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Abstract

In this paper, we propose a new nonparametric testing procedure to examine the stationarity

property of an underlying continuous-time Markov process. The stationarity is often assumed in

building/estimating dynamic models in economics and �nance. However, existing statistical meth-

ods to check the stationarity typically rely on a particular parametric assumption called a unit root.

The unit-root concept is well de�ned for a certain class of parametric models in discrete time set-

tings (e.g., linear auto-regression models with �nite-variance error disturbances) but not necessarily

for general nonlinear models and/or continuous-time models. To check the stationarity property,

we exploit a restriction implied by the in�nitesimal generator - a functional operator computed

via the derivatives of conditional expectations with respect to time. This restriction allows us to

develop a new theorem for identifying the generic stationarity property fully nonparametrically

within a class of univariate time-homogeneous Markov processes. We construct a kernel-based test

statistic based on this theorem, and derive its null asymptotic distribution. We also prove that

the proposed test is consistent against nonstationary (null recurrent) processes. Our proofs for the

asymptotic results proceed by using the so-called regeneration and ratio-limit properties of Markov

processes without imposing any type of mixing condition. We conduct Monte-Carlo simulations to

study �nite-sample size and power properties of the test, and apply the proposed method to foreign

exchange rates and short-term interest rates to assess the validity of the stationarity hypothesis.
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1 Introduction

In this paper, we propose a new nonparametric testing procedure to examine if an underlying continuous-

time process is stationary/stable within a class of univariate time-homogeneous Markov processes. The

stationarity is often assumed in constructing/estimating dynamic models in economics and �nance.

However, most testing methods to discriminate stationarity and nonstationarity rely on the concepts of

a unit root or integration, such as the Dickey-Fuller and KPSS type tests (Dickey and Fuller, 1979, and

Kwiatkowski, Phillips, Schmidt and Shin 1992, respectively). These concepts are well de�ned for linear

models in the discrete-time framework (in particular, linear autoregressive models with �nite-variance

disturbances); however, not necessarily for general nonlinear models and/or continuous-time models.

As a result, many of the existing tests based on the unit root or integration concept may not be useful

to examine the generic stationarity/stability property of time-series processes.

As a concrete example, consider the case where DF-type tests (whose null is the nonstationary

unit root hypothesis) are applied to so-called stochastic unit-root (STUR) processes (introduced in

Granger and Swanson, 1997). A STUR process can be stationary or nonstationary, depending on its

parameter setting. If the data-generating process is a stationary STUR process, the DF-type tests do

not often lead to a rejection result (Granger and Swanson, 1997). On the other hand, in the case of a

nonstationary STUR process, they lead to a rejection result (Nagakura, 2009). That is, if we use the

DF-type tests to check the stationarity/nonstationarity, they are likely to give us an opposite conclusion

that is wrong. This is crucial when tying some economic theory directly to the stationarity concept

(say, the purchasing-power-parity hypothesis or the law of one price in international economics), as

the DF-type tests cannot appropriately examine the empirical validity of such economic theory. Note

that STUR processes are de�ned in the discrete-time framework, and may not be necessarily suited

to our continuous-time framework. However, the problem here is that the stationarity/nonstationarity

property of general nonlinear and/or continuous-time processes has nothing to do with the unit root

concept, and such processes are not in the scope of the DF type tests. We emphasize that the unit root

represents only one of the possible forms of nonstationarity, although its importance in econometric

modeling is inarguable.

We also note that traditional DF and KPSS type tests focus only on the (so-called) drift-induced

stationarity, in which the form of the drift (conditional-mean) function ensures stationarity. They may

not necessarily exploit volatility information to examine the stationarity property. As argued in the

�nancial econometrics literature (e.g., Conley, Hansen, Lutter and Scheinkman, 1997, Nicolau, 2005),

the stationarity may be volatility-induced. Processes with the volatility-induced stationarity, to which

the unit-root or integration concept is not applicable and whose variances are often in�nite, are not

generally in the scope of unit-root and/or KPSS type tests.1

In this paper, we construct a test to examine the generic stationarity property. This is possible by

1Indeed, the stationarity in STUR processes exempli�ed above may be interpreted as being volatility-induced.
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exploiting a restriction for the stationarity implied by the in�nitesimal generator - a functional operator

computed via the derivatives of conditional expectations with respect to time. This restriction does not

rely on particular forms of conditional expectation and volatility functions and allows us to develop a

new theorem for identifying the stationarity property fully nonparametrically. We construct a kernel-

based test statistic based on this theorem, and derive its asymptotic null distribution. We also prove

that the proposed test is consistent against nonstationary (null recurrent) processes. Our proofs for

the asymptotic results proceed by using the so-called regeneration and ratio-limit properties of Markov

processes. We do not impose any type of mixing condition (or some other weak-dependence condition)

to establish distributional theory. We note that for the purpose of our analysis, it is important to work

without any mixing condition. To construct a statistical testing procedure, it is generally reasonable

to maintain the same conditions under both the null and alternative hypotheses. If we imposed some

mixing condition for both hypotheses, we would have the class of alternative processes essentially empty.

While the mixing is in principle a di¤erent concept from the stationarity (e.g., there exist some stationary

processes which do not satisfy a certain mixing condition), they are quite interrelated. We also conduct

Monte-Carlo simulations to study �nite-sample size and power properties of the test, and apply the

proposed method to foreign exchange rates and short-term interest rates to examine the validity of the

stationarity hypothesis.

Recently, Bandi and Corradi (2011) have proposed nonparametric tests to check the null hypothesis

of nonstationarity for Markov processes. It is known that a sort of the law of large numbers (LLN)

holds for any recurrent Markov process (due to the Markov regeneration), but its convergence rate in

the stationary case is di¤erent from that in the nonstationary case.2 Bandi and Corradi exploited this

di¤erence to develop nonstationary tests. While their tests seem to be intended mainly for discrete-

time processes, they are also applicable to some (limited) class of continuous-time processes (di¤usion

processes). In contrast, we only work with continuous-time processes, but more general processes

(beyond di¤usion processes) are within the scope of our test. In this respect, their tests and ours

complement each other. On the other hand, one needs to specify the LLN-convergence rate of a process to

de�ne the null hypothesis and construct Bandi and Corradi�s test statistic. While such a rate is generally

unknown, it seems to crucially determine the properties of their tests. In a related study, Berenguer-

Rico and Gonzalo (2011) proposed a generalization of the integration concept, called summability.

They present a method to estimate the degree of summability, which indeed corresponds to the LLN-

convergence rate of a process. Berenguer-Rico and Gonzalo�s method might also be used to conduct a

formal statistical test for stationarity/nonstationarity (upon developing some distributional theory).

What distinguishes this paper from these two papers is that we do not directly use the restriction

of the convergence rate in the (generalized) LLN, but instead use the restriction based on in�nitesimal

generators. For in�nitesimal generators to be well de�ned, it is crucial to maintain the Markov assump-

2Roughly, it holds that n�d
Pn

i=1Xi = OP (1) with d = 1 if a Markov sequence fXig
n
i=1 is stationary, but with some

d 2 (0; 1) if it is nonstationary (null recurrent).
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tion. In view of this, the Markov assumption plays a more important role in our paper than in Bandi

and Corradi�s (2011) paper. We note that the Markov property itself is also an interesting property to

be examined. Several authors (Aït-Sahalia, Fan and Jiang, 2010; Amaro de Matos and Fernandes, 2007;

Chen and Hong, 2011) have developed testing procedures to check the Markov property. However, their

tests presuppose stationarity and weak time-series dependence of processes; therefore, they cannot be

used as pretests for our Markov assumption. At the same time, our test, which relies on the Markov

assumption, cannot be used as a pretest for their stationarity assumption. In view of this, existing

Markov tests and ours are not directly related, but may be regarded as complementary to each other

in terms of checking the validity of Markov and stationary assumptions, which are often maintained in

practical time-series modeling.

The rest of the paper is organized as follows. The next section describes our framework, introducing

continuous-time Markov processes and the corresponding in�nitesimal generators with some examples.

We also clarify technical requirements, which should be imposed on the Markov processes. Section

3 presents our identi�cation theorem for the stationarity property. In section 4, we propose our test

statistic and investigate its asymptotic behavior. Section 6 provides some concluding remarks. All

proofs can be found in the Appendix.

We use the following notation throughout the text: g0 (x), g00 (x), g000 (x) and g(k) (x) denote the �rst,

second, third, and k-th order derivatives of a function g. The symbols P! and =) mean convergence

in probability and weak convergence, respectively. For de�nitional equations, we use the notations:

A := B and C =: D. The former means that A is de�ned by B, and the latter means that D is de�ned

by C.

2 Framework

Here, we describe our basic setup and introduce in�nitesimal generators. Let fXsg := fXsgs�0 be a
scalar, time-homogeneous and continuous-time Markov process de�ned on a �ltered probability space�

;F; fFsgs�0 ;Pr

�
, which satis�es the usual conditions. Let I denote the state space of fXsg. For

simplicity, we consider the case where I is the whole real line R := (�1;1). We denote by B (I) the
Borel algebra on I.3 The time-homogeneous Markov process is determined by the transition function

P (s; x;�) and the (initial) distribution of X0. P (s; x;�) represents Pr [Xs 2 �jX0 = x], the probability

that the process which has started from point x 2 I is in the set � 2 B (I) at time s 2 [0;1). Time-
homogeneity means that Pr [Xs 2 �jX0 = x] = Pr [Xs+t 2 �jXt = x] for any s; t 2 [0;1). Throughout
the paper, we call P : [0;1)� I �B (I)! [0; 1] as a transition function when it satis�es the following

conditions:

3The topology is generated by the usual Euclidean norm.
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Assumption 1 i) For any s 2 [0;1) and x 2 I, P (s; x; �) is a probability measure on B (I); and
for any � 2 B (I), P (�; �;�) is B (R) �B (I)-measurable, where B (R) is the Borel algebra on R. ii)
For any s; t 2 [0;1), P (s+ t; x;�) =

R
I
P (s; x; dy)P (t; y;�). iii) For any x 2 I and an arbitrary

neighborhood U of x, P (s; x; U)! 1 as s! 0.

These conditions in Assumption 1 are quite standard when considering Markov processes (see, e.g.,

Ch. 2 of Dynkin, 1965). By the condition (i), P (s; x; I) = 1 for any s 2 [0;1) and x 2 I. This is
called the conservativeness condition, meaning that there is no (isolated) co¢ n state where the process

is killed/terminated and the process always remains somewhere in I.4 The condition (ii) is called as the

Chapman-Kolmogorov condition, and (iii) is often referred to as the stochastic continuity condition.

Given the transition function, we now de�ne a functional operator. Let B (I) denote the Banach

space of all B (I)-measurable bounded functions on I with the sup-norm jjf jj := supx2I jf (x)j. For
each s � 0, de�ne a functional operator on B (I) as

Ts' (x) :=
Z
I

' (y)P (s; x; dy) for ' 2 B (I) : (1)

This is the conditional expectation of ' (Xs) given X0 = x, i.e., Ts' (x) = E [' (Xs) jX0 = x]. Note

that the conditional expectation itself may be de�ned for some unbounded function ' =2 B (I) (as long
as ' is integrable with respect to the transition function). However, to characterize Markov processes

based on the operators, it is su¢ cient to consider a space of bounded functions. By the law of iterated

expectations (or by the third property of the transition function in Assumption 1), fTsg(:= fTsgs�0)
satis�es a semigroup property, i.e., Ts+t = TsTt = TtTs, for any s; t(2 [0;1)). We call fTsg a semigroup
of the conditional expectations associated with the Markov process fXsg, or simply a semigroup. For
the semigroup, we de�ne its in�nitesimal generator A : D (A) (� B (I))! B (I) by

A' (x) := lim
�!0+

T�' (x)� ' (x)
�

= lim
�!0+

E [' (X�) jX0 = x]� ' (x)
�

; (2)

where D (A) is the domain of A, i.e., a subset of B (I) for which the convergence on the right-hand
side (RHS) of (2) takes place with respect to the sup-norm jj�jj. We call an element ' of D (A) as a
test function. A semigroup fTsg is called a Feller semigroup when it satis�es the following conditions:
(i) Ts : Ĉ (I) ! Ĉ (I) for each s; (ii) for ' 2 Ĉ (I), jjTs'� 'jj ! 0 as s ! 0, where Ĉ (I) (� B (I))
is the space of continuous functions vanishing at in�nity (i.e., limjxj!1 jf (x)j = 0) with the sup-norm
jjf jj := supx2I jf (x)j. A process is also called a Feller process if its associated conditional expectation
operator satis�es (i) and (ii). Note that for any Feller semigroup fTsg and ' 2 Ĉ (I), A' is necessarily
in Ĉ (I) if it is well-de�ned, since [T�' (x)� ' (x)] =� is continuous and vanishing at in�nity for each

� (by the Feller property (i)) and A' (x) is its uniform limit. We also note that by time-homogeneity,

it holds that A' (x) = lim�!0+ [Ts+�' (x)� Ts' (x)] =� for any s > 0.

4That is, Pr [� =1] = 1, where � := inffs 2 [0;1) : Xs =2 I or lim infu!sXu =2 Ig is the lifetime of the process.
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We have de�ned the generator A on the space B (I), but it is often su¢ cient to look at its restriction
on some subspace of B (I) to characterize Markov processes (see, e.g., discussions in Sec. 5 of Dynkin,

1956 or in Ch. II of Dynkin, 1965). In the sequel, we only consider A on Ĉ (I), regarding A as a

mapping on Ĉ (I) to Ĉ (I). This restriction can be justi�ed since we hereafter pay attention to time-

homogeneous Markov processes which are in the class of Feller processes.5 Note that the in�nitesimal

generators on Ĉ (I) and the corresponding domains can fully characterize the class of Feller processes in

the following sense: if the in�nitesimal generators of two processes are equal (with the same domain),

then the transition functions are also equal (see, e.g., Sec. 5 of Ch. II of Dynkin, 1965), implying

a one-to-one mapping between in�nitesimal generators and Feller processes.6 That is, the knowledge

on the form of A and D (A) allows us to recover the complete form of the transition function. Our

restriction on the Feller class is not strong, and it will not rule out any interesting Markov processes.

Many of Markov processes used in the economics/�nance literature are actually Feller. In particular,

many processes represented by stochastic di¤erential equations (SDEs) of the di¤usion type or general

Lévy type turn out to be Feller under weak conditions (see, e.g., V. 22 of Rogers and Williams, 2000,

and Ch. 6 of Applebaum, 2009). Even when a process de�ned by some SDE does not satisfy the

Feller-semigroup properties (i) and (ii), we may be able to construct another (modi�ed) process whose

behaviors are very close to those of the original process, so that they are almost indistinguishable from

an empirical/statistical point of view. For example, if coe¢ cients of the original SDE possess a sort of

continuity property, this may be achieved by the method of dapmping, as poposed in Li (2010). On

the other hand, the Feller restriction ensures the continuity of A' under the sup-norm based de�nition

of A in (2).7 This continuity property is useful for avoiding some technical di¢ culties and allows us to

develop identi�cation and asymptotic results more easily in the subsequent sections.

Before concluding this section, we provide some discussions on the form of the in�nitesimal generator

(and its domain). It is not easy to know the precise forms of A and D (A) for a general Feller process.
However, if D (A) contains C1K (R) (the set of in�nitely continuously di¤erentiable functions with com-
pact support), where we set I = R, the restriction of A on C1K (R) is known to take the following form

5Note the following facts: i) any Feller process has a modi�cation whose sample path is càdlàg (right continuous with

left limits); ii) any Feller process whose path is càdlàg is also a (strong) Markov process. For these results, see, e.g.,

Theorems 19.15 and 19.17 of Kallenberg (2002), with noting that the lifetime � = 1 almost surely in our case. By

identifying a Feller process as its càdlàg modi�cation, we can say Feller processes represent a subclass of (strong) Markov

processes.
6For a general class of Markov processes, we only have the weaker assertion that the in�nitesimal generator (and its

domain) may determine the �nite-dimensional distributions of the process. For details of this point, refer to arguments

on the Hill-Yoshida theorem and transitions functions in Ethier and Kurtz (1986) (Sec. 2 of Ch. 1 and Sec. 1 of Ch. 4,

respectively).
7Note that there exist some other de�nitions of in�nitesimal generators. For example, we can use the L2 (Q) norm to

de�ne the convergence in (2), instead of the sup-norm (Q is the invariant measure of the process, the existence of which

is supposed). However, the limit A' is not necessarily continuous under this de�nition.
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(under Assumption 1): for any ' (�) 2 C1
K (R),

A' (x) = L' (x) := � (x)'0 (x) + (1=2) � (x)'00 (x)

+

Z
Rnf0g

�
' (x+ z)� ' (x)� 1fjzj�1gz'0 (x)

�
l (x; dz) ; (3)

where � (�) is a continuous function; � (�) is a continuous and non-negative function; 1fjzj�1g is the
indicator function (= 1 if jzj � 1, and = 0 otherwise); and l (�; �) is a Lévy kernel (l : R�B (Rn f0g)!
R+), i.e., l (x; �) is a Borel measure on Rn f0g with satisfyingZ

Rnf0g

�
1 ^ z2

�
l (x; dz) <1; (4)

for each x 2 R.8 The integro-di¤erential operator L in the form of (3) is said to be of a Lévy type.

This representation result for A follows from the Courrège theorem (see Sec. 3.5 of Applebaum, 2009

and Sec. 4.5 of Jacob, 2001) and the fact that A' is continuous. We may be able to interpret the
Lévy kernel l (x; dz) as representing the expected number of jumps (conditional on the current state

x) the size of which is in the (small) interval "dz" per unit of time. The only restriction on � is (4),

and it allows for the case with
R
Rnf0g l (x; dz) = 1, which corresponds to an in�nite number of jumps

within a �nite time interval. Note that the requirement that C1
K (I) � D (A) is weak and most Feller

processes known in the literature should satisfy it. Indeed, this assumption seems to be used as a base

for developing various theories on Feller processes (see, e.g., Stroock, 1975; Taira, 1992; Böttcher and

Schnurr, 2010).9

The general form of (3) includes several special cases. An important one is a generator of the di¤usion

type. We say that the generator is of the di¤usion type, if there exist some continous function � (�) and
some non-negative continuous function �2 (�) such that for any ' (�) 2 C1

K (R)(� D (A)),

A' (x) = G' (x) := � (x)'0 (x) + �2 (x)'00 (x) =2: (5)

In this case, fXsg is called a di¤usion process, and any of its realized path is continuous on [0;1)
almost surely. Conversely, if any path of a Feller process fXsg (satisfying Assumption 1) is continuous
on [0;1), we can also say that there exist some continuous functions � and �2 with �2 non-negative
such that A' (x) = G' (x) for ' (�) 2 C1

K (R).10 For some di¤usion processes, we may be able to know
the precise forms of A and D (A) under several (boundary) conditions on � and �2 (see, e.g., Sec. 1-2
of Ch. 8 of Etheir and Kurtz, 1986)

8Instead of the truncation function 1fjzj�1g in (3), we may be able to use some other function (say, some smoothed

version of it, or 1=
�
1 + z2

�
) with some minor modi�cation of � (z). By the integrability condition (4), such modi�cation

is possible. Note also that (4) can be (equivalently) written as
R
Rnf0g z

2
�
1 + z2

��1
v (x; dz) < 1 (see Sec. 1.2.4 of

Applebaum, 2009).
9Recall that (i) of Assumption 1 implies the no-killing condition (i.e., the lifetime of the process � is in�nite). Without

this condition, we generally need an additional component c (x)' (x) in the RHS of (3), where c (�) is some continuous
function with c (x) � 0.
10For these statements, see Theorems 13.3 and 13.5 in Ch. III of Rogers and Williams (2000).
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We can also think of a class of pure jump processes. For example, let fXsg be a Markov jump
process described by two components q (: I�B (I)! R) and �(: I ! R), where q (x; �) is a probability
measure on B (I) for each x 2 I and � (�) is a bounded continuous function. A Poisson process with
intensity parameter � (x) (when the current state is x 2 I) determines the timing of jump changes. If a
jump occurs, then the transition probability from the state x to � is given by q (x;�). The in�nitesimal

generator of this process has the following form:

A' (x) = � (x)
Z
R
[' (y)� ' (x)] q (x; dy) ; (6)

which is also a special case of (3) (upon suitable reparametrization). Ethier and Kurtz (1986) provid

more details on this type of process in Sec. 2 of Ch. 4 and Sec. 3 of Ch. 8, where we can �nd the full

characterization of D (A).

3 Identifying the stationarity property

To identify the stationary property of the process fXsg, we use the in�nitesimal generator introduced
in the previous section. Now, to formally state our null and alternative hypotheses, we also set out the

following condition:

Assumption 2 (i) fXsg is (Harris) recurrent with its invariant �-�nite measure � on (R;B (R)), i.e.,
for any � 2 B (R) with �(�) > 0,

Pr fXs 2 � in�nitely ofteng = 1:

(ii) The invariant measure � of fXsg has the density function � which is continuous and uniformly
bounded over R, i.e., �(�) =

R
�
� (x) dx for any � 2 B (R).

(i) of Assumption 2 may be called �-irreducible in the Markov chain terminology, and it is interpreted

as fXsg (re-)visits any arbitrary set in the state space R within some �nite time and in�nitely many
times over the time span [0;1). If the process is not recurrent, it is called transient, i.e., the process
does not necessarily revisit every set in the state space, tending to1 or �1 (in our case where I = R).
The condition (i) also implies that no absorption occurs at any point x and the process does not forever

remain at the same point, i.e., for any x 2 I, there exists some s 2 [0;1) such that P (s; x; fxg) < 1.
The measure � is said to be invariant when it satis�es �(�) =

R
R P (s; x;�)� (dx) for any � 2 B (R),

where � is unique up to constant multiples (see, e.g., Sec. 1 of Höpfner and Löcherbach, 2003). A

recurrent process is called positive recurrent (or ergodic) if �(R) <1 and null recurrent if �(R) =1.
When fXsg is positive recurrent, � may be interpreted as the invariant probability measure of the

process (upon suitable normalization). In this case, we therefore regard � as the probability density.

When fXsg is obtained as a solution to some SDE of the di¤usion type, a necessary and su¢ cient
condition (in terms of coe¢ cients of the SDE) for the process to be recurrent is well-known (see Sec.
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5.5 of Karatzas and Shreve, 1991). If fXsg is a solution to a SDE of the (so-called) jump-di¤usion type,
Wee (1999, 2000) provides some su¢ cient conditions for the recurrency.

For a class of Feller processes with satisfying Assumptions 1 and 2, we consider the following null

and alternative hypotheses:

The null hypothesis H0: fXsg is a strictly stationary process, i.e., the probability

Pr [Xt+s1 2 �1; Xt+s2 2 �2; : : : ; Xt+sk 2 �k] (7)

is independent of t � 0 for any k (= 1; 2; : : : ), 0 � s1 < � � � < sk <1, and �1; : : :�k 2 B (I).

The alternative hypothesis H1: fXsg is null recurrent.

Our de�nition of the strict stationarity in (7) is standard. Under the hypothesis H0, the invariant

density � is the same as the marginal probability density of X0 and therefore, it must be integrable,

i.e.,
R
R � (x) dx = �(R) < 1. A simple example in the alternative class is a Brownian motion (with

no drift), whose invariant density � (x) = c for any x 2 R with some constant c > 0 (and thereforeR
R � (x) dx = 1). This process is a continuous-time counterpart of a unit-root process. In the liter-
ature on discrete time series econometrics, unit-root processes (and some of their relatives) are often

referred to as stochastic trends. Our alternative class may be interpreted as the class of continuous-time

counterparts of such stochastic trends.

Note that Assumption 2 excludes processes with obvious upward or downward trends. For example,

the geometric Brownian motion dXs = �Xsds+�XsdWs is excluded unless ���2=2 = 0.11 However, we
impose Assumption 2 to clarify the class of processes against which our test is consistent and to develop

some sensible distribution theory. Our test may have some power for a certain class of nonstationary

processes. Indeed, we can show that the test can reject the geometric Brownian motion. Note also that

the strict stationarity is imposed to develop our identi�cation theorem as below. We can show that

our proposed test has no asymptotic power against processes which are stationary only asymptotically

(but not strictly stationary) under some condition.12 Processes that are stationary in the strict or

asymptotic sense may be said to represent the class of processes with stability. In this respect, our test

can be interpreted as a test for examining the stability of fXsg.

Our identi�cation of the stationarity property of fXsg is based on the following result:

11If � � �2=2 = 0, the geometric Brownian motion is null recurrent, but otherwise, it has a diverging trend to 1 or

�1 (fWsg is a Brownian motion, and � 2 R and � > 0).
12For example, we can think of a process that is ergodic but not initialized by the invariant distribution. By using

the so-called strong Doeblin condition (as in Kristensen, 2009), we will be able to verify that the test has no asymptotic

power against this process.
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Lemma 1 Let fXsg be a continuous-time Feller process with the corresponding in�nitesimal generator
A and its domain D (A). Suppose that fXsg satis�es Assumptions 1 and 2. Then, fXsg is strictly
stationary with the invariant (probability) density � if and only ifZ

I

A' (x)� (x) dx (= E [A' (Xs)]) = 0; (8)

for every test function ' in D (A).

This lemma is a version of Proposition 9.2 in Ethier and Kurtz (1986, Ch. 4), and we omit the

proof for brevity.13 Our testing procedure is to nonparametrically estimate
R
A' (x)� (x) dx and then

check whether its estimate is close to zero. Apparently, from the "if and only if" statement of Lemma

1, we need to consider various test functions and compute corresponding unconditional moments to

check the stationarity of fXsg. However, it is not easy to check the equality (8) for all test functions in
D (A). The domain of A generally consists of an in�nite number of functions in Ĉ (I). In �rst place,

it is di¢ cult to know the precise form of D (A). In some limited cases, where A is known to take a

certain convenient form, we might be able to obtain the full characterization of of A (see, e.g., Ch. 8

of Ethier and Kurtz, 1986). However, even in such limited cases, we generally need several (so-called)

boundary/lateral conditions to characterize D (A), and these conditions often take quite intricate forms
and are not necessarily convenient for our purpose to develop a statistical testing procedure.14

We note that Hansen and Scheinkmann (1995) proposed to use the restriction (8) to construct

moment conditions for estimating parametric stationary Markov processes. For identifying a parametric

model, we do not necessarily examine all the test functions in D (A). It is often enough to look at only
some �nite number of test functions. However, since our problem is to check the stationarity property,

which is indeed a nonparametric restriction, we need to consider in�nite many number of test functions.

However, again it is not easy to look at such many functions.

One way to overcome this di¢ culty is to use some smaller set of test functions, but such a reduction

may result in losing information and yielding lower power of the corresponding test. Fortunately, we

can construct a reduced class of test functions without any information loss. Our approach is based on

a result from approximation theory. The next lemma states that any k-times continuously di¤erentiable

function ' in Ĉ (R) can be well approximated by a sequence of weighted polynomial functions. Let

w (x) := exp
�
�x2=2

	
=
p
2�; (9)

13Note that in Ethier and Kurtz (1986), the result requires that the martingale problem associated to the generator

A is well posed, i.e., there exists some solution to the martingale problem fXsg, and any other solution has the same
�nite-dimensional distribution as fXsg (for details on the martingale problem, see Ch. 4 of Ethier and Kurtz, 1986).
The well-posedness is imposed because they start with a generator A, and construct fXsg as a solution to the martingale
problem. In general, it is not easy to check the well-posedness of some given generator. On the other hand, in this

paper, we start with some Feller process fXsg (de�ned through the transition probability) on the �ltered probability
space (
;F; fFsg ;Pr) and therefore, we do not need to consider the well-posedness in the martingale problem.
14For a general form of the in�nitesimal generator of a Feller process on some subset of Ĉ (I), see, e.g., Theorem 1.13

in Ch. VII of Revus and Yor (1999). For general boundary conditions, see, e.g., Taira (1992) and references therein.
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which is the density of the standard normal. Using w as a weighting function, we obtain the following

result:

Lemma 2 Let ' be an arbitrary function (in Ĉ (R)) which is k-times continuously di¤erentiable (k �
0). Then, for each ', there exists a sequence of functions, fLJ (�) : J = k+1; k+2; : : : g, such that each
LJ (�) is a polynomial function of the degree at most J � 1, andXk

i=0
supx2R

���'(i) (x)�H(i)
J (x)

���! 0 as J !1; (10)

where HJ (x) := LJ (x)w (x), and '(i) and H
(i)
J are the i-th order derivatives of ' and HJ , respectively.

The proof is provided in the Appendix. The result that some appropriate polynomial function well

approximates a certain sort of smooth function is widely known. The lemma strengthens this result by

providing the simultaneous approximation of the function itself and its derivatives. A key assumption

for the result is that ' (x) vanishes as jxj ! 1, and the weighting function w plays a role in controlling
aberrant behaviors of polynomial functions in the tail region.

The result of Lemma 2 suggests that it is su¢ cient to look at the set of weighted polynomial functions

(instead of the whole set D (A) � Ĉ (R)) in order to check the stationarity. This idea is indeed correct,
but the set of weighted polynomial functions is still large and may not be tractable enough. Therefore,

we consider a further reduction. Let f� (�; �) : � 2 �g be a set of functions indexed by � such that

� (x; �) := exp f�xgw (x) = exp
�
�x� x2=2

	
=
p
2�; (11)

with � being some bounded interval on R. Recall that the exponential function may be expressed as
an in�nite series of polynomial functions. This fact and the result of Lemma 2 allow us to develop a

convenient theorem to check the stationarity property of the process under the following conditions:

Assumption 3 Let A and D (A) be respectively the in�nitesimal generator and its domain of a Feller
process fXsg. (i) For any � 2 �, � (�; �) 2 D (A), and for any non-negative integer l(� 0), gl (�) 2
D (A) and

��R
RAgl (x)� (x) dx

�� <1, where gl (x) := xlw (x). (ii) Let ' (�) be an (arbitrary) element of
D (A) which is k-times continuously di¤erentiable with some k � 0. If there is a sequence of functions
f'J (�)g approximating ' (�) such that each 'J (�) 2 D (A), andXk

i=0
supx2R

���'(i) (x)� '(i)J (x)���! 0 as J !1; (12)

then, it holds that

supx2R jA' (x)�A'J (x)j ! 0 as J !1: (13)

(i) of Assumption 3 is fairly weak and should be satis�ed by many Feller process. In particular, we

note that � (x; �) and gl (x) are in�nitely di¤erentiable and possess exponential decay rates (as x!1).
Such functions are in the domain of the generator in all examples of Feller processes (with state space
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R) in Ch. 8 of Ethier and Kurtz (1986). Indeed, the author does know of an example that would violate
the condition (i). (ii) of Assumption 3 is also not restrictive in view of the general form of A given in

(3). To see this point, suppose that the generator of fXsg is given as L in (3) for any test function
' 2 D (A). In this case, ' is at least twice continuously di¤erentiable (k = 2), and we can check (13)
since L'; 'J (x) 2 Ĉ (R).
Given Lemma 2 and Assumption 3, we can now state our identi�cation theorem:

Theorem 1 Let fXsg be a Feller process satisfying the conditions in Assumptions 1 and 2 with the
in�nitesimal generator A and its domain D (A). Suppose that A and D (A) satisfy the conditions in
Assumption 3. Let � be any (arbitrary) �nite interval on R which contains a neighborhood of 0. Then,
it holds that Z

R
A' (x)� (x) dx 6= 0;

for some test function ' 2 D (A), if and only if there exists some �� > 0 (�� may be arbitrarily close to
zero) and for any � 2 S

�
��
�
:=
�
���; ��

�
,Z
R
A� (x; �)� (x) dx 6= 0:

The proof of the theorem is provided in the Appendix. An intuition behind this result is that any

function in D (A) � Ĉ (R) has a component correlated with a parametric function family f� (�; �)g
in a certain sense. The result of this theorem allows us to construct a feasible but consistent testing

procedure. The set of functions we need to check is e¤ectively reduced to f� (�; �)g, a set of parameterized
functions, while the "if and only if" statement still holds.

Since
R
RA� (x; �)� (x) dx = 0 for any � 2 � under the null hypothesis, � may be called a nuisance

parameter. A similar technique can be found in the so-called Bierens approach (or the nuisance para-

meter approach), named based on Bierens�(1982, 1990) seminal work (see also Andrews and Ploberger,

1994; Bierens and Ginther, 2001; Bierens and Ploberger, 1997; Boning and Sowell, 1999; Chen and

Fan, 1999; De Jong, 1996; De Jong and Bierens, 1994; Hansen, 1996; Kasparis, 2010; Stinchcombe and

White, 1998). These papers consider testing procedures to examine parametric speci�cations of condi-

tional moment functions (or regression functions). While the result of Theorem 1 is (at least apparently)

similar to the results of the Bierens approach, it is not an obvious extension since we work with more

complicated functional operators (di¤erential operators de�ned via conditional moment functions) in-

stead of conditional moment functions themselves. This complication requires us to use approximation

theory as in Lemma 2, but not unnecessary in the Bierens approach.

Our test function de�ned in (11) is the product of the (rescaled) exponential function exp f�xg and
the weighting function w (x). As in the case of the Bierens approach, some suitable function, such as

cos (�x) + sin (�x), 1= [1 + exp fc� �xg] (c 6= 0), may replace the exponential function. As shown in

Theorem 3.1 of Stinchcombe and White (1998), any function may be used in the Bierens approach as

long as the linear span of indexed functions is dense in the weak topology (in the space of bounded
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functions satisfying some sort of measurability). In our case, however, some function that is allowed

in the Bierens approach may not be used. For example, obviously, because we are considering the

di¤erential operator, we cannot use a function 1 fx � �g. At least from the viewpoint of our proofs,

it seems necessarily to work with a class of functions that admit a sort of approximation result as in

Lemma 2. The weighting function w (x) in (9) is chosen only due to its familiarity in the statistical

literature. We can choose some other type of function, say, a Freud type weight (see Balazs, 2004;

Szabados, 1997). Such a choice will also allow us to prove an approximation result as in Lemma 2 and

develop its corresponding identi�cation result for the stationarity. While it is interesting to investigate

what type of test function may be used in our context, this would require more extra work and we leave

it to future work.

4 A test statistic and its asymptotic behavior

4.1 A test statistic

Motivated by the identi�cation result in the previous section, in this section, we construct a test statistic

to examine the stationary property of the process. For this purpose, we consider in particular the

following quantity: Z
�

�Z
R
A� (x; �)� (x) dx

�2
d�:

By Theorem 1, this quantity is zero if and only if the null hypothesis H0 is true. We construct an

emprical counterpart of this and use its normalized version as our test statistic. In doing so, we suppose

that the process is discretely sampled and we can obtain fXi�gni=0, where (n+ 1) is the number of
observations and � is the observation interval. The observation time span is represented by T (:= n�).

Given fXi�g, we estimate
	(x; �) := A� (x; �)� � (x) ;

by the following kernel-based estimator:

	̂ (x; �) := T�1
Xn�1

i=0
Kh (Xi� � x) [� (Xi�) =� (x)]

�
�
�
X(i+1)�; �

�
� � (Xi�; �)

�
;

where Kh (z) := K (z=h) =h; K is a kernel function; and h is a bandwidth (smoothing parameter);

and � (�) is a weighting function, which is not a constant, with � (x) > 0 for any x. This 	̂ (x; �) is a
consistent estimator of 	(x; �), and therefore, under the null hypothesis, its integralZ

�

�Z
R
	̂ (x; �) dx

�2
d� (14)

is expected to approximate
R
�
fE [A� (Xs; �)]g2 d� = 0, where the integrals with respect to x and � are

computed by using some numerical method. Note that we have introduced the weighting function � to
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utilize the variability of increments of the process. We might be able to consider an estimator without

� (Xi�) =� (x), such as

~	 (x; �) := T�1
Xn�1

i=0
Kh (Xi� � x)

�
�
�
X(i+1)�; �

�
� � (Xi�; �)

�
:

However, since
R
RKh (Xi� � x) dx = 1 for any Xi�, which follows from the convolution property and

the condition that
R
K (z) dz = 1, the integral of this estimator with respect to x is simply reduced toZ

R

~	 (x; �) dx = T�1 [� (Xn�; �)� � (X0; �)] : (15)

This quantity does not seem to exploit enough information from the data, relying only on the �rst

and end observations. Note that by using a non-constant �, we can let a test based on 	̂ (x; �) have

a power property for some class of cyclic/periodic processes. For example, consider the case where

Xi� = sin (i�=2). Then, it holds that
R
~	 (x; �) dx 6= 0 for odd n, but = 0 for even n, implying no

consistency against this cyclic process. For a strictly monotone function �, we can show that the test

based on 	̂ (x; �) is consistent against this Xi� = sin (i�=2). We conjecture that by setting the weight

function as a strictly monotone function, our test will have consistency against some class of processes

which include sorts of cyclical/periodic components as sin (i�=2). That is, the test will be consistent

against not only the class of processes speci�ed by Assumption 2 and the alternative condition H1, but

also some other class of processes (note that the cyclic process sin (i�=2) is deterministic and does not

satisfy Assumption 2).

To develop a formal statistical testing procedure, we investigate the asymptotic behavior of (14) by

considering its scaled version as our test statistic:

Ĵ :=

Z
�

�p
T

Z
R
	̂ (x; �) dx

�2
d�

,Z
�

�̂ (�) d�; (16)

where the scaling factor in the denominator is de�ned as

�̂ (�) := T�1
Xn�1

i=0

����Z
R
Kh (Xi� � x) ��1 (x) dx� (Xi�)

�
�
�
X(i+1)�; �

�
� � (Xi�; �)

�����2 :
4.2 The SDE representation of a Feller process

To investigate the asymptotic behavior of the statistic Ĵ , we use the fact that any Feller process may be

represented by some sort of SDE. Given the SDE representation as below, we can use the Ito formula,

as well as some limit results for additive functionals of the Markov process (as developed in Höpfner

and Löcherbach, 2003).

Lemma 3 Let fXsg be a Feller process satisfying Assumptions 1 and (2), and let A and D (A) be the
in�nitesimal generator of fXsg and its corresponding domain. Suppose that C1

K (R) � D (A). Then,
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fXsg satis�es some SDE of the following type:

dXs = � (Xs�) ds+ � (Xs�) dWs

+

Z
j
(Xs�;z)j2(0;1]


 (Xs�; z) ~N (ds; dz) +

Z
j
(Xs�;z)j>1


 (Xs�; z)N (ds; dz) ; (17)

where fXs�g is a càglàd version of fXsg (a càglàd process is a process whose path is left-continuous
with right limits almost surely); � (�) and � (�) are continuous functions with � (x) � 0 for any x 2 R;
fWsgs�0 := fWsg is a Brownian motion; ~N (�; �) is the compensated version of a Poisson random measure
N (�; �) on R+ � Rn f0g which is independent of fWsg and whose intensity measure is � (dx) ds =
E [N (ds; dx)] (i.e., ~N (ds; dz) = N (ds; dz) � � (dz) ds, and � (A) = E [N (1; A)] for any Borel set

A 2 B (Rn f0g)); v is a sigma �nite measure on Rn f0g; and 
 (�; �) is a measurable function (R2 ! R).

The proof of the lemma is provided in the Appendix. Note that the result here only asserts that

a Feller process fXsg is a weak solution to (17). It does not claim its uniqueness in either the weak

or the strong sense.15 To achieve the existence and uniqueness of a solution to (17), we generally need

to impose some conditions on the growth rate and/or the smoothness of the functions (�, �2, and 
)

and the measure v.16 However, we do not pursue such conditions in this paper. While the existence of

a unique strong solution to (17) (for some Brownian motion fWsg and some Poisson random measure

given) is required in some speci�c applications, that of a weak solution is often su¢ cient for many

econometric/statistical purposes. This is also the case here. We only require that the process have a

representation by some SDE of the type (17). When deriving distributional theory of our test statistic,

we use this SDE expression and the Ito formula (note that the Ito formula�s prerequisite is not relevant

to the uniqueness of SDE solutions, see, e.g., Ch. 4 of Applebaum, 2009).

For fXsg to possess a SDE-based expression of the type (17), the no-killing and no-absorption
conditions (implied by Assumptions 1 and 2) play an important role. If either/both killing or absorption

may happen, the process is not generally expressed by (17). Setting I = R also makes our arguments
easier. If I has a �nite endpoint such as (0;1), [0;1), and [0; 1], the SDE representation of fXsg may
require some additional (local time based) component.17 On the other hand, if some process fXsg is
obtained as a solution to some SDE of the type (17), we may be able to verify that it is a Feller process.

Several sets of restrictions on �, �2, 
 and v are known to be su¢ cient for this, as found in e.g., Ch. 8

of Etheir and Kurtz (1986), Sec. 2 of Ch. IX of Revuz and Yor (1999), V.22 of Rogers and Williams

15For the concepts of strong and weak solutions of SDEs, see, e.g., Ch. 21 of Kallenberg (2002), or Ch. IX of Revuz

and Yor (1991).
16Various conditions can be found in, e.g., Ch. 6 of Applebaum (2009), Ch. 5 of Either and Kurtz (1986), Ch. 21 and

23 of Kallenberg (2002), Ch. 5 of Karatzas and Shreve (1991), Ch. IV of Kunita and Watanabe (1981), Ch. IX of Revuz

and Yor, (1999).
17For a general reference on this, see Sec. 8 in Ch. 15 of Karlin and Taylor (1981). Example 2 in Hansen and Scheinkman

(1995) and Skorokhod (1961) may also be useful.

15



(2000), and Sec. 6.7 of Applebaum (2009). However, we do not pursue such restrictions in this paper,

as they are not required for our purpose to construct a feasible testing procedure. It is our policy to

start with a well-de�ned Feller process at hand, but not with a SDE. Regardless of this, we note that

the conditions maintained in our theorems may restrict possible forms of �, �2, 
, and v. For example,

consider the case where fXsg is a di¤usion process (
 = 0 and � = 0), i.e., every path of fXsg is almost
surely continuous. In this case, since there is no isolated co¢ n state (by Assumption 1), the lifetime of

a process may be written as � = inffs 2 [0;1) : jXsj = 1g. The condition of � = 1 means that the

process is non-explosive. Conditions for the non-explosiveness in terms of � and �2 are well-known (see,

e.g., Sec. 5.5 of Karatzas and Shreve, 1991).

We subsequently present several conditions for our asymptotic results in terms of coe¢ cients/components

of the SDE (17). Before doing so, it would be worth pointing out the relationship between the compo-

nents of L in (3) (the Courrège representation of A ) and those of the SDE (17). We have the following
link:

� (x) = � (x) ; � (x) = �2 (x) ; and l (x;A) =
R

(x;z)2A� (dz) : (18)

� and �2 are usually called the drift and di¤usion function, respectively. However, some authors

might want to use the term drift after a suitable adjustment. Note that the last term on the RHS

of (17) is not a (local) martingale in general. If
R
j
(x;z)j>1 
 (x; z) � (ds; dz) < 1 for each x, by letting

�� (x) := � (x) +
R
j
(x;z)j>1 
 (x; z) � (ds; dz), we can write

dXs = �� (Xs�) ds+ � (Xs�) dWs +

Z
Rnf0g


 (Xs�; z) ~N (ds; dz) ; (19)

instead of (17). In this expression, the last two terms on the RHS are (local) martingales. Some authors

may call this adjusted function �� as the drift function. Note also that given the last relationship in

(18) and the fact that l is a Lévy kernel, possible forms of 
 and v are restricted (recall the condition

in (4). Apparently, the function 
 is determined only relative to the measure � (and vice versa). From

these arguments, we can see that the components in (17) (except for �2) may be written in various

ways (one component is determined only relatively to the other ones). However, we hereafter stick to

the expression (17) of fXsg and below provide conditions in terms of the components �, �, 
, and � in
(17). The form of the SDE (17) is more general and convenient (when using the Ito formula) compared

to (19).18

18We consider the threshold in the last two terms on the right-hand side of (17) in terms of 
 (Xs�; z) with the

threshold value 1. This corresponds to the form of A in (3), following the manner in Komatsu (1973). Some authors

may prefer a di¤erent manner/expression (say, a threshold in terms of z with some other value, or a sort of smooth

threshold/truncation). However, by suitable parameterization of �, 
, and �, we can usually check that our expression

(17) may be equivalently written in some other form (see, e.g., Sec. 6.7 of Applebaum, 2009).
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4.3 The asymptotic null distribution

Given the form of our test statistic and the SDE-based representation of fXsg in the previous subsection,
we here derive the asymptotic null distribution. To develop distribution theory, we work with the

following conditions:

Assumption 4 Let A and D (A) be, respectively, the in�nitesimal generator and its domain of a Feller
process fXsg. A coincides with the following integro-di¤erentiable operator:

L' (x) = � (x)'0 (x) + (1=2)�2 (x)'00 (x)

+

Z
j
(x;z)j>0

�
' (x+ 
 (x; z))� ' (x)� 1fj
(x;z)j�1g
 (x; z)'0 (x)

�
� (dz) ; (20)

for any test function ' in D (A), where �, �2, 
 and � satisfy the conditions in Lemma 3, and there
exists some Lévy kernel l such that l (x;A) =

R

(x;z)2A� (dz) for any A 2 B (Rn f0g). Furthermore,

� (�), �2 (�) and 
 (�; z) are twice continuously di¤erentiable (for each z) with

j� (x)j+ �2 (x) +
Z
j
(x;z)j>0

j
 (x; z)j2 v (dz) � c1 [1 + exp fc2 jxjg] ; (21)

for some positive constants c1 and c2.

As discussed in Section 2, it is not generally easy to know the precise form of A in the whole domain
D (A). However, if some Feller process can be obtained as a solution to some SDE of the type (17), A
must take the form of (20) for any ' 2 D (A), which can be checked by the Ito lemma (as in Sec. 6.7
of Applebaum, 2009). The growth condition in (21) is not restrictive at all. It is satis�ed by almost

all examples found in Etheir and Kurtz (1986), Sec. 2 of Ch. IX of Revuz and Yor (1999) and V.22 of

Rogers and Williams (2000), Sec. 6.7 of Applebaum (2009). We also impose the following conditions

on K and �:

Assumption 5 The kernel function K (R! R+) is symmetric and twice continuously di¤erentiable
on R with compact support, and satis�es the following conditions:

R
RK (z) dz = 1,

R
R zK (z) dz = 0

and
R
R z

2K (z) dz <1.

Assumption 6 The weighting function � (R! R+) is twice continuously di¤erentiable on R with

� (x) > 0 for any x 2 R; and there exists some constant C� > 0 such that

supx2R
�
� (x) + j�0 (x)j+ j�00 (x)j+ ��1 (x)

�
< C�:

The conditions on the kernel function K are standard except for the compactness of the sup-

port. Note that the compact-support condition is imposed for the simplicity of the proof. We may

be able to work with some kernel with unbounded support, but will need to impose some tail de-

cay condition (as in Assumption 3 of Hansen, 2008). An example of � (�) satisfying Assumption 6 is
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� (x) = [1 + exp f�xg]�1 + 1, a logistic function (note that this � (�) is strictly monotone increasing
(see discussions in Subsection 4.1). Given these conditions, we can now derive the asymptotic null

distribution of Ĵ :

Theorem 2 Let fXsg be a Feller process with the in�nitesimal generator A and its domain D (A),
satisfying the conditions in Assumptions 1-4. Suppose that the invariant density function � (�) is twice
continuously di¤erentiable on R and

���(k) (x)�� is uniformly bounded for k = 0; 1; 2. Suppose also that K
and � satisfy Assumptions 5 and 6, respectively. Let

Ẑ (�) :=
p
T

Z
R
	̂ (x; �) dx: (22)

Let n; T !1 and �; h! 0 with n�2 ! 0, Th4 ! 0, and �(log n) =h! 0. Then, if the null hypothesis

H0 holds,

(i) there exists a mean-zero Gaussian process fZ0 (�)g�2� whose covariance kernel is �0 (�1; �2), such
that

n
Ẑ (�)

o
�2�

converges weakly to fZ0 (�)g�2� in C (�) (the space of continuous functions on �);

(ii) �̂ (�) P! �0 (�) := �0 (�; �) uniformly over � 2 �.

The proof is provided in the Appendix. Note that the convergence rate of Ẑ (�) under the null is

independent of that of the smoothing parameter h. This is due to the fact the convergence rate of the

integral of the kernel-based estimator is faster than that of the original kernel-based estimator (a similar

phenomenon can be found in Vanhems, 2006). Given the result of the theorem, we have

Ĵ =) J0 :=

Z
�

Z20 (�) d�

�Z
�

�0 (�) d�;

by the continuous mapping theorem. While this limit of J0 is case dependent (non-pivotal), we can �nd

an upper bound of J0 which is independent of any unknown objects. By Mercer�s theorem with the aid

of a certain linear programming problem (see Sec. 6 of Bierens and Ploberger, 1997), we have

limPr
h
Ĵ > c

i
� Pr

�
�W > c

�
;

where �W := supm�1m
�1Pm

j=1 "
2
j and f"jgj�1 is a sequence of i.i.d. random variables with "j � N (0; 1).

Since we can obtain quantiles of �W (through aMonte Carlo simulation), we can implement a conservative

test. For example, Bierens and Ploberger (1997) report

Pr
�
�W > 3:23

�
= 0:10; Pr

�
�W > 4:26

�
= 0:05; and Pr

�
�W > 6:81

�
= 0:01:

The use of these conservative bounds obviously introduces some size distortions of the test. We inves-

tigate the e¤ects due to these upper bounds by Monte Carlo experiments in the next section.

Note that given the identi�cation and weak-convergence results (in Theorems 1 and 2, respectively),

we might be able to use N̂ :=
R
�
jẐ (�) j2d� for our test statistic, while the covariance kernel of fZ0 (�)g

18



depends on several unknown objects and the limit object
R
�
jZ0 (�) j2d� is non-pivotal, which makes

it impossible to tabulate critical values. Even when tabulation is impossible, we might be able to

estimate/approximate critical values. For example, we can construct a nonparametric estimator of the

covariance kernel �0 (�1; �2), and verify its consistency under the null hypothesis.19 Then, by using the

estimated covariance kernel, we could simulate the null distribution of
R
�
jZ0 (�) j2d� and then conduct

a (asymptotically) size-correct test. However, this approach may lead to the loss of power/consistency

of the test. This is because the convergence rate of Ẑ (�) is di¤erent under the null and alternative

hypotheses, and we cannot necessarily expect that Ẑ (�)!1 (and N̂ !1) under the alternative. If
fXsg is the Brownian motion, for example, we would only have Ẑ (�) = OP (1) and N̂ = OP (1) (see

discussions on the convergence rates in the generalized LLN in the next subsection).20 The problem

here is that
p
T as in (16) and (22) is not an appropriate normalization rate under the alternative (such

a rate is generally unknown, unfortunately).

By the same reasoning, it is also uncertain if we could get through the problem by using the so-called

conditional Monte Carlo (or p-value) approach (see Hansen, 1996; De Jong, 1996), or Escanciano and

Jacho-Chávez�s (2010) approach to estimate eigenelements of the covariance kernel. Additionally, for

the validation of these approaches, it seems necessary to impose a certain mixing (or weak-dependence)

condition. In the light of our testing purpose, it should be reasonable to maintain the same conditions

under both the null and alternative hypotheses (other than these hypotheses themselves). If we imposed

some mixing condition under both the hypotheses, we would have the class of alternative processes

essentially empty. Although the mixing is in principle a di¤erent concept from the stationarity, they

are quite interrelated.

As another approach, one might think of using some sort of bootstrap. However, recall that our null

restriction is fully nonparametric. Therefore, it is not obvious how to construct a bootstrap analog of

Ĵ (or N̂) which incorporates such nonparametric restriction. If we use a certain sort of nonparametric

bootstrap without the null restriction, we conjecture that a bootstrap analog of Ĵ tends to 1 under

the alternative hypothesis, which results in no power/consistency of the test.

19We might be able to estimate �0 (�1; �2) by

�̂ (�1; �2) := T
�1
Xn�1

i=0

����Z
R
Kh (Xi� � x) ��1 (x) dx� (Xi�)

����2
�
�
�
�
X(i+1)�; �1

�
� � (Xi�; �1)

� �
�
�
X(i+1)�; �2

�
� � (Xi�; �2)

�
:

20Under the alternative, it will generally hold that �̂ (�1; �2) = oP (1) (�̂ (�1; �2) is de�ned in the previous footnote), and

therefore, simulated critical values (based on the estimate of �0 (�1; �2)) may also be expected to approach zero as T !1.
If this is the case, we conjecture that the test using N̂ and simulated critical values may have some power/consistency

property. However, we leave the veri�cation of this conjecture to future research, as it will require some extra work.
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4.4 The asymptotic power property

We here show that our testing procedure with the test statistic Ĵ is consistent and has non-trivial power

against any (�xed) alternative null recurrent process.

Theorem 3 Suppose the same conditions as in Theorem 2. Then, if the alternative hypothesis H1
holds, there exist some constants � 2 (0; 1) and C > 0 such that

Ĵ=T � � C !1;

with probability approaching to 1 (as T !1).

The proof of this theorem uses a generalized LLN for nonstationary (null recurrent) processes. The

divergnce rate of the test statistic Ĵ is determined by �. This factor � corresponds to the diver-

gence/convergence rate in the generalized LLN, i.e., � satis�esZ T

0

g (Xs) ds = OP
�
T �+"

�
; (23)

for a bounded function g with
R
g (x)� (x) dx < 1 (for any arbitrarily small " > 0). For example,

if fXsg is a Brownian motion (Xs = Ws), then we have
R T
0
g (Xs) ds = OP

�
T 1=2

�
and � = 1=2. In

the Markov chain terminology, a Markov process satisfying a discrete-time counterpart of (23) is said

to be �-recurrent (see, e.g., Karlsen and Tjøstheim, 2001). For our continuous-time Markov case, the

existence of � satisfying (23) is guaranteed for any null recurrent process (Sec. 3.3 of Höpfner and

Löcherbach, 2003).

5 Monte Carlo Results

In this section, we examine �nite-sample size and power properties of the proposed test. First, see the

size performance (and the conservativeness of the upper bound approximation), we consider a simulation

study with the following data-generating processes:

Model 1: The Ornstein-Uhlenbeck (OU) process, whose stationarity is drift-induced,

dXs = � (m�Xs) ds+ �dWs;

with (�;m; �2) = (0:85837; 0:089102; 0:0021854), taken from Aït-Sahalia�s (1996, Table III in p.

542) estimates for the seven-day Eurodollar rate data.

Model 2: Aït-Sahalia�s (1999) nonlinear process with drift-induced stationarity:

dXs =
�
��1X

�1
s + �0 + �1Xs + �2X

2
s

�
ds+ �X3=2

s dWs;

with (��1; �0; �1; �2; �) = (0:000693;�0:0347; 0:676;�4:059; 0:84214), taken from Aït-Sahalia�s

(1999, Table VI in p. 1389) estimates for the monthly Federal Funds rate data.

20



Model 3: Bibby and Sørensen�s (1997) hyperbolic di¤usion process:

dXs = � exp

�
1

2

�
�

q
�2 + (Xs � �)2 � � (Xs � �)

��
dWs;

where (�; �; �; �; �) = (4:4875;�3:8412; 1:1949; 7:2915; 0:0047), taken from Bibby and Sørensen�s

(1997, Table 1 in p. 35) estimates for Baltica stock price data.

We measure time in years and consider the following two observation intervals: � = 1=12 and 1=252,

which correspond to sampling every month and every day, respectively.21 For each �, we consider two

cases: T = 20 and 40. In order to simulate data, we use the exact simulation scheme with the random

number generator of the normal distribution for the OU process (see, e.g., p. 456 of Pritsker, 1998). For

the Aït-Sahalia nonlinear process, we employ the Euler-Maruyama discretization scheme (see Higham,

Mao and Stuart, 2003) with the discretization step d = �=100, where ��1 = 252 corresponds to

the highest sampling frequency used in this simulation study. For the Bibby and Sorensen hyperbolic

di¤usion process, we use the strong Taylor scheme of order 1.5 with the discretization step d = �=25

(see Sec. 3 of Bibby and Sørensen, 1997).22

Throughout this experiment, we let � = [�1; 1] and

��1 (x) = 1 +G (x) = 1 + [1 + exp f�xg]�1 ;

where G (x) is the cumulative distribution function of a logistic random variable. For this choice ��1 (x),

we can check that � (x) is strictly increasing with satisfying the conditions in Assumption 6. We compute

the integrations with respect to x and � byMonte-Carlo integrations based on a so-called low-discrepancy

sequence (the Halton sequence), where we outline our integration method in the Appendix. We use the

Epanechnikov kernel with the bandwidth parameter h chosen according to h = 1:06ŝn�1=5 (the so-

called rule of thumb in the density estimation i.i.d. data), where ŝ is the standard deviation of the

observations.23 This choice of h satis�es the conditions in Theorems 2 and 3.

By using the upper bounds of the 5% and 10% critical values, we compute the percentage of rejections

of the null hypothesis H0 based on 400 replications, reported in Table 1. From the results in Table 1, we

can see that the test has some size distortions. In particular, for � = 1=252 and T = 40, the test tends

to exhibit more rejection rates than the nominal sizes. This is an expected phenomenon since critical

21Roughly, 252 corresponds to the numbers of business days in a year.
22To simulate data with the discretization schemes, we start from the initial value X0 = 0:0717 (the mean of the monthly

Federal Funds rates) for the Aït-Sahalia nonlinear process, and X0 = �+ ��=
p
�2 � �2 (the mode setting of the invariant

distribution of Xs) for the Bibby and Sørensen hyperbolic di¤usion process. We simulate a trajectory of T � 1:2 years,
and discard the �rst T � 0:2-year fraction of each trajectory (to make the e¤ect of the initial value negligible).
23To check the sensitivity of the proposed test with respect to the choice of bandwidth, we also considered some other

bandwidths, say, h = cŝn�1=5 with setting di¤erent values of c : c = 1=4; 1=2; 2; and 4. However, we obtained similar size

and power properties for all bandwidths we used. This may be explained by the fact that the convergence rate of the test

statistic is independent of h.
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values used are conservative ones. For the other cases, we observe over-rejection tendencies, which may

be due to an artifact of small samples.

We also simulate the following models to examine the power property of the test in �nite samples:

Model 4: The standard Brownian motion Xs = Ws.

Model 5: Höpfner and Kutoyants�s (2003) model:

dXt = �
�Xs
1 +X2

s

ds+ �dWs;

where we set (�; �) = (1=4; 1).

The Höpfner and Kutoyants model is simulated by using the same method as for Model 2 (we set

the initial value X0 = 0). By using the same settings as above, we also computed the percentage of

rejections of the null hypothesis H0 based on 400 replications (Table 2). The results reported in Table

2 suggest that our test has some non-trivial power when � is small and T is large.

Table 1: Percentage of rejections of the true H0
Model 1 Model 2 Model 3

Nominal Size 5% 10% 5% 10% 5% 10%

� = 1=12, T = 20 (n = 240) 0.0750 0.1425 0.0825 0.1750 0.1325 0.1800

� = 1=12, T = 40 (n = 480) 0.0600 0.1675 0.0950 0.1900 0.0875 0.2125

� = 1=252, T = 20 (n = 5040) 0.0575 0.1300 0.0825 0.1575 0.0900 0.1750

� = 1=252, T = 40 (n = 10080) 0.0250 0.0825 0.0425 0.0750 0.0550 0.0975
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Table 2: Percentage of rejections of the false H0
Model 4 Model 5

Nominal Size 5% 10% 5% 10%

� = 1=12, T = 20 (n = 240) 0.1125 0.1925 0.0825 0.1750

� = 1=12, T = 40 (n = 480) 0.1950 0.3275 0.1700 0.2725

� = 1=252, T = 20 (n = 5040) 0.2450 0.3600 0.2625 0.3100

� = 1=252, T = 40 (n = 10080) 0.3750 0.4825 0.3050 0.4300

6 Conclusion

We have proposed a new statistical testing procedure to examine the stationarity property of continuous-

time Markov processes based on the restriction through the in�nitesimal generator. Our test is based

on two novel propositions: (i) a new theorem to identify the stationarity property using the nuisance

parameter approach; (ii) asymptotic theory for the proposed test statistic. The identi�cation scheme

is fully nonparametric and does not rely on the concept of the unit root or integration. It allows us

to assess the generic stationarity property of time series processes, and can serve as a new alternative

to DF and KPSS type tests. The asymptotic theory contained in this paper is based on the Markov

regeneration technique and is derived without imposing any exploit mixing condition.
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A Appendix

A.1 Proofs

Proof of Lemma 2. Consider a smooth truncation function (indexed by " > 0) as follows:

�" (x) :=

8>><>>:
1 if jxj � ";
expf� expf�1= (jxj � ")2g= (jxj � "� 1)2g if jxj 2 ("; "+ 1) ;
0 if jxj � "+ 1:

(24)

This function is in�nitely di¤erentiable and compactly supported.24 Fix any arbitrary ' 2 Ĉk (R) and
let �" (x) := ' (x) �" (x) for each " > 0. When ' is k-times continuously di¤erentiable (with some k � 0),
�" is also so. In this case, noting the functional form of �" (x), as well as the fact that '(i) 2 Ĉ (R) for
any i � k (this holds since ' 2 Ĉ (R)), we haveXk

i=0
supx2R

��'(i) (x)� �(i)" (x)��! 0 as "!1: (25)

By the truncation, �" is compactly supported. On the other hand, by Lemma 4, whose statement

and proof are provided below, for each " > 0, there exists a sequence of functions
�
H"
~J
(x)
	
such that

H"
~J
(x) = L"~J (x)w (x), L

"
~J
(x) is a polynomial function of degree at most ~J � 1, andXk

i=0
supx2R

���(i)" (x)�H"
~J
(x)
��! 0 as ~J !1; (26)

where we note that ~J depends on ", i.e, ~J = ~J ("). By (25) and (26), we can construct a sequence of

functions fHJ (�)g satisfying the conditions in the lemma, completing the proof.

Lemma 4 Let � be an arbitrary function in ĈK (R) (k � 0) which is k-times continuously di¤erentiable
functions. Then, for each �, there exists a sequence of functions, fLJ (�) : J = k + 1; k + 2; : : : g, such
that each LJ (�) is a polynomial function of degree at most J � 1, andXk

i=0
supx2R

����(i) (x)�H(i)
J (x)

���! 0 as J !1;

where HJ (x) := LJ (x)w (x), and f (i) and H
(i)
J are the i-th order derivatives of ' and HJ , respectively.

Proof of Lemma 4. Let

� (x) = [� (x) =w (x)]�w (x) =: f (x)�w (x) ;

where f (x) is well-de�ned over x 2 R since w (x) > 0 for any x 2 R. For any continuous function g,
de�ne the following set of functions:

Ck (R; g) := fq (: R! R) j q is k-times continuously di¤erentiable on R;

q(i)g 2 Ĉ (R) for i = 0; : : : ; kg;
24The form in (24) is only one example, and we can think of some other functional form satisfying the smoothness and

compact-support conditions.
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where Ĉ (R) is the set of continuous functions on R which vanish at in�nity (as de�ned in Section

2). Now, let wc (x) := exp f�cx2g for an arbitrary constant c > 0, and consider the set of functions

Ck (R;wc), where we note that Ck
�
R;w1=2

�
= Ck (R;w). Since � 2 Ck

K (R) and the support of f is
compact, it holds that

��f (i) (x)��! 0 as jxj ! 0 for any i � k. Therefore, f 2 Ck (R;wc) for any c > 0.
Now, let �J denote the set of polynomial functions of degree at most J . For a function g, we also

de�ne the following quantity:

EJ (g)wc := infp2�J supx2R jwc (x) [g (x)� p (x)]j :

Fix any (arbitrary) c > 0. Then, by inequalities (2) and Corollary 1 of Balázs (2004), we can construct

a sequence of polynomial functions fLJ (�) : J = k + 1; k + 2; : : : g (based on the Lagrange interpolation
method) such that each LJ is a polynomial function of degree at most J � 1, and for some constants
c3; c4 > 0,

Xk

i=0
supx2R

���f (i) (x)� L(i)J (x)���wc (x) �Xk

i=0
�i;k

 
c3 [J + 1� k]1=(1+c4)

J + 1� k

!k�i
EJ�k+1

�
f (k)
�
wc
log J;

(27)

where each �i;k is a constant depending only on i, k and wc. Since f (k) 2 Ck (R;wc), it holds that

EJ�k+1
�
f (k)
�
wc
! 0 as J !1; (28)

which follows from arguments in p. 100 of Szabados (1997). By (27) and (28), there exists a sequence

of functions fLJ (�) : J = k + 1; k + 2; : : : g such that each LJ is a polynomial function of degree at most
J � 1 and Xk�1

i=0
supx2R

���f (i) (x)� L(i)J (x)���wc (x)! 0 as J !1: (29)

Given (29), we now prove the statement of the lemma. If k = 0, (10) holds obviously by (29) with

c = 1=2. If k = 1, let any c 2 (0; 1=2) and consider a sequence fLJ (�)g satisfying (29). In this case,���'(1) (x)�H(1)
J (x)

��� = ���f (1) (x)w (x)� f (x)w(1) (x)� L(1)J (x)w (x)� LJ (x)w(1) (x)
���

�
���f (1) (x)� L(1)J (x)

���w (x) + jf (x)� LJ (x)j ��w(1) (x)��
� C

���f (1) (x)� L(1)J (x)
���wc (x) + C jf (x)� LJ (x)jwc (x) ; (30)

where the last inequality follows from the fact that for each positive integer k, for any ~c 2 (0; c), there
exists some positive constant C such that

maxi2f0;1;:::;kg
��w(i) (x)�� � Cwc (x) : (31)

By (29), the RHS of (30) tends to zero uniformly as J !1, i.e.,

supx2R

���'(1) (x)�H(1)
J (x)

���! 0 as J !1;
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which, together with the result for k = 0, gives the desired result. For the case where k � 2, the proof
can be done analogously by using the product di¤erentiation formula and (31), and we omit details.

The proof is completed.

Proof of Theorem 1. The "if" part is obvious. We prove the "only if" part. Now, suppose thatR
RA' (x)� (x) dx 6= 0 for some ' 2 D (A). Now, by Lemma 2, we can construct some sequence

of weighted polynomial functions fHJ (x)g such that HJ (x) = LJ (x)w (x), LJ (x) is a polynomial

function of degree at most J � 1, andXk

i=0
supx2R

��'(i) (x)�HJ (x)��! 0 as J !1: (32)

By the form of HJ , we can write

HJ (x) =
PJ�1

l=0 
lgl (x) ;

where gl (x) = xlw (x) and f
lg is a sequence of some constant coe¢ cients. By the linearity of A and

the condition (i) of Assumption 3, it holds that HJ (�) 2 D (A) for any J , and therefore,R
RAHJ (x)� (x) dx =

PJ
l=0
l

R
RAgl (x)� (x) dx; (33)

If
��R
RA' (x)� (x) dx

�� < 1, (ii) of Assumption 3 and the result (32) imply that for J large enough,R
RAHJ (x)� (x) dx 6= 0. If

��R
RA' (x)� (x) dx

�� = 1, consider the set EN := [�N;N ] for a positive
integer N . In this case, by the continuity of A' (x)� (x), it holds that

���REN A' (x)� (x) dx��� <1 for any

N , but for N large enough, we can obtain
R
EN
A' (x)� (x) dx 6= 0. And, by (ii) of Assumption 3 and the

result (32), we also have
R
EN
AHJ (x)� (x) dx 6= 0. On the other hand, since

��R
RAgl (x)� (x) dx

�� <1
holds for any l, it also holds that

��R
RAHJ (x)� (x) dx

�� <1. By letting N be large enough, we can letR
RnEN AHJ (x)� (x) dx be arbitrary small. Therefore, we also have

R
RAHJ (x)� (x) dx 6= 0.

Given
R
RAHJ (x)� (x) dx 6= 0, (33) implies that there exists some l

� (� J) such thatR
RAgl� (x)� (x) dx 6= 0: (34)

Now, observe that

� (x; �) = exp (�x)w (x) =
P1

k=0

�
�k=k!

�
xkw (x) = lim

J!1
�J (x; �) ;

where

�J (x; �) :=
PJ

l=0

�
�l=l!

�
xlw (x) =

PJ
l=0

�
�l=l!

�
gl (x) :

By arguments similar to those in the proof of Lemma 4, the simultaneous uniform convergence of �J (�; �)
and its derivatives up to the �k-th order occurs (�k may be arbitrary large). That is, for each �,P�k

i=0 supx2R

����(i) (x; �)� �(i)J (x; �)���! 0 as J !1; (35)

Then, by the linearity of the integral and A,R
RA�J (x; �)� (x) dx =

PJ
l=0

�
�l=l!

� R
RAgl (x)� (x) dx:
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Now, let k = �k in (35). In this case, by (ii) of Assumption 3, the limit of
R
RA�J (x; �)� (x) dx is

well-de�ned and R
RA� (x; �)� (x) dx =

P1
l=0

�
�l=l!

� R
RAgl (x)� (x) dx; (36)

for each � (note that A� (�; �) is well-de�ned since � (�; �) 2 D (A)).
By (36), we have checked that the term-wise operation of the integral and A to � (�; �) is permitted.

Let

L (�) =
P1

l=0

�
�l=l!

� R
RAgl (x)� (x) dx;

where L (�) is a power series of � whose radius of convergence is 1. Therefore, the term-wise di¤eren-
tiation of L (�) (at any �) is also permitted:

dl
�

d�l�
L (�) =

X1

l=0

dl
�

d�l�
�
�l=l!

� R
RAgl (x)� (x) dx:

Letting � ! 0, the RHS converges to
R
RAgl� (x)� (x) dx. This and (34) imply that for some � (in the

neighborhood of zero), L (�) 6= 0. Noting the continuity of L (�), we obtain the desired result. The

proof is completed.

Proof of Lemma 3. For any Feller process fXsg, we can write

' (Xt)� ' (X0) =

Z t

0

A' (Xs) ds+M'
t ; (37)

for any test function ' 2 D (A), where fMtg is a martingale for each � 2 �. The validity of this
expression can be shown by Lemma 19.21 of Kallenberg (2002). Suppose thatD (A) containsC1

K (R). In
this case, recall thatA = L on the space ofC1

K (R), as in (3). LetN
'
t := ' (Xt)�' (X0)�

R t
0
L' (Xs) ds.

Then, fN '
t g is a martingale for any ' 2 C1

K (R). This means that fN
'
t g is also a martingale for

any ' 2 C2b (R) by Theorem 1.1 of Stroock (1975), where C2
b (R) is the space of bounded and twice

continuously di¤erentiable functions on R whose derivatives are also bounded.25 Now, by Theorem 2.2

of Komatsu (1973), the conclusion follows.

Proof of Theorem 2. Since � (x; �) is uniformly bounded (over x and �), � satis�es the restriction in

(18) and l is the Levy measure, it holds that for each x,Z
j
(Xs�;z)j>1

[� (x+ 
 (x; z) ; �)� � (x; �)] � (dz) <1:

Then, by the Ito formula, we can write

�
�
X(i+1)�; �

�
� � (Xi�; �) =

Z (i+1)�

i�

g� (Xs�) ds+

Z (i+1)�

i�

�0 (Xs�; �)� (Xs�) dWs

+

Z (i+1)�

i�

Z
Rnf0g

[� (Xs� + 
 (Xs�; z) ; �)� � (Xs�; �)] ~N (ds; dz) ; (38)

25This implies that fXsg is a solution to the martingale problem associated to L on C2b (R).
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where

g� (x) := L� (x; �) =
�
� (x)�0 (x; �) + (1=2)�2 (x)�00 (x; �)

�
+

Z
Rnf0g

[� (x+ 
 (x; z) ; �)� � (x)� 
 (x; z)�0 (x; �)] � (dz) ;

where L is the integro-di¤erential operator de�ned in (3). We note that the last two terms on the RHS

of (38) are martingales whose moments of any order exist (recall Assumption 4 and the form of � (x; �)).

Given the expression (38), we can writeZ
R
	̂ (x; �) dx = Qn (�) +Rn (�) ;

where

Qn (�) := T
�1=2

Xn�1

i=0

Z
R
Kh (Xi� � x) [� (Xi�) =� (x)] dx

Z (i+1)�

i�

g� (Xs�) ds;

Rn (�) := T
�1=2

Z T

0

Z
R
Kh (Xi� � x) [� (Xi�) =� (x)] dx�

0 (Xs�; �)� (Xs�) dWs

+ T�1=2
Z T

0

Z
R
Kh (Xi� � x) [� (Xi�) =� (x)] dx

�
Z
Rnf0g

[� (Xs� + 
 (Xs�; z) ; �)� � (Xs�; �)] ~N (ds; dz) :

We �rst show that Qn (�) = oP (1) uniformly over � (and therefore the asymptotic distribution is

determined by Rn (�). For this purpose, we also consider the following decomposition:

Qn (�) = Qn;1 (�) +Qn;2 (�) ;

where two components on the RHS are de�ned as follows (note that
R
g� (x)� (x) dx = 0 under the null

hypothesis):

Qn;1 (�) := T
�1=2h�1

Xn�1

i=0

Z
R
K ((Xi� � x) =h) [� (Xi�) =� (x)] dx

Z (i+1)�

i�

[g� (Xs�)� g� (Xi�)] ds;

Qn;2 (�) := T
�1=2 (1=nh)

Xn�1

i=0

Z
R
K ((Xi� � x) =h) [� (Xi�) =� (x)] [g� (Xi�)� g� (x)] dxds;

Qn;3 (�) := T
1=2 (1=nh)

Xn�1

i=0

Z
R
K ((Xi� � x) =h) [� (Xi�) =� (x)] g� (x) dx�

Z
g� (x)� (x) dx:

By using the Ito formiula, as well as the uniform boundedness and continuity of g� and � (and their

derivatives), we can show that

Qn;1 (�) = Op(
p
T�) uniformly over �:

As for Qn;2 (�), we look at

Qn;2 (�) =
p
T (1=n)

Xn�1

i=0

Z
R
K (q) [� (Xi�) =� (Xi� � qh)] [g� (Xi�)� g� (Xi� � qh)] dq;
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where the equality holds by changing variables with q = (Xi� � x) =h. Then, by the standard arguments
Taylor approximation for kernel-based estimators, we have

Qn;2 (�) = O(
p
Th2) uniformly over �:

To �nd the order of Qn;3 (�), we also look at

Qn;3 (�) = T
1=2 (1=nh)

Xn�1

i=0

Z
[Yi� (x)� E [Yi� (x)]] g� (x) dx

+ T 1=2 (1=nh)
Xn�1

i=0

Z
R
[E [K ((Xi� � x) =h) [� (Xi�) =� (x)]]� � (x)] g� (x) dx; (39)

where Yi� (x) := K ((Xi� � x) =h) [� (Xi�) =� (x)]. By the same arguments as before, we can show that

the second term on the RHS (39) is O(
p
Th2) (uniformly over �). To �nd the the order of the �rst term,

we use the following result:

(1=nh)
Xn�1

i=0

Z
[Yi� (x)� E [Yi� (x)]] g� (x) dx = OP (

p
(log n) =nh);

uniformly over �, which can be shown by standard arguments in deriving uniform convergence rate of

kernel estimators with the aid of the Markov splitting techinique. Therefore, we have

Qn;3 (�) = O(
p
Th2) +OP (

p
�(log n) =h) uniformly over �:

Therefore, we obtain Qn (�) = OP (
p
Th2 +

p
�(log n) =h), which is oP (1) under the stated rate condi-

tions on � and h. From these arguments, the asymptotic distribution of Ẑ (�) is determined by Rn (�).

To investigate the limit behavior of Rn (�), we note that it is the sum of a martingale di¤erence array,

to which we can apply the central limit theorem (CLT). In particular, we use Nishiyama�s CLT (Sec.

2 of Nishiyama, 1996; Sec. 4 of Nishiyama, 2000), for which required conditions can be easily veri�ed

by using the uniform boundedness of the test function � and its derivatives, Assumption 4), and the

compactness assumption of the parameter space �. Now, the �rst assertion of the theorem follows. For

verifying the second assertion, we consider an expansion of �̂ (�) by using the Ito formula, and then, we

can show that the limit covariance kernel �0 (�1; �2) j�=�1=�2 coincides with the limit of �̂ (�), �0 (�). The
uniformity can be easily checked by the uniform boundedness of relevant functions and the compactness

of �. The proof is completed.

A.2 Numerical integration

Here, we outline how to numerically implement integrations with respect to x and �, to obtain the test

statistic Ĵ . First, observe thatZ
1

h
K

�
Xi� � x
h

�
��1 (x) dx = 1 +

Z
1

h
K

�
Xi� � x
h

�
G (x) dx

= 1 + [Li;h (x)G (x)]
1
�1 �

Z
Li;h (x) g (x) dx = 2�

Z
Li;h (x) g (x) dx;
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where Li;h (x) := (1=h)
R x
�1K ((Xi� � u) =h) du; the second equality follows from the integration by

parts; and the last equality holds since Li;h (1) = G (1) = 1 and Li;h (�1) = G (�1) = 0. Using

this, we consider the following approximation:Z
1

h
K

�
Xi� � x
h

�
��1 (x) dx ' 2� 1

R

XR

r=1

1

h
K

�
Xi� � xr

h

�
;

where fxrgRr=1 is a computer-generated (pseudo) random sequence. As fxrg, we in particular use a
so-called low-discrepancy sequence based on the Halton sequence, i.e., we let xr = GINV (ar), where

fargRr=1 is the �rst R numbers of the base-2 Halton sequence on the unit interval (0; 1) and GINV (a) :=
log (a= [1� a]) (the inverse function of G (x)). By the integration method outlined here, we can obtain a
numerical approximation ĝR (�) to

nR
R 	̂ (x; �) dx

o2
for each �. To integrate ĝR (�), we also consider the

use of a Halton-based sequence f�ugUu=1, where �u := 2bu � 1 and fbug
U
u=1 is the �rst U numbers of the

base-3 Halton sequence on the unit interval (0; 1). Then, we have an approximation to the numerator

of Ĵ : Z
[�1;1]

�Z
R
	̂ (x; �) dx

�2
d� '

Z
[�1;1]

ĝR (�u) d� '
1

U

XU

u=1
ĝR (�u) ;

where we let R = U = 100 through our simulation study. By using the same method, we can also obtain

an approximation to the denominator of Ĵ ,
Z
[�1;1]

�̂ (�) d�.
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