD(µ; ∆, ϕ) =
(α + β(1− α)) (1 + k̂NDt )

1− β
− (α + β(1− α))

η

∞∑
s=0

βs
s∑
j=1

K̂t+j.

Using equation (8),

ŨD(µ; ∆, ϕ) =
(α + β(1− α)) (1 + k̂Dt )

1− β
− (α + β(1− α))K̂t

η

∞∑
s=0

βs
s∑
j=1

(
η

η + 1

)j
,

ŨD(µ; ∆, ϕ) =
(α + β(1− α)) (1 + k̂Dt )

1− β
− (α + β(1− α))K̂t

η

∞∑
s=0

βs
s∑
j=1

(
η

η + 1

)j
,

ŨD(µ; ∆, ϕ) =
(α + β(1− α)) (1 + k̂Dt )

1− β
− 1

1− β

(
βK̂t

(α + β(1− α))

(1 + η(1− β))

)
,

ŨD(µ; ∆, ϕ) =
α + β(1− α)

1− β

(
1 + k̂Dt − βK̂t

(α + β(1− α))

(1 + η(1− β))

)
. (29)

8.4 Monotonicity of Mills ratio for Symmetric Beta Function

Suppose α ∼ Beta(γ, γ) with γ > 1. Since both parameters coincide, the distribution is
symmetric and, since γ > 1, the distribution is unimodal. The density is given by

f(α; γ) =
αγ−1(1− α)γ−1

B(γ, γ)
,
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where B(γ, γ) is the beta function evaluated at (γ, γ), i.e.
∫ 1

0
tγ−1(1− t)γ−1dt.

Let ψ(α; γ) ≡ F (α;γ)
f(α;γ)

. Then,

Ψ(α, γ) =

∫ α

0

(
t(1− t)
α(1− α)

)γ−1

dt.

∂Ψ(α, γ)

∂α
= 1− (γ − 1)(1− 2α)

α(1− α)

∫ α

0

(
t(1− t)
α(1− α)

)γ−1

dt

∂Ψ(α, γ)

∂α
= 1− (γ − 1)(1− 2α)

(α(1− α))γ
Bα(γ, γ),

where Bα(γ, γ) is the incomplete beta function evaluated at α. For α ≥ 1
2
, the derivative

is clearly positive. To show the result for α < 1
2
, we resort to a result that links the beta

incomplete function with the hypergeometric function (from http://dlmf.nist.gov/8.17):

∂Ψ(α, γ)

∂α
= 1− (γ − 1)(1− 2α)

γ
F (2γ, 1; γ + 1;α). (30)

Now we will show F (2γ, 1; γ + 1;α) < 1
1−2α

. This ensures ∂Ψ(α,γ)
∂α

> 0. By definition,

F (2γ, 1; γ;α) = 1 +
∞∑
n=1

αn

n!

n−1∏
i=0

(2γ + i)(1 + i)

(γ + i)

Noting that
∏n−1

i=0 (1 + i) = n!,

F (2γ, 1; γ;α) = 1 +
∞∑
n=1

αn
n−1∏
i=0

(
2γ + i

γ + i

)
.

Rearranging,

F (2γ, 1; γ;α) = 1 +
∞∑
n=1

(2α)n
n−1∏
i=0

(
γ + i

2

γ + i

)
.

Hence,

F (2γ, 1; γ;α) <
∞∑
n=0

(2α)n.

Since α < 1
2
,

F (2γ, 1; γ + 1;α) <
1

1− 2α
.

Thus, ∂Ψ(α,γ)
∂α

> 0 ∀α ∈ [0, 1].
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8.5 Uniqueness of Cutoff with Beta Distribution

Let L(ϕ) = (ϕ+ q̂t)F (α̂(ϕ)). The first derivative yields

dL(ϕ)

dϕ
= F (α̂(ϕ)) + f(α̂(ϕ))

dα̂(ϕ)

dϕ
(ϕ+ q̂t)

From (16), dα̂(ϕ)
dϕ

=
R
R−1

(1−β)(1−∆− 1
η
K̂t(µ̃,ϕ̃))

. Note that this implies dα̂(ϕ)
dϕ

(ϕ+ q̂t) = −(1− α̂(ϕ)).

Replacing,
dL(ϕ)

dϕ
= F (α̂(ϕ))− f(α̂(ϕ))(1− α̂(ϕ)).

Rewrite it as
dL(ϕ)

dϕ
=

(
F (α̂(ϕ))

f((α̂(ϕ))
− (1− α̂(ϕ))

)
f(α̂(ϕ)).

The second order condition yields

d2L(ϕ)

dϕ2
=
dα

dϕ

((
d F (α̂(ϕ))
f((α̂(ϕ))

dα
+ 1

)
f(α̂(ϕ)) +

(
F (α̂(ϕ))

f((α̂(ϕ))
− (1− α̂(ϕ))

)
df(α̂(ϕ))

dα

)
(31)

In an interior optimum the second term vanishes,

d2L(ϕ)

dϕ2
=
dα

dϕ
f(α̂(ϕ))

(
d F (α̂(ϕ))
f((α̂(ϕ))

dα
+ 1

)

By assumption A1, the Mills’ ratio is (weakly) increasing in α, which in turn implies that
any α in the interior of the support that solves the first-order-condition describes a local
minimum. By assumption A2, f(0) = 0, F (α̂(ϕ))

f((α̂(ϕ))
→ 0 when α̂(ϕ) → 0 and df(α̂(ϕ))

dα
> 0.

This implies α = 0 is a local maximum. Since f(1) = 0, the first term vanishes at α = 1,
F (α̂(ϕ))
f((α̂(ϕ))

→ ∞ when α → 1 and df(1)
dα

< 0. This implies α = 1 is also a local maximum.
Hence, α∗ is the global minimum.

8.6 Solution of difference equation

To prove that b1 < 1, first note that b1 = η
η+1

< 1 if ε = 0, while b1 =
√

η
η+1

< 1 if ε = a.

Second, we compute the derivative of b1 with respect to ε :

∂b

∂ε
= − 1

2aη+1
η

+
2
(
a−ε
a

)
(− 1

a
) + 4η+1

η
1
a

4η+1
η

√(
a−ε
a

)2
+ 4η+1

η
ε
a

∂b

∂ε

2aη

η + 1
= −1 +

(
a−ε
a

)
+ 2η+1

η√(
a−ε
a

)2
+ 4η+1

η
ε
a
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√(
a− ε
a

)2

+ 4
η + 1

η

ε

a
<

√(
a− ε
a

)2

+

(
2

√
η + 1

η

√
ε

a

)2

+ 4
a− ε
a

√
η + 1

η

√
ε

a√(
a− ε
a

)2

+ 4
η + 1

η

ε

a
<
a− ε
a

+ 2

√
η + 1

η

√
ε

a(
a−ε
a

)
+ 2η+1

η√(
a−ε
a

)2
+ 4η+1

η
ε
a

>

(
a−ε
a

)
+ 2η+1

η

a−ε
a

+ 2
√

η+1
η

√
ε
a

> 1

This implies ∂b
∂ε
> 0 ∀ε ∈ [0, a]. Thus, b1 < 1 ∀ε ∈ [0, a].

Next we have to determine the constants A1 and A2. Note that (25) is valid from t+2

onwards. To determine A1 and A2 we need two initial conditions: K̂t and K̂t+1. From
(23) we can write K̂t+1 = η

η+1
K̂t. Assume wlog that s = 0 in (25). Hence, in t + 2 and

t+ 3:

K̂t+2 = A1 + A2 =
η

η + 1

ε

a
K̂t +

(
η

η + 1

)2(
a− ε
a

)
K̂t,

K̂t+3 = A1b1 + A2b2 =

(
η

η + 1

)2
ε

a
K̂t +

(
η

η + 1

)2
ε

a

(
a− ε
a

)
K̂t +

(
η

η + 1

)3(
a− ε
a

)2

K̂t.

We have a system of two equations that allows us to solve for A1(K̂t) and A2(K̂t).

A1(K̂t) = ξ1K̂t,

A2(K̂t) = ξ2K̂t,

ξ1 ≡
1

b1 − b2

(
η

η + 1

(
η

η + 1

(
ε

a
+

(
a− ε
a

)(
ε

a
− b2 +

η (a− ε)
(η + 1)a

))
− ε

a
b2

))
,

ξ2 ≡
1

b2 − b1

(
η

η + 1

(
η

η + 1

(
ε

a
+

(
a− ε
a

)(
ε

a
− b1 +

η (a− ε)
(η + 1)a

))
− ε

a
b1

))
.

8.7 Dynamics of land holdings for a farmer that defaults

To solve for the dynamics of individual land holdings if a farmer decides to default, the
roots of the homogeneous equation in 26 are given by

bi1,2 =

(a−ε)
a
±
√(

a−ε
a

)2
+ 4 ε

a

2

Note that bi1 = 1 and bi2 = − ε
a
.

Now we try the following particular solution: B1b
s
1 +B2b

s
2. Replacing in (26):

1

η

(
ξ1K̂tb

s
1 + ξ2K̂tb

s
2

)
+B1b

s
1 +B2b

s
2 =

(a− ε)
a

(
B1b

s−1
1 +B2b

s−1
2

)
+
ε

a

(
B1b

s−2
1 +B2b

s−2
2

)
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(
1

η
ξ1K̂t +B1

(
1− 1

b1

(a− ε)
a

− 1

b2
1

ε

a

))
bs1+

(
1

η
ξ2K̂t +B2

(
1− 1

b2

(a− ε)
a

− 1

b2
2

ε

a

))
bs2 = 0

Let ξ3 ≡ − ξ1

η

(
1− 1

b1

(a−ε)
a
− 1

b21

ε
a

) and ξ4 ≡ − ξ2

η

(
1− 1

b2

(a−ε)
a
− 1

b22

ε
a

) . Then,

B1 = ξ3K̂t

B2 = ξ4K̂t

Hence, the general solution starting from t+ 2 is

k̂it+2+s = B1b
s
1 +B2b

s
2 + Ai1 + Ai2

(
− ε
a

)s
where the constants Ai1 and Ai2 still need to be determined. To compute these constants

we use the ”initial conditions” kit and kit+1. We will write everything as a function of K̂t ,
which will prove useful later, using equations XX:

k̂Dt = −∆ +
1

η
K̂t

k̂Dt+1 =

(
a− ε
a
− η

η + 1

)
1

η
K̂t −

(
a− ε
a

)
∆

Hence, we have the following system of equations

k̂it+2 =
(a− ε)
a

((
a− ε
a
− η

η + 1

)
1

η
K̂t −

(
a− ε
a

)
∆

)
+
ε

a

(
−∆ +

1

η
K̂t

)
−1

η
(A1+A2) = ξ3K̂t+ξ4K̂t+A

i
1+Ai2

k̂it+3 =
(a− ε)
a

(
(a− ε)
a

((
a− ε
a
− η

η + 1

)
1

η
K̂t −

(
a− ε
a

)
∆

)
+
ε

a

(
−∆ +

1

η
K̂t

))
+
ε

a

((
a− ε
a
− η

η + 1

)
1

η
K̂t −

(
a− ε
a

)
∆

)
−1

η
(A1b1+A2b2) = ξ3K̂tb1+ξ4K̂tb2+Ai1+Ai2

(
− ε
a

)
Let ξ5 ≡ and ξ6 ≡. Then, solving this system yields

Ad1 = ξ5K̂t

Ad2 = ξ6K̂t

8.8 Implied utilities

Now we try the solution k̂NDt+s = ANDλ
s and k̂Dt+s = ADλ

s. Replacing(
1− µ
η

+ 1

)
ANDλ

s+2 +

(
µ

η

)
ADλ

s+2 − (a− ε)
a

ANDλ
s+1 − ε

a
ANDλ

s = 0

(
1− µ
η

)
ANDλ

s+2 +

(
µ

η
+ 1

)
ADλ

s+2 − (a− ε)
a

ADλ
s+1 − ε

a
ADλ

s = 0

System (XX) will yield a non-trivial solution for AND and AD if and only if its determinant
is zero, namely
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∣∣∣∣∣∣
(

1−µ
η

+ 1
)
λ2 − (a−ε)

a
λ− ε

a
µ
η
λ2(

µ
η

+ 1
)
λ2 − (a−ε)

a
λ− ε

a
1−µ
η
λ2

∣∣∣∣∣∣ = 0

The polynomial form of the determinantal equation XX is((
1− µ
η

+ 1

)
λ2 − (a− ε)

a
λ− ε

a

)(
1− µ
η

λ2

)
−
((

µ

η
+ 1

)
λ2 − (a− ε)

a
λ− ε

a

)(
µ

η
λ2

)
= 0

(
1− µ
η

+ 1

)(
1− µ
η

)
λ4−

(
a− ε
a

)(
1− µ
η

)
λ3− ε

a

(
1− µ
η

)
λ2−

(
µ

η
+ 1

)
µ

η
λ4+

(a− ε)
a

µ

η
λ3+

ε

a

µ

η
λ2 = 0((

1− µ
η

+ 1

)(
1− µ
η

)
−
(
µ

η
+ 1

)
µ

η

)
λ2+

(
µ

η
−
(

1− µ
η

))
(a− ε)
a

λ+

(
µ

η
−
(

1− µ
η

))
ε

a
= 0

Hence, the roots are

λ1,2=
−(µ− (1− µ)) (a−ε)

ηa
±
√((

µ
η
−
(

1−µ
η

))
(a−ε)
a

)2

− 4
((

1−µ
η

+ 1
)(

1−µ
η

)
−
(
µ
η

+ 1
)
µ
η

)(
µ
η
−
(

1−µ
η

))
ε
a

2
((

1−µ
η

+ 1
)(

1−µ
η

)
−
(
µ
η

+ 1
)
µ
η

)
Note that, when µ = 0, this simplifies to

λ1,2 =

1
η

(a−ε)
a
±
√(
− 1
η
a−ε
a

)2

− 4
(

1
η

+ 1
)(

1
η

)(
− 1
η

)
ε
a

2
(

1
η

+ 1
)(

1
η

)

λ1,2 =

a−ε
a
±
√(

a−ε
a

)2
+ 4η+1

η
ε
a

2η+1
η

This coincides with our previous answer for the aggregate-no default case. The roots of
the dynamic in the default case are the same, because they are a system. The solution
has the form

k̂Dt+s+2 = AD1 λ
s
1 + AD2 λ

s
2

k̂Dt+s+2 = AND1 λs1 + AND2 λs2

Both differ only in the constants. To find the constants we need two initial conditions,
given by k̂it and k̂it+1 in equations (XX). We

8.8.1 Equations

(1) 1
η
(µk̂Dt + (1− µ)k̂NDt ) + k̂NDt = R

R−1
q̂t −∆ + R

R−1
ϕ

(2) 1
η
(µk̂Dt + (1− µ)k̂NDt ) + k̂Dt = −∆.

(3) 1
η+1

(µk̂Dt + (1− µ)k̂NDt ) + k̂NDt+1 = ak̂NDt

33



(4) 1
η+1

(µk̂Dt + (1− µ)k̂NDt ) + k̂Dt+1 =
(
a−ε
a

)
k̂Dt

(5) k̂Dt+2 = AD1 + AD2
(6) k̂Dt+3 = AD1 λ1 + AD2 λ2

(7) k̂NDt+2 = AND1 + AND2

(8) k̂NDt+3 = AND1 λ1 + AND2 λ2

(9) q̂t = R−1
R

1
η

∑∞
s=0

1
Rs

(µk̂Dt+s + (1− µ)k̂NDt+s )

We need to solve for q̂t, A
D
1 , AD2 , AND1 , AND2 , k̂Dt and k̂NDt .
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