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Abstract

Screening models are used to analyze contracting in many subfields of economics like regulation,

labor economics, monopoly pricing, taxation or finance. Most models assume single crossing. This

simplifies the analysis as local incentive compatibility is in this case sufficient for global incentive

compatibility. If single crossing is violated, global incentive compatibility constraints have to be

taken into account. This paper studies monotone solutions in a model where single crossing is

violated.

It is shown that local and non-local incentive constraints distort the solution in opposite direc-

tions. Therefore, the optimal decision might involve distortions above as well as below the first best

decision. Furthermore, the well known“no distortion at the top”property does not necessarily hold.

Sufficient conditions for existence, monotonicity and continuity of the solution and an algorithm to

obtain such a solution are derived.

Some results can be readily applied. For example, overinsurance, i.e. insurance levels above

first best as in “Cadillac” insurance plans, can be rationalized. In a non-linear pricing framework,

the model also provides an explanation for marginal prices below marginal costs as observed in flat

rate offers.
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1. Introduction

Adverse selection models–sometimes also referred to as screening models–are among the most used

microeconomic models since their introduction by Akerlof (1970). The main feature of these models

is that one (or more) agents have private information which is relevant for transactions with other

players. This private information can be the efficiency of a firm in models of regulation (Baron and

Myerson, 1982; Laffont and Tirole, 1987), the productivity of a worker in labor market (Guasch and

Weiss, 1981) as well as in optimal taxation models (Mirrlees, 1971), the risk of an accident in insurance

models (Stiglitz, 1977) or the willingness to pay for a product in models of monopoly pricing (Mussa

and Rosen, 1978) and auctions (Myerson, 1981).

Two standard research questions typically emerge in this kind of models: What will be the market

outcome, e.g. the optimal contract? How does the presence of asymmetric information affect welfare

and the distribution of the social surplus? Generally speaking, a menu emerges as optimal contract,

i.e. several options are offered and the player who has private information will choose his preferred

option. The chosen option will normally not be what a benevolent planner with complete information

would assign. Hence, informational distortions exist and will reduce welfare. The reason in a nutshell

is that the agent reveals (some of) his private information by his choice. This will not be costless for

the principal who designs the menu: The agent receives an informational rent. By distorting the menu

away from first best, the principal can reduce this informational rent to his own benefit.

In the regulation example, a regulator will want a more efficient firm to produce a higher quantity

than a less efficient firm. But an efficient firm could claim to be inefficient and choose the (low

quantity) option intended for an inefficient firm from the menu. Since the firm is efficient, it would

make a profit by “misrepresenting” itself. By distorting the quantity intended for an inefficient firm,

the regulator can make such misrepresenting less attractive for an efficient firm. Hence, the regulator

can save on the informational rents of an efficient firm by distorting the menu option intended for an

inefficient firm away from first best.

Single crossing–which is also referred to as Spence-Mirrlees condition or sorting condition–is a

technical assumption usually made in hidden information models. In one dimensional models, single

crossing states that types1 can be ordered according to their marginal rate of substitution between

monetary transfers and the decision, e.g. produced quantity in the regulation example above. With

the usual quasilinear preferences, single crossing is equivalent to a type ordering according to marginal

utilities.

1A “type” is an agent with a specific private information attribute, see Harsanyi (1967). In the regulation example

types correspond to cost functions of the firm.
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In the regulation example above, the firm’s cost depends on quantity and type. Single crossing

means that higher types have lower marginal costs for any admissible quantity. Single crossing is

violated if such an ordering is impossible, e.g. a higher type has lower marginal costs for high quantities

but higher marginal costs for low quantities.

This paper analyzes an adverse selection model in which single crossing is violated. Agents have

quasilinear preferences and a one-dimensional type. The setting allows for a one time violation of

single crossing; e.g. for a given quantity, marginal costs are first increasing and then decreasing in

type. Without single crossing, local incentive compatibility does no longer guarantee global incentive

compatibility. Therefore, non-local incentive compatibility constraints have to be taken into account.

The paper analyzes monotone solutions in this setup, e.g. situations in which higher types produce

higher quantities under the optimal contract. Sufficient conditions for the existence of a monotone

solution and an algorithm to calculate such a solution are presented.

With single crossing, there is no distortion at the top and the distortion for all types goes in the

same direction, e.g. all types produce a quantity which is weakly below their first best quantity. If

single crossing is violated neither result has to hold. The reason is that binding non-local incentive

constraints will counteract the normal distortion stemming from local incentive compatibility and rent

extraction motives. A rough intuition for this result is the following: With single crossing, distortions

occur because the principal wants to lower the agent’s informational rent. If a non-local incentive

constraint is violated, a certain type’s rent at “his contract” is too low compared with another type’s

contract. To satisfy his non-local incentive constraint, his rent has to be increased. Reducing the

normal distortion (or even distorting the decision in the opposite direction) will result in such an

increase.

The following section gives several examples of settings in which single crossing is violated. The

related literature is reviewed in section 3 and the formal model is introduced in section 4. Section 4 also

states a sufficient condition for the existence of a monotone solution. Section 5 analyzes the solution:

Subsection 5.1 introduces necessary conditions which have to hold at types where non-local incentive

constraints are binding. The core of the paper are the subsections 5.2 and 5.3: The former characterizes

monotone solutions while the latter focuses on the special case of monotone and continuous solutions.

An explanation why the no-distortion-at-the-top property is not always satisfied follows in subsection

5.4. Before concluding, I discuss some assumptions and point out differences with solutions obtained

in related problems in the literature.
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2. Examples

This section illustrates why single crossing is violated in a number of reasonable economic settings. Sec-

tion 2.1 gives several examples with a common theme: There are more than one input/option/relevant

characteristic. It is then a priori unclear (and sometimes even unreasonable) that a higher type is “bet-

ter” on all dimensions. But this is exactly what single crossing would require. Section 2.2 presents a

three type example which shows not only how preferences can directly violate single crossing but also

gives some intuition for the results of the paper.

2.1. Example settings where single crossing is violated

Example 1: two factor production. Take a setting where a firm or government has to contract with

the provider of a good (input or public good/infrastructure etc.). If the principal is a government,

this setting is mathematically equivalent to incentive regulation (compare for example Laffont and

Tirole (1993)). Assume now that production uses variable input factors in fixed proportions. These

input factors fall in one of two groups depending on how they affect costs: The first group are inputs

which increase costs proportional to output, e.g. energy costs and unskilled labor. The second group

are inputs increasing costs convexly in output, e.g. skilled labor (due to search costs) and machine

utilization. Type indexes the possible production technologies and denotes which of these two groups

of inputs is used more efficiently by the firm. A cost function representing this setting could be2

c(q, θ) = θq +
q2

θ
+ γ(θ)

where γ(θ) are (possibly type dependent) fixed costs. To give a more straightforward interpretation,

let type represent whether a firm uses a labor intensive or capital intensive production technology.

A labor intensive production technology requires especially unskilled labor which can be hired at a

constant market wage (linear part). A capital intensive technology requires less but more skilled

employees. Finding them is increasingly difficult and results therefore in convexly increasing costs. A

more capital intensive technology might be associated with higher fixed costs (of capital).

Whether marginal costs cq(q, θ) = θ + 2q
θ

are increasing or decreasing in type depends on the

produced quantity q. Put differently, the cross partial derivative cqθ(q, θ) = 1− 2q/θ2 can change sign

and therefore single crossing is violated. The idea is simple: For low quantities, the linear part of the

cost function dominates marginal costs and therefore high types have higher marginal costs. For high

quantities, the convex part of the cost function is more relevant and therefore high types have lower

marginal costs.

2The alternative cost function c(q, θ) = θq + (1− θ)q2 + γ(θ) also violates single crossing.
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A second interpretation of the cost function above could apply in the case of environmental regula-

tion. Let the principal be a government designing a subsidy scheme to reduce emissions. The decision

q is the amount of emission reduction. Reducing emissions can be achieved by lowering the content

of a dirty input in favor of a more expensive clean input. This is a linear cost. Alternatively, the

emission reduction can be obtained by filtering and other changes in the production process. This

second option becomes increasingly costly the more one has to rely on it. Hence, the convex part of

the cost function. The government does not know the firm’s production technology which is its type

θ. Depending on the production technology, it is easier for the firm to filter or to substitute inputs.

It should be mentioned that the cost function in this example can be viewed as a simplified version

of the flexible fixed cost quadratic cost function suggested by Baumol et al. (1982). Beard et al.

(1991) estimate such a cost function for savings and loans associations. Interestingly, they allow for

two unobservable types of production technology in their estimation. In table 5, Beard et al. (1991)

report estimated costs for the two types (“mixtures” in their language) at different quantity levels.

If one interprets estimated cost differences between the output levels as marginal costs, it turns out

that mixture 1 has lower marginal costs at low output levels but higher marginal costs at high output

levels. Hence, single crossing is violated.

Example 2: hiring talent and productivity. This example is in the context of compensation

of workers.3 The principal is the owner of a firm and the agent a worker the firm wants to hire. For

the quality of the worker talent and effort are relevant, e.g. talent is what the worker produces in a

regular working time like the 40 hours week and effort is the additional time he is willing to invest.

Assume the worker creates value q = eθ+T where T is his talent, e is the unobservable effort and θ is

his type. The owner of the firm observes a public signal, e.g. education, which is a mix of talent and

productivity (he does not observe T and θ directly). To be precise, assume that the signal is σ = θ∗T .

Given this signal, a more productive worker will have lower talent and vice versa. The production

function of the manager for a given signal is q = eθ + σ/θ where q is the quantity/value produced by

the worker. If costs of effort are e2 and the worker’s preferences are quasilinear in money, his utility

function can be written as

u(q, θ) = w −
(q − σ/θ)2

θ2
(1)

where w is wage. It is easy to check that single crossing is violated. The intuition is that a low type

can produce a low output q without much effort just within the regular working time. Hence, his

marginal costs of effort (and therefore of q) are low. A high type already has to exert some effort to

reach the same output level and therefore his marginal costs of effort (and q) are higher. Note here

3A similar example can be found in Araujo and Moreira (2010).
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that the contract is conditional on education, i.e. given σ a more productive type will be less talented.

For high output, where effort of both types is substantial, higher types have lower marginal costs since

they are more productive.

Example 3: common agency. As already mentioned in Martimort and Stole (2009), violations

of single crossing can arise if more than one principal contract with the same agent. Interestingly,

the utility function itself will satisfy single crossing (for a fixed decision with the other principal) and

the violation of single crossing results from the existence of multiple principals. This example tries to

convey the idea in a simplified setup.

The source of hidden information in this example is the inability of firms to know the exact

preferences of a customer. A firm cannot observe the preferences of a customer but it can engage in

non-linear pricing, i.e. second degree price discrimination.

Say, consumers can buy two goods which are imperfect substitutes: Good A is sold only by firm

A while good B is available on a perfectly competitive market at a constant per unit price pB.4 For

concreteness, let the demand function for good B of a type θ consumer be

qB(qA, θ) = θ(β − pB − δqA) (2)

which means that type rotates the inverse demand function outwards. The following quadratic utility

function yields such a demand function:

u(qA, qB , θ) = αqA + βqB −
γ

2θ
(qA)

2
−

1

2θ
(qB)

2
− δqAqB − pBqB − pA(qA)

Firm A faces consumers buying product B according to (2). By plugging (2) into the utility function,

one can obtain utility as a function of qA and θ alone, i.e. v(qA, θ) = u(qA, qB(qA, θ), θ). This is the

utility function firm A has to take into account in its profit maximization problem. Because consumers

buy also product B, single crossing is violated:

vqAθ(q
A, θ) = uqAθ(q

A, qB(qA, θ), θ) + uqBθ(q
A, qB(qA, θ), θ)

∂qB(qA, θ)

∂qA
= qA

( γ

θ2
+ δ2

)

− δ(β − pB)

Clearly, vqAθ is negative for low qA and positive for high qA. The reason for the violation of single

crossing is that high type consumers have, on the one hand, a higher marginal willingness to pay

because of their high type (that is the γ
2θ (q

A)
2
term in the utility function u(qA, qB , θ)). On the other

hand, a high type buys more of product B which reduces his willingness to pay for product A as the

two goods are substitutes.

The basic intuition of this example is also reflected in the following story: Think of fixed line

internet access. Heavy internet users will certainly have a higher marginal utility from the fifth

4See Martimort and Stole (2009) for a model in which the second good is also offered by a strategically acting principal.
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gigabyte of data than light users. If heavy users, however, also own smartphones with internet access

(and light users do not), light users will probably have a higher willingness to pay for the first 50

megabyte: They cannot switch to their mobile devices to check emails etc.. Hence, single crossing

would be violated.

Example 4: insurance with mean variance utility. An agent faces a risk of losing a (money

equivalent) amount D with probability θ where θ is private information. His preferences are given by

the mean variance utility function

u(q, θ) = E[wealth]− 1/2r V ar[wealth]

= θ(w − (1− q)D) + (1− θ)w − p− 1/2rθ(1 − θ)(1− q)2D2

where p is the insurance premium of an insurance covering fraction q of the loss, w is initial wealth

and r > 0 is a measure of risk aversion. The cross derivative uqθ = D+(1− q)rD2(1− 2θ). If θ > 1/2

and rD > 1, the cross derivative can change sign depending on q. Hence, single crossing is violated.

The intuition is that for θ > 1/2 a higher risk also implies less variance. Consequently, a higher

type is on the one hand more eager to buy insurance because he has a higher risk on the other hand

he is less eager to buy insurance because there is less variance in his payoffs. At full coverage, i.e. for

q = 1, the payoff variance is zero and the latter effect is no longer present. For lower coverage levels,

however, it might dominate.

2.2. Three type example

In the airline industry there are often three classes: First class, business class and economy class. The

simplest model leading to this result is a model of non-linear pricing with three possible consumer

types which differ in their taste for quality. For economy class, think of poor leisure traveler with a

low willingness to pay for quality, say θlq where q is quality and θl is some positive number. For the

first class, think of luxury travelers with a high willingness to pay for quality, say θhq with θh > θl. So

far, single crossing is satisfied: Luxury travelers have a higher marginal willingness to pay for quality

than poor leisure travelers at every quality level.

The third group of travelers are business travelers and I define them the following way: Business

travelers have a very high willingness to pay for the first units of quality, e.g. for a higher seat pitch,

a socket at the seat, internet access and the option to leave the plane first. However, they have a

lower willingness to pay than the luxury traveler at high levels of quality, e.g. for an exquisite wine

card, limousine service at the airport or a personal flight attendant. Their preferences can therefore
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be represented by

vb(q) =







θmaxq, for q ≤ q̃

θmaxq̃ + (q − q̃)θb, for q > q̃

with θb < θh < θmax. Now single crossing is violated since business travelers have a higher willingness

to pay than luxury travelers for the first q̃ units of quality but not for additional quality/luxury.

In screening models with single crossing, see for example Bolton and Dewatripont (2005, ch. 2),

quality is downward distorted for all but the highest type (compared to the symmetric information

first best). This helps the principal (here: the airline) to extract rents. Or, as Dupuit (1962) explains

for railway travel:

It is not because of the few thousand francs that would have to be spend to put a roof

over the third-class carriages or to upholster the third-class seats that some company or

other has open carriages with wooden benches [. . . ] What the company is trying to do is

to prevent the passengers who can pay the second-class fare from traveling third-class.

Another standard result with single crossing is that only local incentive constraints are binding, i.e.

with single crossing luxury travelers are indifferent between first class and business class and business

travelers are indifferent between business and economy class. If single crossing is violated also non-local

incentive constraints can bind: The solid lines in figure 1 depict indifference curves for the three types

in a situation where the local downward constraints are binding.5 But now–because of the violation of

single crossing–the luxury traveler prefers economy to first class, i.e. his indifference curve through the

first class offer lies above the economy class offer. Hence, a non-local incentive constraint is violated.

The problem is that the price difference between economy and business class is determined by the

huge utility difference of business travelers. The utility difference of luxury travelers between economy

and business class quality is smaller than this price difference.

To satisfy also the non-local incentive constraint, the contracts have to be changed to those indi-

cated by “×” in fig 1. The dashed indifference curves in figure 1 go through these changed contracts.6

Here, local and non-local incentive constraints bind. Essentially, two things happen when changing

contracts: First, the price for first class travel has to decrease to prevent the luxury traveler from

traveling economy class. As this also relaxes the incentive constraint between first and business class,

the quality for business travelers can be brought closer to first best. Second, the quality in the economy

class increases. This helps to relax the non-local incentive constraint because it reduces the utility

difference between economy and business class for business travelers more than for luxury travelers.

5The offers, i.e. quality and price, for each of the three classes are depicted as filled circles.
6A completely solved numerical example corresponding to figure 1 can be found on https://sites.google.com/

site/christophschottmueller/jmp.
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q̃qfbpoor qfbbus qfblux = qfirstqeco qbus

q

p
luxury

business

poor

pfirst

pbus

peco

Figure 1: indifference curves: three type airline pricing example

The main features of this example are (i) non-local incentive constraints can bind if single crossing

is violated and (ii) binding non-local incentive constraints increase quality/reduce distortions. Both

results will be generalized later on.

3. Literature

The standard screening model with single crossing is well known and explained in many textbooks,

see for example Fudenberg and Tirole (1991) or Bolton and Dewatripont (2005). The literature on

violations of single crossing in screening models remains relatively scarce.

Some insights have been gained for discrete type insurance models with perfect competition among

principals. Several papers analyze settings where private information has two dimensions and can take

either a high or a low value in each dimension, i.e there are 2 × 2 types. In Smart (2000), the two

dimensions are risk and risk aversion while in Wambach (2000) they are wealth and risk. Netzer and

Scheuer (2010) model an additional labor supply decision and the two dimensions are productivity

and risk. All three papers share a pooling result, i.e. if single crossing is violated two of the four

types can be pooled. Boone and Schottmüller (2011) show that with imperfect competition among

principals there can even be an order reversal: Types with higher risk can have more but also less

insurance coverage if single crossing is violated.

My paper will analyze a model with a continuum of types and one principal. As I will illustrate in

the next section, the main technical difficulty caused by a violation of single crossing are non-locally
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binding incentive constraints. In discrete type models one can take all incentive constraints explicitly

into account. This is quite difficult in a continuous type model since a continuum of constraints exist.

Indeed, the main technical challenge is to handle those constraints. Also, some additional qualitative

results emerge from the continuous type model, e.g. distortion above as well as below first best and

distortion at the top.

Araujo and Moreira (2010) characterize in a continuous type framework (inversely) U-shaped

solutions in a setup where single crossing is not satisfied. In these solutions, some contracts are

chosen by two types (“discrete pooling”). It turns out that in (inversely) U-shaped solutions non-local

incentive constraints are only binding between types choosing the same contract from the menu. My

paper complements their work by characterizing monotone solutions in the same model. The main

technical difference is that non-local incentive constraints can bind between types choosing different

options from the menu. The solution in Araujo and Moreira (2010) features either a discontinuity or

a bunching interval. My paper shows that this is not the case for monotone solutions and therefore

not a necessary implication of a violation of single crossing.

Violations of single crossing are also related to the literature on multidimensional screening, see

Armstrong (1996) and Rochet and Choné (1998) for seminal contributions and Rochet and Stole (2003)

for a survey. As pointed out in the survey, “the problems arise not because of multiple dimensionality

itself, but because of a commonly associated lack of exogenous type-ordering in multiple-dimensional

environments.” A violation of single crossing also conveys a lack of type-ordering. To make the

relationship clear, think of a multidimensional, discrete type model. Clearly, one can reassign types

to a one-dimensional parameter but this reassigned type will normally not satisfy single crossing.

Consequently, an applied researcher will often have the choice between a multidimensional type model

or a one-dimensional type model violating single crossing. My paper provides tools to make the latter

way feasible.

The paper also relates to work relaxing the basic assumptions of the textbook model. Jullien

(2000) allows for type dependent participation constraints while Hellwig (2010) analyzes the case of

irregular type distributions, i.e. distributions with mass points and zero densities. In section 6 the

solution obtained with a violation of single crossing will be compared with the solutions obtained in

those papers.
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4. Model

There is a one-dimensional decision in a principal agent relationship which is denoted by q ∈ R+.

Furthermore, there is a monetary transfer t ∈ R. The agent’s utility is π = t− c(q, θ) where θ ∈ Θ ≡

[θ, θ̄] ⊂ R is the type of the agent which is his private information. The function c(q, θ) is assumed to

be three times continuously differentiable with cq > 0, cθ < 0.7 The principal’s utility is u(q, θ) − t

and is two times continuously differentiable with uq > 0. The principal has the prior distribution F (θ)

with continuous density f(θ) > 0 for all θ ∈ [θ, θ̄].

For example, the principal could be the regulator of a natural monopolist and q could be the quality

(or quantity) of service provided. The regulator might maximize expected consumer surplus which

could be q− p where p is the price paid. The natural monopolist would have cost function c(q, θ) and

maximize profits. A higher type would correspond to a more efficient firm in the sense that its costs

are lower than the costs of a lower type.

By the revelation principle, any general mechanism can also be implemented by a direct revelation

mechanism in which the agent truthfully reports his type (Myerson, 1979). The task is to design a

menu q(θ), implemented by transfers t(θ), which is individually rational (ir) and incentive compatible

(ic) for the agent and maximizes the principal’s objective under these two constraints.

Define π(θ) as the rents (in the regulation example: profits) a type θ gets under an implementable

menu (q(θ), t(θ)). Faced with a menu (q(θ), t(θ)), a type θ agent will maximize t(θ̂) − c(q(θ̂), θ) over

his type announcement θ̂. The envelope theorem and truthful revelation require πθ(θ) = −cθ(q(θ), θ).

Incentive compatibility of a decision q(θ) requires in general for any θ, θ̂ ∈ Θ

Φ(θ, θ̂) ≡ π(θ)− [π(θ̂) + c(q(θ̂), θ̂)
︸ ︷︷ ︸

t(θ̂)

−c(q(θ̂), θ)] ≥ 0. (IC)

Using the envelope condition above, Φ(θ, θ̂) can be rewritten as

Φ(θ, θ̂) =

∫ θ̂

θ

cθ(q(t), t)− ct(q(θ̂), t) dt

= −

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqθ(s, t) ds dt

where the second equality follows from integrating out the decision. Consequently, (IC) is equivalent

to

−

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqθ(s, t) ds dt ≥ 0. (IC’)

Single crossing in this model is equivalent to cqθ(q, θ) not changing sign for any value of q and θ.

But then incentive compatibility in (IC’) boils down to a simple monotonicity condition on q(θ) (plus

7For the case where cθ can change sign (but single crossing is satisfied) see Jullien (2000).
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cqθ < 0 s(θ)

q(θ)

(a) inverse U-shape solution

θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ̂ θ

(b) monotone solution

Figure 2: possible solution shapes

the envelope condition): If cqθ < 0, then inequality (IC’) will hold whenever q(θ) is monotonically

increasing. If however cqθ can change sign, this is no longer true. It remains true that q(θ) has to be

increasing (decreasing) at θ if cqθ(q(θ), θ) < (>)0. Otherwise, (IC’) would be violated for types close

enough to θ. But this no longer implies global incentive compatibility for two arbitrary types θ and θ̂.

This paper focusses on a one-time violation of single crossing also used by Araujo and Moreira

(2010): It is assumed that cqθ changes sign only once for a given q (or a given θ). More precisely,

I assume cqθθ > 0 and cqqθ < 0. Hence, there exists a strictly increasing function s(θ) such that

cqθ(s(θ), θ) = 0. Put differently, s(θ) gives for each type the decision level at which the cross derivative

cqθ is zero. The assumption on third derivatives are normally made to ensure concavity of the objective

function and monotonicity of the decision, see for example section 7.3.2 in Fudenberg and Tirole (1991).

Here, however, they provide some structure on the way single crossing is violated.

Araujo and Moreira (2010) find necessary conditions for the case where the solution is inversely

U-shaped, see figure 2a.8 Note that distinct types are assigned the same decision. Consequently, they

have to get the same transfer as well and the incentive compatibility constraint has to be binding

between those types. It turns out that non-local incentive compatibility constraints are only binding

between such discretely pooled types.

The focus of my paper will be on the case where the optimal decision is monotone.

Although cqθ < 0 at the decision q(θ) for all types, the violation of single crossing still plays a

role in monotone solutions. It follows from (IC’) that one can represent incentive compatibility as

an integral over the shaded area in figure 2b: If the integral of cqθ over this shaded area is negative,

incentive compatibility is satisfied for θ and θ̂. Hence, the region where cqθ > 0 plays a role although

8The figure is more schematic than reflecting the solution in Araujo and Moreira (2010): They show that the inversely

U-shaped solution typically displays a bunching interval or a discontinuity.
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the solution does not pass through this region.

The intuition is the following: Take two types θ and θ̂ with θ > θ̂. Type θ̂ is assigned a transfer

decision pair (t̂, q̂) and likewise θ has pair (t, q) with q > q̂. When deciding whether he should

misrepresent, type θ will compare the transfer difference t− t̂ with the cost difference c(q, θ)− c(q̂, θ).

Note that the transfer difference t − t̂ does not depend on type while the cost difference does. With

single crossing, the cost difference is decreasing in type. If a type θ′ ∈ (θ̂, θ) with q′ ∈ (q̂, q) is

introduced, it follows that c(q, θ)− c(q̂, θ) < c(q, θ) − c(q′, θ) + c(q′, θ′)− c(q̂, θ′). On the other hand,

the equivalent expression for transfers holds with equality: t− t̂ = t− t′ + t′ − t̂. Therefore, incentive

compatibility between θ and θ̂ is implied by incentive compatibility between θ and θ′ as well as between

θ′ and θ̂. Local incentive compatibility implies non-local incentive compatibility because single crossing

implies that the cost difference is decreasing in type. Without the single crossing assumption, the cost

difference c(q, θ)− c(q̂, θ) is not necessarily decreasing in type and therefore local incentive constraints

are not necessarily more demanding than non-local ones.

Before turning to the analysis of the solution, some definitions and one assumption is needed. I

define the first best solution denoted by qfb(θ) as the solution to

max
q(θ)

u(q(θ), θ)− c(q(θ), θ)

which would be the optimal decision if the principal observed the agent’s type. As a second reference

point, it is useful to look at the relaxed program. This is the program taking only local incentive

compatibility into account:

max
q(θ)

∫ θ̄

θ

{u(q(θ), θ)− c(q(θ), θ)− π(θ)}f(θ) dθ (RP)

s.t. : πθ(θ) = −cθ(q(θ), θ)

qθ(θ)cqθ(q(θ), θ) ≤ 0

π(θ) ≥ 0

The first and second constraint are the local incentive compatibility constraints. More specifically, the

first constraint is the envelope condition. It corresponds to a first order condition of the problem in

which the agent maximizes his utility over his types announcement. The second constraint is the so

called monotonicity constraint which corresponds to the second order condition of the same problem.9

The third constraint is the participation constraint which will bind only for θ by the assumption cθ < 0.

I will call the solution of (RP) the relaxed solution and denote it by qr(θ).

9For a brief proof of this (also for the case where single crossing is violated), see lemma 1 in Araujo and Moreira

(2010).
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Since this paper focuses on the violation of single crossing in monotone solutions, the following

assumption is made:

Assumption 1. The relaxed program is strictly concave in q(θ) and the relaxed solution is strictly

monotonically increasing and strictly above s(θ), i.e. qrθ(θ) > 0 and qr(θ) > s(θ).10

Put differently, I assume that the monotonicity constraint does not bind and the relaxed solution

is fully characterized by the first order condition. It is easy to show that uqq ≤ 0 and cqq ≥ 0 are

sufficient for concavity. For strict monotonicity and qr(θ) > s(θ), the following assumptions would

be sufficient: uqθ ≥ 0, qfb(θ) > s(θ) and the commonly made monotone hazard rate assumption,

i.e. f(θ)/(1 − F (θ)) non-decreasing in θ. Note that the principal’s utility is not influenced directly

by the agent’s type in most applications, i.e. even uqθ = 0 is often satisfied. The monotone hazard

rate assumption is satisfied by the most common distributions as uniform, normal or exponential, see

Bagnoli and Bergstrom (2005) for details.

Under assumption 1, it is routine to verify that the relaxed solution is characterized by the first

order condition

{uq(q(θ), θ)− cq(q(θ), θ)}f(θ) + (1− F (θ))cqθ(q(θ), θ) = 0. (3)

Since qr(θ) > s(θ), it follows that cqθ(q
r(θ), θ) < 0. Therefore, (3) implies that qr(θ) ≤ qfb(θ) where

the inequality is strict for all types but θ̄. The fact that for the highest type θ̄ relaxed solution and

first best coincide is the famous “no distortion at the top” result.

As already indicated, solutions can be monotone or inversely U-shaped (or even crossing s(θ) with

a discontinuous jump). It is therefore useful to have a sufficient condition under which the solution is

monotone. To get such a sufficient condition, a technical condition has to be added to assumption 1.

To state this technical condition some “mirror images” have to be defined: Take a decision q below

s(θ) and consider mirroring this decision in two ways: First, mirror it along s(θ): Define qs(q, θ) by
∫ qs(q,θ)
q

cqθ(x, θ) dx = 0. Second, mirror q along the relaxed solution qr such that {u(q, θ)−c(q, θ)}f(θ)+

(1−F (θ))cqθ(q(θ), θ) is the same for q and its mirror image qv(q, θ). Since cθ(q, θ) and (RP) are concave

in q, the two mirror images are well defined. Last define qf (θ) < s(θ) such that qs(qf (θ), θ) = qr(θ),

i.e. qf (θ) is a kind of mirror image of the relaxed solution along s(θ).11

Appendix C shows that an optimal contract exists under the technical condition qv(q, θ) ≥ qs(q, θ)

for all q ∈ [0, qf (θ)] and all θ ∈ [θ, θ̄]. The following proposition implies that this technical condition

is–together with assumption 1– also sufficient for the monotonicity of the solution.

10Strict concavity of the relaxed program means that the partial derivative of the left hand side of equation(3) below

with respect to q is negative.
11If no qf (θ) ≥ 0 exists, take qf (θ) = 0.

14



Proposition 1. If qv(q, θ) ≥ qs(q, θ) for all q ∈ [0, qf (θ)] and all θ ∈ [θ, θ̄], then any decision function

q(θ) which imposes decisions below s(θ) for some type is dominated by the following changed decision

qc(θ) =







q(θ) if q(θ) ≥ s(θ)

qs(q(θ), θ) if q(θ) < s(θ)

combined with transfers such that πc
θ = −cθ(q

c(θ), θ). This changed decision is above s(θ) and mono-

tonically increasing.

Proof. see appendix

Put differently, the optimal decision has to be above s(θ) if the conditions of proposition 1 are

met. To satisfy local incentive compatibility, a decision above s(θ) has to be monotonically increasing

(monotonicity constraint). The conditions of proposition 1 are therefore sufficient for monotonicity.

Note that the imposed condition is automatically satisfied for q close to qf (θ) by assumption 1.

Hence, the condition roughly states that qs(q, θ) is not much steeper in q than qv(q, θ). This holds, for

example, true if {u(q, θ)− c(q, θ)}f(θ)+ (1−F (θ))cθ(q(θ), θ) and cθ(·) are both symmetric in q, i.e. if

cθ(s(θ)−∆, θ) = cθ(s(θ)+∆, θ) and{u(qr(θ)−∆, θ)−c(qr(θ)−∆, θ)}f(θ)+(1−F (θ))cθ(q
r(θ)−∆, θ) =

{u(qr(θ)+∆, θ)−c(qr(θ)+∆, θ)}f(θ)+(1−F (θ))cθ(q
r(θ)+∆, θ) for any ∆ as then qvq (q, θ) = qsq(q, θ) =

−1.

Given that the condition qv(q, θ) ≥ qs(q, θ) is sufficient but not necessary for a monotone solu-

tion, this condition will not be used in the remainder of the paper where monotone solutions are

characterized.

5. Optimal contract

5.1. Necessary conditions

This subsection presents necessary conditions which have to be met whenever a non-local incentive

constraint is binding. Since these conditions are only a slight generalization of those presented in

Araujo and Moreira (2010), the presentation will be brief and more intuitive than formal.

Take an optimal decision schedule q(θ) and let transfers be determined by local incentive compat-

ibility, i.e. such that πθ(θ) = −cθ(q(θ), θ) and π(θ) = 0. Furthermore, suppose that IC is binding for

two types θ and θ̂, i.e. Φ(θ, θ̂) = 0. By incentive compatibility, Φ(·) has to be non-negative for all

types. Therefore, (θ, θ̂) ∈ argmin(s,t)Φ(s, t) as Φ(θ, θ̂) = 0.
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Given that π(·) and c(·) are differentiable, the first order condition with respect to θ has to hold:12

∂Φ(θ, θ̂)

∂θ
= −cθ(q(θ), θ) + cθ(q(θ̂), θ) ≤ 0 with “=” if θ < θ̄ (C1)

In the same way the first order condition for θ̂ is derived:

∂Φ(θ, θ̂)

∂θ̂
= qθ(θ̂)

(

−cq(q(θ̂), θ̂) + cq(q(θ̂), θ)
)

≥ 0 with “=” if θ̂ > θ (C2)

Hence, θ̂ is either bunched or marginal costs of θ and θ̂ are equal at q(θ̂).

The interpretation of these two conditions is the following: Recall that πθ(θ) = −cθ(q(θ), θ) while

cθ(q(θ̂), θ) is how profits of misrepresenting as θ̂ change in the misrepresenting type θ. Then condition

(C1) says that profits π(θ) should change in type in the same way as misrepresentation-profits change

in type. For a graphical interpretation, it is worthwhile to rewrite (C1) as

∫ q(θ)

q(θ̂)
cqθ(q, θ) dq = 0 (C1’)

which means that the right hand side boundary of the shaded area in figure 2b is zero when weighted

with cqθ. If the integral above was positive and Φ(θ, θ̂) = 0, then incentive compatibility would be

violated for θ + ε and θ̂ as Φ(θ + ε, θ̂) ≈ Φ(θ, θ̂) − ε
∫ q(θ)

q(θ̂)
cqθ(q, θ) dq, i.e. the “shaded area” for θ + ε

would be the same plus some area having the “wrong” sign.

If the integral above is negative, the same applies accordingly for θ− ε, i.e. Φ(θ− ε, θ̂) ≈ Φ(θ, θ̂)+

ε
∫ q(θ)

q(θ̂)
cqθ(q, θ) dq.

The second condition simply says that either θ̂ is bunched with other types or also the weighted

lower boundary of the shaded area in figure 2b is zero, i.e.

∫ θ

θ̂

cqt(q(θ̂), t) dt = 0. (C2’)

Again, figure 2b illustrates the idea. If the integral was positive, incentive compatibility would be

violated between θ and θ̂ − ε as Φ(θ, θ̂ − ε) ≈ Φ(θ, θ̂)− εqθ(θ̂)
∫ θ

θ̂
cqt(q(θ̂), t) dt.

The graphical interpretation also allows to quickly generalize these conditions at points of discon-

tinuity and bunching. This situation is depicted in figure 3. Assume Φ(θ, θ̂i) = 0 for i = 1, 2. To keep

incentive compatibility for types close to θ, θ̂1 and θ̂2 the following conditions have to hold:13� ∫ q−(θ)

q(θ̂i)
cqθ(q, θ) dq ≥ 0 as otherwise Φ(θ − ε, θ̂i) < 0� ∫ q+(θ)

q(θ̂i)
cqθ(q, θ) dq ≤ 0 as otherwise Φ(θ + ε, θ̂i) < 0

12It turns out that non-local incentive compatibility constraints are only downward binding, see lemma 1. For this

reason as well as notational convenience, I ignore the possibilities Φ(θ, θ̄) = 0 and Φ(θ, θ̂) = 0 already here.
13I use the superscript “–” (“+”) to indicate limits from below (above).
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θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ̂1 θ̂2 θ

Figure 3: necessary conditions at discontinuity� ∫ θ

θ̂1
cqt(q(θ̂), t) dt ≤ 0 as otherwise Φ(θ, θ̂1 − ε) < 0� ∫ θ

θ̂2
cqt(q(θ̂), t) dt ≥ 0 as otherwise Φ(θ, θ̂1 + ε) < 0

Given (C1) and (C2), one can use variational calculus to derive a third necessary condition for

types at which the incentive constraint binds. While (C1) and (C2) are purely driven by incentive

compatibility, this third condition will be derived from the principal’s optimization. The idea is to to

have a variation of the optimal decision around θ and θ̂ such that the two necessary conditions (C1)

and (C2) are still satisfied. The method differs only slightly from the one used in Araujo and Moreira

(2010) for discretely pooled types and therefore the steps are relegated to appendix A. The following

variational condition results:

[uq(q(θ), θ)− cq(q(θ), θ)]f(θ)

cqθ(q(θ), θ)
+ 1− F (θ) =

[uq(q(θ̂), θ̂)− cq(q(θ̂), θ̂)]f(θ̂)

cqθ(q(θ̂), θ̂)
+ 1− F (θ̂) (C3)

Section 5.2 will give a shadow value interpretation to the terms on both sides of (C3) and thereby

provide some intuition for this condition.

5.2. Monotone solution

The remainder of the paper deals with the characterization of monotone solutions. As pointed out

before, the main difficulties are non-locally binding incentive constraints. The following two lemmata

show that only a certain subset of non-local incentive constraints can be binding. Lemma 1 implies

that incentive constraints cannot be upward binding in monotone solutions. Put differently, no type

will be indifferent between the contract designated for him and the contract of a higher type. The
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θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ θ̂

(a) no upwards binding

θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ4 θ3 θ2 θ1

(b) no overlap

Figure 4: non-binding constraints

only possible way a non-local incentive constraint can be binding is downward, i.e. a type might be

indifferent between his contract and the contract of a lower type.

Lemma 1. If q(θ) ≥ s(θ) and q(θ) is locally incentive compatible, then no type wants to (non-locally)

misrepresent upwards.

Proof. Recall that local incentive compatibility requires monotonicity of q(θ), i.e. q(θ) has to be

monotonically increasing as q(θ) ≥ s(θ). Now take θ̂ > θ. Incentive compatibility requires

Φ(θ, θ̂) ≡ π(θ)− π(θ̂)− c(q(θ̂), θ̂) + c(q(θ̂), θ) ≥ 0 (4)

Because of local incentive compatibility, this can be rewritten as

∫ θ̂

θ

ct(q(t), t)− ct(q(θ̂), t) dt = −

∫ θ̂

θ

∫ q(θ̂)

q(t)
cqt(s, t) ds dt ≥ 0

But the last inequality holds automatically since q(θ) ≥ s(θ) and qθ(θ) ≥ 0. This implies that the

integrand is non-positive for all (s, t) in question. Figure 4a gives a graphical representation of this

fact.

The intuition for lemma 1 is the same as in models with single crossing. A higher decision increases

the costs for higher types less than for lower types. For a low type, this holds true for all decisions above

his own. Local incentive compatibility induces transfer differences making higher types indifferent

between their decision and a marginally higher decision. A lower type will face the same transfer

differences but higher cost differences when opting for a higher decision. Therefore, local incentive

compatibility of higher types implies that low types do not want to misrepresent upwards non-locally.

The following lemma puts more structure on the ways incentive compatibility constraints can

bind. It states that binding non-local incentive constraints cannot overlap, i.e. if a non-local incentive
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constraint binds between θ and θ̂, then no other incentive constraint can bind between a type in the

interval [θ̂, θ] and a type outside this interval. I will use the following phrase to describe binding

non-local incentive constraints: A non-local incentive constraint binds from θ to θ̂ if Φ(θ, θ̂) = 0.

Lemma 2. Assume the solution is monotone and assume q(θ̂) < q(θ). If the non-local incentive

constraint binds from θ to θ̂, it cannot bind from any θ′ ∈ [θ̂, θ) to any θ̂′ 6∈ [θ̂, θ). Neither can it bind

for any θ̂′′ ∈ (θ̂, θ] and θ′′ 6∈ (θ̂, θ).

Proof. The proof is by contradiction. Suppose, contrary to the lemma, there are types θ1 > θ2 ≥

θ3 > θ4 with Φ(θ1, θ3) = 0 and Φ(θ2, θ4) = 0. Then the incentive constraint between θ1 and θ4 will be

violated, i.e. Φ(θ1, θ4) < 0:

Φ(θ1, θ4) = −

∫ θ1

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt

= −

∫ θ2

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(t)

q(θ3)
cqt(s, t) ds dt

= −

∫ θ2

θ4

∫ q(t)

q(θ4)
cqt(s, t) ds dt−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt

+

∫ θ2

θ3

∫ q(t)

q(θ3)
cqt(s, t) ds dt−

∫ θ1

θ3

∫ q(t)

q(θ3)
cqt(s, t) ds dt

= −Φ(θ2, θ3)−

∫ θ1

θ2

∫ q(θ3)

q(θ4)
cqt(s, t) ds dt < 0

The first and second equality are simple splitting up the integral steps (and can readily be seen

in figure 4b), the third uses the fact that Φ(θ1, θ3) = Φ(θ2, θ4) = 0 and the last inequality follows

from the incentive compatibility between θ2 and θ3 as well as the following idea: By the binding

constraint between θ2 and θ4 and the fact that θ2 is interior,
∫ q−(θ2)
q(θ4)

csθ(s, θ2) ds ≥ 0 holds by C1

(with equality if q(θ) is continuous at θ2). By the monotonicity of q(·), q(θ3) ≤ q−(θ2) and therefore
∫ q(θ3)
q(θ4)

csθ(s, θ2) ds ≥ 0 (see figure 4b). The inequality above follows then from cqθθ ≥ 0.

As a special case, i.e. with θ̂ = θ′, the preceding lemma includes the following: If θ is indifferent

between his and θ̂’s contract, i.e. Φ(θ, θ̂) = 0, then no other type θ′ is indifferent between his contract

and θ’s contract, i.e. Φ(θ′, θ) > 0 for all θ′ ∈ Θ \ θ. Put differently, incentive compatibility can bind

non-locally from a type or to a type but not both. Figure 5 summarizes the two previous lemmata by

showing how non-local incentive compatibility constraints can bind in a monotone solution.

One of the contributions of this paper is that a violation of single crossing can affect the solution

without leading to irregularities, i.e. discontinuities or bunching. The following lemma shows that

some irregularities can be ruled out on the grounds of incentive compatibility alone.
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θ

cqθ > 0

cqθ < 0
s(θ)

q(θ)

θ1θ0θ̂0θ̂1 θ̂3 θ̂2 θ2 θ3

Figure 5: how incentive constraints can bind

Lemma 3. Assume a non local incentive constraint binds from θ to θ̂, i.e. Φ(θ, θ̂) = 0. The decision

is continuous at θ̂ if θ̂ is not the boundary type of a bunching interval. Furthermore, θ cannot be

bunched if the decision is continuous at θ and θ < θ̄.

Proof. see appendix

After these technical results, it is possible to obtain a qualitative result of practical importance.

If the solution is monotone, non-local incentive compatibility might require “distortions” that are

unusual: With single crossing, local incentive constraints are downward binding. This explains why

the relaxed solution is below the first best decision. With single crossing, a high type has lower

marginal costs than a low type. By distorting the low type’s decision downward, the cost advantage

of the high type is reduced, i.e. the low type’s decision becomes less attractive. Consequently, the

rent paid to the high type can be lower without inducing misrepresentation. Without single crossing,

it is no longer clear that a high type has lower marginal costs than a low type at the low type’s

decision. Figure 2b, for example, illustrates that
∫ θ

θ̂
cqθ(q(θ̂), t) dt = cq(q(θ̂), θ) − cq(q(θ̂), θ̂) could be

positive. Therefore, making the low type’s contract unattractive might require increasing the low

type’s decision. Informational distortion from local and non-local incentive constraints will then go

in opposite directions. In short, binding non-local incentive constraints reduce the usual downward

distortions.

Proposition 2. If the optimal decision is monotone, it will be above the relaxed solution, i.e. if q(θ)

is monotonically increasing, then q(θ) ≥ qr(θ) for all θ.

Proof. see appendix
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The previous proposition highlights how violations of non-local ic are dealt with under monotone

solutions. This can also be illustrated with figure 2b. Incentive compatibility is violated if the grey

area weighted by cqθ is positive. To satisfy incentive compatibility one can raise q for all types between

θ̂ and θ. The additional grey area features cqθ < 0 and therefore the incentive problem is mitigated.

One noteworthy point is that the incentive constraint is mainly relaxed by increasing q for types

at which the incentive constraint is non-binding; i.e. if ic is binding from θ′ to θ̂′, it is less q(θ′) and

q(θ̂′) that have to be increased but q for the types between θ̂′ and θ′. To see the intuition, recall that

πθ(θ) = −cθ(q(θ), θ) and that cqθ(q(θ), θ) < 0. Therefore, increasing q will raise the slope of the rent

function π(θ). Increasing q for types in (θ̂′, θ′) will therefore increase the rent of θ′ at his assigned

menu point. Obviously, the non-local incentive constraint is relaxed.

The last paragraph illustrates that non-local incentive constraints are potentially difficult to handle:

The decision of a type is not only influenced by the incentive constraints binding for him but also

by binding incentive constraints of other types. The following theorem structures this intuition and

characterizes the solution.

Theorem 1. A monotone solution is characterized by the equation

[uq(q(θ), θ)− cq(q(θ), θ)]f(θ) + (1− F (θ))cqθ(q(θ), θ) = η(θ)cqθ(q(θ), θ) (5)

where η(θ) is a non-negative function with the following properties:� η(θ) is constant on each interval of types for which non-local incentive constraints are not binding

and the decision is strictly increasing.� η(θ) is non-decreasing at types θ̂ to which non-local incentive constraints are binding whenever

θ̂ is not bunched.� η(θ) is non-increasing at types from which non-local incentive constraints are binding.� η(θ̄) is zero if no non-local incentive constraint is binding from θ̄.� η(θ) is zero if no non-local incentive constraint is binding to θ.

Proof. see appendix

Before giving an intuitive interpretation to η(θ), let me briefly sketch the idea behind the proof

of the theorem. Given the solution q(θ), one can simply define η(θ) by (5). The properties of η(θ)

are derived by showing that q(θ) could be changed in a way that (i) is incentive compatible and (ii)

increases the principal’s payoff if these properties were not satisfied. Figure 6 shows feasible changes

when a non-local incentive constraint is binding from θ′ to θ̂′. Increasing the decision for types slightly
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cqθ > 0

cqθ < 0

qc(θ̂)

qc(θ)

s(θ)

q(θ)

θ̂′ θ′

Figure 6: feasible changes

below θ′ will relax (or not affect) binding non-local incentive constraints. Since this change relaxes the

incentive constraints from types above θ′ to types below θ′, it is then feasible to assign types slightly

above θ′ a lower decision, see figure 6. Note that lemma 2 is essential for feasibility as it assures

that no non-local incentive constraint is binding to types slightly above θ′. It can then be shown

that such a feasible change would increase the principal’s payoff if η(θ) was increasing at θ′. At θ̂, a

different change in the decision is feasible, see figure 6, which can be used to show that η(θ) cannot

be decreasing at θ̂. At types where non-local incentive constraints are lax, both kind of changes are

feasible and consequently η(θ) has to be constant.

The properties of η(θ) have an intuitive interpretation. The left hand side of (5) measures by

how much the principal’s payoff is changed when marginally increasing q(θ). Marginally increasing

q(θ) will also relax all non-local incentive constraints binding from types θ′ > θ to types θ̂′ < θ, see

figure 2b. As these incentive constraints can be expressed as integrals over cqθ (see equation (IC’)),

the “amount” by which those non-local incentive constraints are relaxed is given by cqθ(q(θ), θ) which

can be found on the right hand side of (5). Consequently, η(θ) could be interpreted as the shadow

value of all non-local incentive constraints binding from types θ′ > θ to types θ̂′ < θ. These binding

constraints are the same for all types in an interval of types for which non-local incentive constraints

are lax, see figure 5. This explains the first property of η(θ).

The other properties can also be explained by the shadow value interpretation of η(θ). If a non-local

incentive constraint is binding to a type θ̂, then there are more non-local incentive constraints binding

“over” θ̂ + ε than “over” θ̂ − ε.14 Consequently, the shadow value of non-local incentive constraints

14With binding “over” θ I mean binding from a type θ′ > θ to a type θ̂ < θ.

22



binding over a type has to be higher for θ̂+ε than for θ̂−ε. Put differently, increasing q(θ̂+ε) relaxes

more non-local incentive constraints than increasing q(θ̂ − ε).

Also the last two properties are straightforward: Increasing the decision of the boundary types

does not affect non-local incentive constraints of other types.

Furthermore, the interpretation as shadow value provides some intuition for the necessary condition

(C3) which basically says that η(θ) = η(θ̂) when a non-local incentive constraint is binding from θ to θ̂.

This makes sense in light of lemma 2. Because there is no overlap in binding incentive constraints, the

non-local incentive constraints binding over θ are the same as the ones binding over θ̂. Consequently,

the shadow value of relaxing those constraints is the same for the two types.

Theorem 1 establishes what happens at types where non-local incentive constraints are binding

(or lax). Here I want to argue that non-local incentive constraints are typically binding from and

to intervals of types. Put differently, there are intervals [θ0, θ1] and [θ̂1, θ̂0] such that a non-local

incentive constraint is binding from each θ′ ∈ [θ0, θ1] to some θ̂′ ∈ [θ̂1, θ̂0]. From theorem 1, it follows

that η(θ′) = η(θ̂′) and η(θ) is increasing (decreasing) on [θ̂1, θ̂0] (on [θ0, θ1]). The intuition for this

structure is the following: Take types θ′ and θ̂′ such that a non-local incentive constraint between θ′

and θ̂′ is violated under the relaxed solution. Proposition 2 indicates that the decision of the types

between θ̂ and θ′ is increased to establish incentive compatibility. The usual optimization intuition

suggests that it should be optimal to increase the decision for all those types by “the same amount.”15

However, this is not possible because of incentive compatibility constraints: Clearly, the decision of

types θ′ − ε cannot be increased discretely because of the monotonicity constraint at θ′. Lemma

3 establishes that the monotonicity constraint cannot even be binding for θ′ as then the non-local

constraint from θ′ − ε to θ̂′ would be violated. Lemma 3 also makes clear that the decision should

not jump at θ̂′ as otherwise the non-local constraint from θ′ to θ̂′ + ε would be violated. One could

now conjecture that non-local incentive constraints are binding from θ′ not only to θ̂′ but also to

slightly higher types and–with the same logic–from types slightly below θ′ to θ̂′. However, it is not

difficult to show that the incentive constraint between θ′ − ε and θ̂′ + ε would be violated in this

case. Consequently, one is left with the interval structure described above where non-local incentive

constraints are binding from types slightly below θ′ to types slightly above θ̂′.

The following lemma takes another perspective on the structure by establishing that non-local

incentive constraints cannot bind at a finite number of interior types. With the additional proper-

ties established in the lemma, one should indeed expect the set of types where non-local incentive

15Theorem 1 confirms this intuition by establishing that η(θ) is constant at types where non-local incentive constraints

are lax.
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constraints bind to contain an interval.16

Lemma 4. If the optimal solution is monotone and the relaxed solution is not implementable, non-

local incentive constraints cannot bind only from a finite number of interior types to a finite number

of interior types. The set of types from (to) which non-local incentive constraints bind cannot consist

of isolated interior types.17

The solution can be chosen such that (i) the set of types from which non-local incentive constraints

are binding is closed and (ii) the set of types to which non-local incentive constraints are binding is

closed.

Proof. see appendix

Some of the properties of η(θ) in theorem 1 hold only at types where the decision is strictly

increasing. The reason is that, the way (5) is written, η(θ) captures not only the effect of non-local

incentive constraints but also the effect of the monotonicity constraint. If one wants to avoid this

cluttering of effects, it is straightforward to introduce a monotonicity parameter ν(θ) which captures

the effect of the monotonicity constraint. In this case it is easy to see that the properties of η(θ)

described in theorem 1 extend also to bunched types. Instead of (5) the solution would then be

characterized by

νθ(θ) = (uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ)− η(θ))cqθ(q(θ), θ)

where ν(θ)qθ(θ) = 0 for all θ ∈ Θ, i.e. ν(θ) corresponds to the Lagrange parameter of the monotonicity

constraint. If the start and ending type of a bunching interval are denoted by θbs and θbe, then obvi-

ously
∫ θbe
θbs

νθ(θ) dθ = 0. As described in the existing literature on ironing, see Guesnerie and Laffont

(1984) or the exposition in Fudenberg and Tirole (1991), the bunching interval is characterized by this

last condition and the endpoint conditions ν(θbs) = ν(θbe) = 0. The following lemma formalizes the

discussion of the last paragraph.

Lemma 5. If types in the interval (θbs, θ
b
e) are bunched in the optimal solution, then there exists a

function η(θ) which satisfies the properties of theorem 1 also for bunched types. In particular, η(θ)

is non-decreasing on (θbs, θ
b
e) and constant if no non-local incentive constraint binds to the bunched

types. Furthermore, η(θ) satisfies (i) η(θ) = η(θ̂) if Φ(θ, θ̂) = 0 and (C1’) as well as (C2’) hold, (ii)
∫ θbe
θbs

νθ(θ) dθ = 0 with νθ(θ) defined as above.

16Strictly speaking, the lemma leaves the option that non-local incentive constraints are binding at a Cantor set of

interior types. As the following results do not depend on this artificial looking case, I will ignore this possibility and

speak of intervals in the remainder of the paper.
17Isolated means here that for each type θ from (to) which a non-local incentive constraint binds, there exists a

neighborhood of θ in which non-local incentive constraints are lax for all types but θ.
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Proof. see appendix

5.3. Continuous solutions

This subsection has two goals: First, to provide sufficient conditions under which a monotone solution

is continuous and, second, to introduce an algorithm for determining such a continuous solution.

The first sufficient condition for continuity is loosely based on the idea of having a one-to-one

relationship between η and q for a given type θ; i.e. the idea that for a given type θ and η(θ) > 0,

equation (5) yields a unique solution for q. The condition in the proposition ensures this and also

ascertains that this relationship is monotonic, i.e. a higher η(θ) results in a higher q.

Proposition 3. Assume that the first best is concave, i.e. uqq − cqq ≤ 0. A monotone solution is

continuous if
uqq(q, θ)− cqq(q, θ)

cqqθ(q, θ)
>

uq(q, θ)− cq(q, θ)

cqθ(q, θ)
(6)

holds for all types and all q ≥ qfb(θ).18

Proof. see appendix

Hence, if the social objective u(q, θ)− c(q, θ) is concave enough or if the cross derivative cqθ(q, θ)

is in absolute value large enough (at the first best decision), the optimal decision will be continuous.

Take for example the cost function in example 1 in section 4 and assume that u(q, θ) = βq. It turns

out that (6) is equivalent to the condition for qfb(θ) > s(θ), i.e. β > 2θ̄.19

The following proposition gives an alternative condition under which the optimal solution is below

the first best decision. Having a solution below first best turns out to be sufficient for continuity and

strict monotonicity of the solution (under a standard monotone hazard rate assumption). This is in

itself remarkable. As the relaxed solution is below first best, one should expect the solution to be

below first best whenever non-local incentive constraints are not violated “too much” by the relaxed

solution. Hence, there is a broad class of problems in which the solution will be strictly monotone and

continuous. Furthermore, the proof of the following proposition shows that the property holds also

locally. That is, if the decision is below first best on some interval (θ1, θ2), then the decision will be

strictly monotone and continuous on (θ1, θ2).

Before stating the proposition some additional notation is needed. Define qm(θ) such that cθ(q
fb(θ), θ) =

cθ(q
m(θ), θ). Hence, qm(θ) is a mirror image of qfb(θ) along s(θ) with respect to cθ(q, θ).

18Obviously, it is enough if the condition holds for all q ∈ [qfb(θ), q̄] where q̄ is defined as in appendix C.
19In fact, this also holds true if q2 in the cost function is replaced by any increasing and convex function.
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Proposition 4. Assume that qm(θ) is non-decreasing and that there is no distortion at the top.20 Then

the optimal solution is below first best and continuous. The optimal solution is strictly increasing at

all types where it is below first best if f(θ)/(1− F (θ)) is non-decreasing and uqθ ≥ 0.

Proof. see appendix

One example for a class of function where qm(θ) is increasing are cost functions of the form

c(q, θ) = θq + φ(q − αθ) + γ(θ) where φ(·) is a function of which the first three derivatives are

positive.21 Any increasing and concave benefit function u(q, θ) with uqθ = 0 and qfb(θ) > s(θ) yields

an increasing qm(θ).

Note that in many applications uqθ = 0 will hold. For example, in regulation models, labor market

models and monopoly pricing, this property will typically hold because the principal’s utility depends

only on the decision and the transfer and not directly on the agent’s type.

Now it is time to turn to the issue of calculating a solution. In principle, the solution is already

described by (5), the properties of η(θ) and the necessary conditions C1, C2 and C3. If a non-local

incentive constraint binds from a type θ, the three necessary conditions could be used to determine θ̂,

q(θ) and q(θ̂) (assuming that there is a unique solution). If non-local incentive constraints are lax at a

type θ, (5) can be used to calculate q(θ) where η(θ) equals η(θ̂′) with θ̂′ being defined as the next lower

type to which a non-local incentive constraint is binding. While nothing is wrong with this description,

it might be burdensome to calculate a solution in this way. Hence, a more structured alternative to

obtain a continuous solution might be helpful. This alternative will also give some additional insights

into the logic behind the solution. The algorithm is based on the following proposition.

Proposition 5. Define Φη(θ, θ̂) as Φ(θ, θ̂) under q̃(θ) where q̃(θ) is derived from

{uq(q, θ)− cq(q, θ)}f(θ) + (1− F (θ)− η)cqθ(q, θ) = 0.

If the incentive constraint binds between θ′ and θ̂′ in a continuous solution q(θ), then (θ′, θ̂′) minimize

Φη(θ, θ̂) on [θ̂′, θ′] where η = η(θ′) = η(θ̂′). Furthermore, Φη(θ′, θ̂′) < Φη(θ′′, θ̂′′) for any θ′′ > θ′ and

θ̂′′ < θ̂′.

Proof. see appendix

To get a feeling for this proposition take η = 0. Then q̃(θ) = qr(θ). Denote the global minimizer of

Φ0(θ, θ̂) by (θr, θ̂r). Although a little extra work is needed, the following result follows almost directly

from proposition 5:

20See the following section for a simple sufficient condition for no distortion at the top.
21The interpretation of this cost function is that there is a “normal scale” of αθ. Producing above this normal scale

is increasingly costly. Type reflects a tradeoff between the size of the normal scale and marginal cost when producing

within the normal scale.
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Corollary 1. If the relaxed solution is not implementable, the non-local incentive constraint from θr

to θ̂r will bind in the optimal decision. If one of the two types (both) is interior, his (their) optimal

decision is the relaxed decision; i.e. q(θ) = qr(θ) or (and) q(θ̂) = qr(θ̂) respectively.

Proof. see appendix

The proposition then says that a similar logic applies for all pairs (θ′, θ̂′) at which incentive com-

patibility is binding: One only has to replace qr(θ) in the corollary by the corresponding q̃(θ). This q̃

is the decision that would result if all types had the same η(θ) and this η(θ) would equal η(θ′) in the

optimal decision.

The last proposition in connection with theorem 1 gives a method for determining q(θ).

Solve (5) for q as a function of type θ and η. Plugging this q(θ, η) into Φ(·) yields a function

Φη(θ, θ̂) which can be minimized over θ and θ̂ yielding θ(η) and θ̂(η) as minimizers. There could

be several pairs (θ(η), θ̂(η)) locally minimizing Φη(θ, θ̂). Relevant is each pair (θ, θ̂) (i) that globally

minimizes Φη(·) on the interval [θ̂, θ], (ii) for which no Φη(·) minimizer (θ′, θ̂′) with θ′ > θ, θ̂′ < θ̂ and

Φη(θ′, θ̂′) < Φη(θ, θ̂) exists. For now, assume there is only one such relevant pair.

Under the optimal decision, the constraint will bind from θ(η) to θ̂(η) for all η ∈ [0, η̄] where η̄

is determined by Φη(θ(η), θ̂(η)) = 0. The optimal decision for types θ where the constraint binds is

given by q(θ, η) where η is such that θ = θ(η). Types for which the constraint does not bind can be

sorted into two categories: First, types θ such that non-local incentive constraints do not bind from

any type above θ to any type below θ. These types simply have q(θ) = qr(θ). Second, types θ such

that the constraint is binding from some θ′ > θ to some θ̂′ < θ. These types have η(θ) equal to

η(inf{θ′ : Φ(θ′, θ̂′) = 0 with θ′ > θ > θ̂′}), i.e. their η is the same as the one of the next lowest type to

which a non-local incentive constraint binds. Their q(θ) is then q(θ, η(θ)).

One remark on the possibility that several relevant pairs (θ(η), θ̂(η)) exist. For example, say

there exist the pairs (θ1(η), θ̂1(η)) and (θ2(η), θ̂2(η)) both satisfying (i) and (ii) above. The non-local

incentive constraint could in this case bind from an interval [θ0, θ1] to the interval [θ̂1, θ̂0] as well as

from the interval [θ2, θ3] to the interval [θ̂3, θ̂2] where θ̂1 < θ̂0 < θ0 < θ1 < θ̂3 < θ̂2 < θ2 < θ3; see figure

5 for an illustration. Indeed one has to be a bit more precise in this case: There will be different η̄ for

the two “brackets” of binding incentive constraints. In this case η(θ) will not be single peaked. Hence,

the algorithm will then be applied to the two brackets separately and nothing else changes.

A second remark has to be made with regard to bunching. Some types might have an ironed out

solution. This solution is then not q(θ, η(θ)) as described above but an ironed out version of it. The

condition for determining η̄, i.e. Φη(θ(η), θ̂(η)) = 0 has to hold for the ironed out decision whenever

ironing is relevant. If the monotone hazard rate holds and uqθ ≥ 0, one does not have to worry about
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ironing as long as η ≤ 1− F (θ(η)): This implies q(θ) ≤ qfb(θ) for all types for which bunching could

have been possible and the decision will be strictly increasing (see the proof of proposition 4).

The algorithm is illustrated with a numerical example in the following section.

5.4. Distortion at the top

If the non-local incentive constraint binds from θ̄, something unusual can happen. Recall that the

necessary condition (C1) might hold with inequality at θ = θ̄. It is therefore possible that non-local

incentive constraints bind from θ̄ to several non-bunched θ̂ even if the solution is continuous. Note

that this is impossible for interior types: For a given q(θ), (C1) and (C2) will uniquely determine θ̂

and q(θ̂).

Now consider the case where the non-local incentive constraint binds not only to several but to a

mass of types θ̂ (or to θ as will be shown below). Then the shadow value of the constraint η(θ) will

be strictly positive and bounded away from 0 for types slightly below θ̄. Hence, these types have a

decision q(θ) which is at least ε away from their relaxed decision qr(θ) for some ε > 0. Obviously, the

same has then to apply for θ̄ because of the monotonicity constraint. Put differently, η(θ̄) > 0 and

therefore q(θ̄) is distorted: There is distortion at the top.

The algorithm described above works also in this situation. The minimizer θ(η) will then be the

boundary type θ̄. The decision of θ̄ and his shadow value are determined by the highest θ̂ to which his

non-local incentive constraint binds. At this θ̂ also condition (C1) holds with equality (if θ̂ is above

θ).

It should be pointed out that distortion at the top is a generic property. Put differently, there

will still be distortion at the top if, for example, the distribution of types is slightly perturbed. By

proposition 5, distortion at the top implies that θ̄ will minimize Φη(θ, θ̂) for all η < η̃ for some η̃ > 0.

Φη(θ, θ̂) is continuous in q(θ, η) which in turn is continuous in the density f(θ). Therefore, θ̄ will remain

global minimizer of Φη(θ, θ̂) under minor perturbations of the density. Consequently, distortion at the

top has to be generic by proposition 5.

A natural question is whether there is a sufficient condition for no distortion at the top. Indeed

corollary 1 allows to formulate such a condition. If θ̄ is not the global minimizer of Φr(θ, θ̂) where

Φr(·) is Φ(·) under the relaxed solution qr(·), then non local incentive constraints cannot bind from θ̄.

Therefore, the relaxed decision is optimal for θ̄ implying that q(θ̄) = qfb(θ̄).

Another sufficient condition for no distortion at the top can be formulated using (C1):
∫ qfb(θ̄)
0 cqθ(q, θ̄) dq ≤

0 is sufficient since (C1) cannot hold with inequality.

To illustrate the distortion at the top result and also the algorithm introduced in the previous
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Figure 7: numerical example 1

section, consider the following numerical example which is inspired by example 1 in section 2.22

The cost function is given by c(q, θ) = θq+ q2

θ
− θ

3 . The principal’s valuation function is u(q) = 8q
5 .

Furthermore, I assume that types are distributed on [1/4, 3/4] according to a triangular density with

a “cushion” (to prevent f(θ) = 0). I use the density f(θ) = 4/5(8θ − 2). Recall from subsection 5.3

that with these parameter values the sufficient condition in proposition 3 is met. The solution will

therefore be continuous.

The first order condition for the relaxed solution is

(
8

5
− θ −

2q

θ

)

∗
4

5
(8θ − 2) +

33 + 64θ − 144θ

40

(

1−
2q

θ2

)

= 0

which leads to the relaxed solution

qr(θ) =
−347θ2 + 1660θ3 − 2444θ4

330 + 1440θ2
.

To use the algorithm, q(θ, η) has to be calculated. In this example

q(θ, η) =
−2160θ4 + 2944θ3 − 347θ2 − 200ηθ2

330− 400η + 1440θ2
.

Φη(θ, θ̂) can be numerically minimized. The result is that θ̄ and θ minimize Φη(θ, θ̂) for all η ≤

η̄ ≈ 0.47298. This means that a non-local incentive constraint is only binding from θ̄ to θ and

η(θ) = 0.47298 for all types. Consequently, there is distortion at the top and the optimal decision is

q(θ) = q(θ, η̄) or

q(θ) =
−110399

1250 θ2 + 2944
5 θ3 − 432θ4

17601
625 + 288θ2

.

Graphically, figure 7 shows that q(θ) (upper solid line) is above qr(θ) (dotted line) for all types and

that q(θ) is above qfb(θ) (dashed line) for high types.

22A Mathematica notebook with detailed calculations can be found under https://www.sites.google.com/site/

christophschottmueller/jmp.
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5.5. Stochastic contracts

So far, this paper concentrated on deterministic contracts. Although hardly observed in practice, one

could think of stochastic contracts. In the framework of this paper, this would mean that a type θ

is assigned a probability distribution over the decision q instead of one deterministic decision q(θ).

The idea behind a stochastic contract is to relax (non-local) incentive constraints. Intuitively, this

could work if different types have different degrees of risk aversion. The following proposition gives a

sufficient condition under which deterministic decisions are optimal.

Proposition 6. The optimal decision is deterministic if the assumptions of proposition 1 hold, the

virtual valuation is more concave in the decision than cθ, i.e.

uqq − cqq
cqqθ

>
uq − cq
cqθ

, (7)

and
∂
cqθθ
cqθ

∂q
≥ 0. (8)

Condition (7) and (8) differ from the conditions for non-stochastic contracts in Maskin and Riley

(1984). In Maskin and Riley (1984), only local incentive constraints bind and they bind “downward”.

It is then shown that assigning the expected decision increases the principal’s payoff and relaxes local

incentive constraints if risk aversion is decreasing in type. Decreasing risk aversion is therefore a

sufficient condition for the optimality of deterministic contracts. This reasoning is flawed in case

non-local incentive constraints are binding: Assigning the expected decision decreases the slope of the

rent function π(θ) because −cθ is convex in q. Hence, profit differences between θ and θ̂ are smaller

under the expected decision compared to the stochastic contract, i.e. non-local incentive constraints

are harder to satisfy.

Proposition 6 takes therefore another way which is close to a result in Jullien (2000). When

rewriting the principal’s optimization problem as an optimization over rent profiles π (instead of

over decision q) condition (7) ensures that the resulting program is concave. Condition (8) ensures

that the set of implementable utility profiles is convex. These two properties imply that a stochastic

decision is worse for the principal than a deterministic decision implementing the same utility profile.

The conditions of proposition 1 allow to focus on decisions above s(θ) which correspond to monotone

solutions. Note also that condition (7) is automatically satisfied for decisions below first best if welfare

u − c is concave. Condition (7) was already introduced in proposition 3 where it was sufficient for

continuity of the solution.
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Figure 8: numerical example 2

6. Discussion

This section discusses assumptions and compares the monotone solution with the solution of the

standard screening model with single crossing and some related papers.

First, I want to discuss the assumptions on third derivatives, i.e. cqqθ < 0 and cqθθ > 0. The fact

that these derivatives do not change sign ensures that the cross derivative cqθ changes sign only once for

any given θ (or q). While this property is admittedly important for the analysis, it is immaterial which

sign the third derivatives have (as long as the sign is the same for all relevant decisions and types).

To illustrate this (and also to show an example where the monotonicity constraint binds) consider the

following version of example 2:23 Types are distributed uniformly on [2, 3] and the principal’s objective

is the expected value of q(θ)− t(θ). The agent’s utility is given by

π(q, θ) = t(θ)−
(q − θ/σ)2

θ2
+ γ(3− θ).

Here the parameter values σ = 27 and γ = 12 are used. In this case, third derivatives have the

following signs in the relevant range of the decision: cqqθ < 0 and cqθθ < 0. Consequently, the sign

switching decision s(θ) is downward sloping. As depicted in figure 8a, first best decision and relaxed

decision are also downward sloping.

Although the example looks different on first sight, it is equivalent to the model of the main

text and all results apply accordingly. It turns out that also in this example (θ̄, θ) minimize Φη(θ, θ̂)

and therefore only the non-local incentive constraint from the highest to the lowest type is binding.

However, the monotonicity constraint is binding for the highest types. For each q(θ, η), the optimal

23A Mathematica notebook with detailed calculations can be found under https://www.sites.google.com/site/

christophschottmueller/jmp.
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bunching interval [θs(η), θ̄] is determined by the condition

∫ θ̄

θs(η)
[uq(q(θ, η), θ)− cq(q(θ, η), θ)]f(θ) + (1− F (θ)− η(θ))cqθ(q(θ, η), θ) dθ = 0.

Here, η̄ turns out to be approximately 0.18 and the solution for the highest types is depicted in figure

8b. The solution exhibits bunching of types in [2.9, 3].

Second, I want to compare the obtained solution with solutions of screening models with single

crossing. Such a comparison will pin down those effects which can only be explained by a violation of

single crossing. In the standard textbook model with single crossing, see for example Fudenberg and

Tirole (1991) or Bolton and Dewatripont (2005), decisions are downward distorted for rent extraction

reasons. The solution is continuous and under some regularity conditions, e.g. monotone hazard rate,

strictly increasing. This paper shows that a violation of single crossing can lead to a reduction of

distortion and even to decision levels above first best. The reason is that binding non-local incentive

constraints distort the decision upwards while binding local incentive constraints distort it downwards.

The underlying cause is the one time violation of single crossing: A high type misrepresenting as a low

type can have higher marginal cost at the low type’s decision (this is impossible with single crossing).

To make the decision of the low type less attractive for the high type it is then best to increase the

low type’s decision. By increasing also the decisions of the types in between, the slope of the rent

function is increased. Consequently, the high type gets a higher rent at his own contract which also

prevents misrepresentation.

Even with the monotone hazard rate assumption bunching can occur if the decision of some types is

distorted sufficiently above first best. In contrast to the standard model, a violation of single crossing

can lead to distortions at the top. Distortion at the top will occur if non-local incentive constraints

bind from the best type to a mass of types or to the lowest type.

Jumps and bunching can also be part of the standard model if one allows for arbitrary type distri-

butions as in Hellwig (2010). However, this will not lead to decisions above first best. Furthermore,

a no distortion at the top result remains valid in Hellwigs’s model. The reason is that with single

crossing only local incentive constraints bind while non-local incentive constraints remain lax.

The reader familiar with the literature on adverse selection models might have noticed the similarity

between the “first order condition”

{uq(q, θ)− cq(q(θ), θ)}f(θ) + (1− F (θ)− η(θ))cqθ(q(θ), θ) = 0

and the first order condition in Jullien (2000). In Jullien’s paper type dependent participation con-

straints are analyzed in a framework with single crossing. If one writes γ(θ) instead of 1− η(θ) in the
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condition above, the first order condition of his model results. There γ(θ) is the Lagrange parameter

denoting the shadow value of relaxing the participation constraint for all types below θ.

A technical difference is that γ(θ) is monotonically increasing while η(θ) is first increasing and later

decreasing. Intuitively, one can start thinking from the relaxed decision. If a participation constraint

is violated in the interior at type θ′, the response is to reduce the distortion for all types below θ′. This

will increase the slope of the profit function for all types below θ′ and therefore increase the payoffs of

θ′. If, on the other hand, the non-local incentive constraint is violated between two types θ̂′, θ′ under

the relaxed decision, there is no reason to change the decision of types below θ̂′. The problem is solved

by increasing the decision only for types between θ̂′ and θ′.

The overproduction result, i.e. q above first best, can occur with type dependent participation

constraints as well. It can even occur at the highest type, so there can be distortion at the top.

However, with type dependent participation constraints this peculiarity is caused by upward binding

incentive constraints, i.e. low types want to misrepresent as high types. With violations of single

crossing, the same results is obtained although incentive constraints are only downward binding.

Although the model is the same, it is not straightforward to compare the optimal solution obtained

in this paper with the one in Araujo and Moreira (2010). Both, the monotone and the inversely U-

shaped solution, are closer to first best than the relaxed solution (and might even cross first best). In

contrast to this paper there is a no distortion at the top result in Araujo and Moreira (2010): The

type with the highest first best decision, i.e. the type where qfb(θ) crosses s(θ), will be assigned his

first best decision in the optimal solution. Another difference is that the monotone solution can be

continuous without bunching intervals of types. This difference is partly due to the direction non-local

incentive constraints bind: In the monotone solution they bind only downward while they bind in both

directions in an inversely U-shaped solution.

7. Conclusion

This paper characterizes monotone solutions in a screening environment where single crossing is vio-

lated. Although the model restricts itself to a one time violation of single crossing, the main effects of

a violation of single crossing can be illustrated. Non-local incentive constraints can become binding.

The distortion caused by non-locally binding incentive constraints can counteract the normal rent ex-

traction distortion. Therefore, the solution can be partly above as well as below the first best decision.

There can be distortion at the top if non local incentive constraints are binding from the top type to a

mass of types (or the lowest type). Furthermore, sufficient conditions for monotonicity and continuity
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are provided and an algorithm for determining such a continuous, monotone solution is proposed.

Possible applications can be found in various fields of economics. While the paper uses the notation

of a regulation or procurement setting, the same model is applicable, for example, in models of labor,

insurance, monopoly pricing or optimal taxation. The characterization of continuous and monotone

solutions is relatively simple and reasonable classes of functions satisfy sufficient conditions for falling

into this class of solutions.

I conclude with some immediate implications of the qualitative results in this paper. In optimal

taxation models where single crossing is violated, the distortion above first best result would correspond

to negative marginal tax rates. Earned income tax credit schemes often lead to negative marginal

tax rates for low income workers. Previous theoretical arguments based on externalities or general

equilibrium effects as in Stiglitz (1982) could only explain negative marginal tax rates for productive

types but are less applicable for low income workers. Non-local incentive constraints binding to low

ability types could however lead to the observed pattern.24

for top incomes can be rationalized because of the distortion at the top result. Note that distortion

at the top is always in an “unusual” direction, i.e. above first best. The rough intuition is that

subsidizing productive types to work more increases their rent and therefore relaxes their incentive

compatibility constraint.

Overinsurance can be optimal in insurance models where single crossing is violated. This gives

an alternative explanation for so called “Cadillac” health insurance plans. While the political debate

focuses on viewing them as (insufficiently taxed) part of a compensation package, screening by insurers

with market power could also explain parts of the phenomenon.

Concerning the regulation example, it was mentioned in example 1 that the estimation results in

Beard et al. (1991) provide evidence of a violation of single crossing in the cost functions of savings and

loan associations. My results show that optimal regulation might induce a subset of such associations

to offer more loans than first best optimal.

In Martimort and Stole (2009) the ordering of first best quantities and the competitive menu under

substitutes is no longer clear cut if one considers the cases without single crossing. Put differently,

firms using non-linear pricing might optimally offer packages which lead to overconsumption of the

good. Telecommunication might be an example for this: Consumers often buy packages where an

additional unit of calling (or internet use) is for free. If the marginal costs of the provider are only ε

above zero, such a price scheme will lead to consumption above the socially optimal consumption.

The last point also relates to the empirical literature on non-linear pricing. The standard no

24An alternative explanation presented by Chone and Laroque (2010) is based on the possibility that participation

constraints might be binding not for the lowest type but for types of higher ability.
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distortion at the top result allows for a simple way to identify (constant) marginal costs: For the

highest type, marginal tariff and marginal costs have to be equal. Miravete and Röller (2004), for

example, use this condition to recover marginal costs. As there can be distortion at the top without

single crossing, this possibility is no longer available. This is especially relevant for competitive non-

linear pricing since Martimort and Stole (2009) show that single crossing can be violated even with

standard preferences if there are competing firms.
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Appendix

A. Variational condition

In Araujo and Moreira (2010), it always holds that q(θ) = q(θ̂) whenever Φ(θ, θ̂) = 0. Consequently,

(C1) does not play a role. Starting from (C2), they derive the following condition (with q = q(θ) =

q(θ̂)):

uq(q, θ)− cq(q, θ) +
1−F (θ)
f(θ) cqθ(q, θ)

cqθ(q, θ)
f(θ) =

uq(q, θ̂)− cq(q, θ̂) +
1−F (θ̂)

f(θ̂)
cqθ(q, θ̂)

cqθ(q, θ̂)
f(θ̂) (9)

To derive a similar condition for q(θ) 6= q(θ̂) take θ and θ̂ such that cq(q(θ̂), θ̂) = cq(q(θ̂), θ),

cθ(q(θ), θ) = cθ(q(θ̂), θ), Φ(θ, θ̂) = 0 and assume that q(·) is strictly monotone and continuous at

θ and θ̂.

Given θ and q(θ), the equation cθ(q(θ), θ) = cθ(q(θ̂), θ) pins down a decision q(θ̂) where incentive

compatibility could be binding. Given this q(θ̂) as well as θ and q(θ), the equation cq(q(θ̂), θ̂) =

cq(q(θ̂), θ) determines θ̂. Therefore, the critical θ̂ can be written as a function of θ and q(θ), i.e.

θ̂ = φ(θ, q(θ)).

Differentiating the two conditions, the partial derivatives φθ and φq can be obtained as

φθ(θ, q) =
cqθ(q̂, θ)

cqθ(q̂, θ̂)
+

(cqq(q̂, θ)− cqq(q̂, θ̂))(cθθ(q, θ)− cθθ(q̂, θ))

cqθ(q̂, θ̂)cqθ(q̂, θ)

φq(θ, q) =
cqθ(q, θ)[cqq(q̂, θ)− cqq(q̂, θ̂)]

cqθ(q̂, θ̂)cqθ(q̂, θ)

where q̂ = q(θ̂) and q = q(θ).

Denote by h an admissible perturbation of the optimal solution q∗ on some interval [θ1, θ2], i.e.

h(θ1) = h(θ2) = 0. Admissibility implies that if the incentive constraint binds from θ to θ̂, then

θ̂ = φ(θ, q(θ)).25

The idea of the variational argument is the following: I want to derive a necessary condition for

a type θ such that Φ(θ, θ̂) = 0 for some θ̂. To do so, it is assumed that also under the perturbed

decision the incentive constraint is binding for θ and some (other) θ̂. The type θ̂ to which the non-

local incentive constraint binds depends on the perturbation and is given by φ(θ, q(θ)). The way one

should think about it is that incentive compatibility is binding from each θ ∈ [θ1, θ2] to some θ̂ in some

interval [θ̂1, θ̂2].
26 The specific type θ̂ to which a non-local incentive constraint binds from a given θ

depends on the perturbation h.

25Furthermore, admissibility requires monotonicity.
26As it turns out, this is indeed the typical structure of a continuous solution, see lemma 4.
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For brevity, I denote in the remainder of this section the optimal solution by q∗(θ) and the perturbed

solution by q(θ) = q∗(θ) + εh(θ). Hence the part of the principal’s objective function affected by the

perturbation can be written as27

G(ε) =

∫ θ2

θ1

g(q(θ), θ) dθ +

∫ φ(θ1,q(θ1))

φ(θ2,q(θ2))
g(q(θ), θ) dθ

=

∫ θ2

θ1

{g(q(θ), θ)− g(q̂(θ, q(θ)), φ(θ, q(θ))) [φq(q(θ), θ)qθ(θ) + φθ(q(θ), θ)]} dθ (10)

where g(q(θ), θ) =
[

u(q(θ), θ)− c(q(θ), θ) + 1−F (θ)
f(θ) cθ(q(θ), θ)

]

f(θ) is the virtual valuation weighted

by the density. The second line is a normal change of variables where q̂(θ, q) denotes the q̂ solving

cθ(q, θ) = cθ(q̂, θ) with q 6= q̂. Note that ∂q̂/∂q = cqθ(q, θ)/cqθ(q̂, θ).

Differentiating (10) gives

G′(0) =

∫ θ2

θ1

{gqh− ĝ((φqqq
∗
θ + φqθ)h+ φqhθ)− (ĝq q̂q + ĝθφq)(φqq

∗
θ + φθ)h} dθ = 0

where arguments are omitted and a hat denotes evaluation at (θ̂, q∗(θ̂)). Integrating
∫ θ2
θ1
(ĝφq)hθ dθ by

parts and substituting yields for the previous equation

∫ θ2

θ1

{gq − ĝq q̂qφθ + ĝq q̂θφq}hdθ =

∫ θ2

θ1

{

gq − ĝq
cqθ(q(θ), θ)

cqθ(q(θ̂), θ̂)

}

h dθ = 0.

As h was arbitrary, the following condition has to hold at optimum:

gq(q(θ), θ) = gq(q(θ̂), θ̂)
cqθ(q(θ), θ)

cqθ(q(θ̂), θ̂)
(C3’)

This is condition (C3). For q(θ) = q(θ̂), (C3’) boils down to (9).

B. Proofs

Proof of proposition 1: First, it is shown that the principal’s payoff is higher under qc(θ) than

under q(θ): The principal maximizes expectation of u(q, θ) − c(q, θ) + (1 − F (θ))/f(θ)cθ(q, θ). If

qs(q, θ) ≤ qr(θ), the principal’s objective increases due to the change because of the concavity of

(RP) and qr(θ) > s(θ). If qs(q(θ), θ) > qfb(θ), then the same conclusion follows from qv(q(θ), θ) ≥

qs(q(θ), θ) > qr(θ) and the concavity of (RP).

Second, the changed decision qc(θ) is monotonically increasing: From local incentive compatibility

q(θ) was already increasing wherever it was above s(θ). At types with q(θ) < s(θ) the decision q(θ)

had to be decreasing because of local incentive compatibility. But then qs(q(θ), θ) is clearly increasing

27It follows from lemma 2 that φ(θ1, q(θ1)) > φ(θ2, q(θ2)).
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in θ for these types because of cqθθ > 0. This leaves types at which q(θ) jumped discontinuously over

s(θ). But at these jump types local incentive compatibility required cθ(q
−(θ), θ)− cθ(q

+(θ), θ) ≥ 0 at

downwards jumps (and the converse inequality at upwards jumps) across s(θ). This implies that also

at jump points of q(θ) monotonicity of qc(θ) is guaranteed.

Third, the changed decision qc(θ) is incentive compatible: Since qc(θ) is monotonically increasing,

only downward misrepresentation has to be considered (see lemma 1). Note that the profit function

π(θ) was not affected by the change from q(θ) to qc(θ) because of the definition of qs(θ) and πθ(θ) =

−cθ(q(θ), θ) by local incentive compatibility. Therefore, one has only to check whether any type wants

to misrepresent as a lower type θ̂ at which q(θ̂) < s(θ̂). Since π(θ) is unchanged, one can write incentive

compatibility under the changed decision as

Φc(θ, θ̂) = −

∫ θ

θ̂

∫ q(t)

qc(θ̂)
cqθ(q, t) dq dt = −

∫ θ

θ̂

∫ q(θ̂)

qc(θ̂)
cqθ(q, t) dq dt−

∫ θ

θ̂

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt

=

∫ θ

θ̂

∫ qc(θ̂)

q(θ̂)
cqθ(q, t) dq dt+Φ(θ, θ̂) > 0

where the inequality follows from
∫ qc(θ̂)

q(θ̂)
cqθ(q, θ̂) dq = 0 by the definition of qs(·) and cqθθ > 0.

Proof of lemma 3: First, it is shown that there cannot be a discontinuity at θ̂. Take a type θ̂ to

which non-local incentive constraint is binding from some type θ. Suppose that q(·) is discontinuous

at θ̂, i.e. q−(θ̂) < q+(θ̂) by local incentive compatibility (monotonicity). Binding incentive constraint

means that either (i)
∫ θ

θ̂

∫ q(t)

q−(θ̂)
cqθ(q, t) dq dt = 0 or (ii)

∫ θ

θ̂

∫ q(t)

q+(θ̂)
cqθ(q, t) dq dt = 0 or (iii) q−(θ̂) <

q(θ̂) < q+(θ̂) and
∫ θ

θ̂

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt = 0.

In case (i) it must hold that
∫ θ

θ̂
cqθ(q

−(θ̂), t) dt ≤ 0 which is just (C2) adapted to apply for a

right hand side discontinuity, i.e. if this did not hold incentive compatibility would be violated for

θ and θ̂ − ε. But then
∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 from cqqθ < 0. Hence, Φ(θ, θ̂+) = Φ(θ, θ̂−) +

∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 as Φ(θ, θ̂−) = 0 by assumption. Hence, incentive compatibility is violated

from θ to types slightly above θ̂. This is the desired contradiction.

In case (ii) it must hold that
∫ θ

θ̂
cqθ(q

+(θ̂), t) dt ≥ 0. But then
∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt > 0 from

cqqθ < 0. Consequently, Φ(θ, θ̂−) = Φ(θ, θ̂+) −
∫ θ

θ̂

∫ q+(θ̂)

q−(θ̂)
cqθ(q, t) dq dt < 0 and therefore incentive

compatibility is violated from θ to types slightly below θ̂.

In case (iii) the same arguments as in case (i) apply if
∫ θ

θ̂
cqθ(q(θ̂), t) dt ≤ 0 while the same arguments

as in case (ii) apply if
∫ θ

θ̂
cqθ(q(θ̂), t) dt > 0.

Second, it is shown that θ < θ̄ cannot be bunched with some type θ′ if q(·) is continuous at θ.

Suppose θ and θ′ were bunched on qb (and by monotonicity all types in between them are as well) and
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suppose for now θ < θ′. But then Φ(θ′, θ̂) < 0 and ic is violated as

Φ(θ′, θ̂) = −

∫ θ′

θ̂

∫ q(t)

q(θ̂)
cs,t ds dt = −

∫ θ

θ̂

∫ q(t)

q(θ̂)
cs,t ds dt−

∫ θ

θ

∫ q(t)

q(θ̂)
cs,t ds dt

= Φ(θ, θ̂)−

∫ θ′

θ

∫ qb

q(θ̂)
cs,t ds dt < 0

where the last inequality follows from (C1) and cqθθ > 0.

Now suppose θ > θ′ and both types are bunched. From condition (C1) for θ < θ̄ and cqθθ >

0 it follows that
∫ q(t)

q(θ̂)
cqθ(q, t) dq < 0 for every t ∈ (θ − ε, θ). But then Φ(θ − ε, θ̂) = Φ(θ, θ̂) +

∫ θ

θ−ε

∫ q(t)

q(θ̂)
cqθ(q, t) dq dt < 0, so incentive compatibility would be violated.

Proof of proposition 2: Suppose q(θ) < qr(θ) for some types. Since local incentive compatibility

does not allow downward jumps, q(θ) has to be strictly below qr(θ) for a mass of types. Consider

changing this ‘optimal’ decision to q∗(θ) where q∗(θ) = max{q(θ), qr(θ)}. Transfers t∗(θ) are deter-

mined such that π(θ) = 0 and πθ(θ) = −cθ(q
∗(θ), θ).

By the definition of qr(θ), this change will increase the principal’s expected payoff.

It remains to check incentive compatibility, i.e

Φ∗(θ, θ̂) = −

∫ θ

θ̂

∫ q∗(t)

q∗(θ̂)
cqt(q, t) dq dt ≥ 0

for arbitrary types θ and θ̂ < θ. If q∗(θ̂) = q(θ̂), incentive compatibility follows from q∗(t) ≥ q(t) and

as q(t) ≥ s(t) the corresponding ‘additional’ c(q, t) are negative.

If q∗(θ̂) > q(θ̂) (and therefore q∗(θ̂) = qr(θ̂)), there are three possibilities: (i) There exists a type

θ′ ∈ (θ̂, θ) with q(θ′) = q∗(θ̂), (ii) all types θ′ ∈ (θ̂, θ) have q(θ′) < q∗(θ̂) and (iii) there are types

θ′ ∈ (θ̂, θ) with q(θ′) > q∗(θ̂) but no type θ′ with q(θ′) = q∗(θ̂), hence q(·) is discontinuous28.

If (i), then Φ(θ, θ′) ≥ 0 implies incentive compatibility as Φ∗(θ, θ̂) > Φ(θ, θ′). In case (ii) q∗(θ̂)

has to be above q(θ′) for all θ′ ∈ (θ̂, θ). But since q(θ′) > s(θ′) for all these types it follows that

q∗(θ̂) > s(θ) and therefore incentive compatibility is trivially satisfied.

In case (iii) define θ′ = sup{t ∈ (θ̂, θ) : q(t) < q∗(θ̂)} that is θ′ is the jump point. Incentive

compatibility between θ and θ′ implies
∫ θ

θ′

∫ q(t)
q−(θ′)

cqt(q, t) dq dt ≤ 0 as well as
∫ θ

θ′

∫ q(t)
q+(θ′)

cqt(q, t) dq dt ≤ 0

where q−(θ′) denotes the limit of q(t) as t → θ′ from below. From cqqθ < 0 and q−(θ′) < q∗(θ̂) < q+(θ′),

it follows that
∫ θ

θ′

∫ q(t)

q∗(θ̂)
cqt(q, t) dq dt ≤ 0. But as Φ∗(θ, θ̂) > −

∫ θ

θ′

∫ q(t)

q∗(θ̂)
cqt(q, t) dq dt ≥ 0 incentive

compatibility is satisfied.

Proof of theorem 1: Note that even if the theorem was not true one could still define a function

η(θ) by rearranging (5). What one has to show are the properties of this function. η(θ) ≥ 0 follows

immediately from proposition 2 and the fact that the left hand side of (5) is decreasing in q.

28Given that solutions in Araujo and Moreira (2010) display sometimes discontinuities, one cannot totally exclude this

possibility.
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Next turn the property that η(θ) is constant on an interval of types on which non local incentive

constraints are lax. Suppose to the contrary that η(θ) is not constant. In particular, suppose η(θ)

was increasing on some interval [θ1, θ3] where non-local ic is lax for all θ ∈ [θ1, θ3]. Denote by θ2 some

interior type of the interval. For each θ ∈ [θ2, θ2 + ε] define a corresponding type θ′ ∈ [θ2 − ε, θ2]

by θ′ = θ2 − (θ − θ2) for some small ε > 0. I will show that one can change such a decision on

[θ2 − ε, θ2 + ε] in a way which increases the principal’s payoff (while keeping incentive compatibility).

This contradicts the optimality of q(θ).

Consider a changed decision qc(·) such that (i) qc(θ) > q(θ) on [θ2 − ε, θ2), (ii) qc(θ) ≤ q(θ) on

[θ2, θ2 + ε], (iii) for corresponding types θ and θ′ it holds that
∫ qc(θ′)
q(θ′) cqθ(q, θ

′) dq = −
∫ qc(θ)
q(θ) cqθ(q, θ) dq

and (iv) qcθ(θ) ≥ 0 on [θ2 − ε, θ2 + ε]. The changed decision will therefore display upwards jumps at

θ2 − ε and θ2 + ε. For small changes in q, (iii) can be written as δ(θ′)cqθ(q(θ
′), θ′) = −δ(θ)cqθ(q(θ), θ)

where δ(θ) = qc(θ)− q(θ). This in turn can be written as δ(θ′) = −δ(θ)k(θ) where k(θ) is defined as

cqθ(q(θ),θ)
cqθ(q(θ′(θ)),θ′(θ))

.

Before proceeding, let me show that a function qc(θ) satisfying (i)-(iv) exists. Note that k(θ2) = 1

and that–due to the differentiability and continuity assumptions on c(·) and the monotonicity of q(θ)–

the function k(θ) is continuously differentiable almost everywhere.29 First, consider the case where

k+θ (θ2) < 0. Then it is feasible to set qc(θ) = q(θ2) for types θ ∈ [θ2, θ2 + ε] if ε > 0 is chosen

small enough. Feasibility means that determining q(θ′) by δ(θ′) = −δ(θ)k(θ) will satisfy all conditions

especially (iv). Feasibility of qc(θ) = q(θ2) for θ ∈ [θ2, θ2 + ε] and monotonicity of q(θ) imply that

qc∗ = αqc(θ) + (1− α)q(θ) is also feasible. The effect of a marginal change of q is the effect changing

q(·) to qc∗(·) as α → 0.

Second, consider kθ(θ2)
+ > 0. By the same argument, it is feasible to bunch types θ ∈ [θ2 − ε, θ2]

on q(θ2) and the remaining argument goes through analogously. Obviously, the third case k+θ (θ2) = 0

is analogous to either the first or the second case (depending on the second derivative).

The effect of a marginal change on the principal’s objective is

∫ θ2+ε

θ2−ε

{(uq(q(θ), θ)− cq(q(θ), θ))f(θ) + (1− F (θ))cqθ(q(θ), θ)} δ(θ) dθ

=

∫ θ2+ε

θ2−ε

η(θ)cqθ(q(θ), θ)δ(θ) dθ =

∫ θ2+ε

θ2

δ(θ)cqθ(q(θ), θ)[η(θ)− η(θ′(θ))] > 0

where the last inequality follows from δ(θ) ≤ 0 for θ ∈ [θ2, θ2+ε] and ηθ(θ) > 0. Hence, the principal’s

objective increases. Due to (iii) incentive compatibility is still satisfied. This contradicts the optimality

of q(θ).

29Note that a feasible qc(θ) exists even around types θ2 where q(θ) is discontinuous: Whether bunching types [θ2−ε, θ2)

on q−(θ2) or bunching types (θ2, θ2 + ε] on q+(θ2) is feasible is then decided by k+
θ (θ2) just as in the text.
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A similar argument can be made when η(θ) is decreasing almost everywhere on some interval [θ1, θ3]

where non-local ic is lax. The only difference is that (i) and (ii) are substituted by (i) qc(θ) < q(θ) on

[θ2 − ε, θ2), (ii) q
c(θ) ≥ q(θ) on [θ2, θ2 + ε]. The argument for existence is then that for kθ(θ2) < 0 one

can choose a θ2 + ε such that setting qc(θ) = q(θ2 + ε) for all θ ∈ [θ2, θ2 + ε] is feasible. Everything

else goes through accordingly.

Hence, η(θ) is constant on all intervals on which non-local incentive constraints do not bind.30

To see that η(θ) is non-decreasing at types θ̂ to which a non-local incentive constraint is binding

one can use the same steps as above for types where non-local incentive constraints were lax. The

key insight is that such a change is feasible due to the structure given by lemma 1 and lemma 2

(see also figure 5): Increasing q for slightly higher types than θ̂ (and reducing for slightly lower types

than θ̂) will relax (or not affect) binding non-local incentive constraints because these constraints are

downward binding and not overlapping.

The argument why η(θ) is non-increasing at types θ from which non-local incentive constraints

bind is also equivalent to the one above. The key with respect to feasibility is now that reducing q

for types slightly below θ (and increasing for types slightly above θ) will again relax (or not affect)

binding non-local incentive constraints because these constraints are downward binding.

Now turn to η(θ̄) = 0 (and therefore q(θ̄) = qfb(θ̄)) whenever no non-local incentive constraint is

binding from θ̄. Clearly, q(θ̄) does not affect non-local incentive constraints of other types, see figure

2b for an illustration. Consequently, the principal’s payoff is maximized by setting q(θ̄) = qr(θ̄). The

only thing to show is that the monotonicity constraint is not binding at θ̄. Suppose to the contrary

that types [θ′, θ̄] were bunched on qb > qfb(θ̄). By lemma 3, non-local incentive constraints cannot be

binding for types in (θ′, θ̄]. First, note that q(θ) has to be continuous at θ′ as otherwise the principal’s

payoff could be increased by reducing qb. Therefore–by the same argument as in the proof of lemma

3–non-local incentive constraints cannot bind from types [θ′ − ε, θ′] for some small ε > 0. Given that

q(θ) > qfb(θ̄) > qr(θ) for all θ ∈ [θ′ − ε, θ̄), the principal’s payoff could be increased by changing q(θ)

to q(θ′ − ε) for all θ ∈ [θ′ − ε, θ̄]. This contradicts the optimality of q(θ).

The part that η(θ) = 0 if no non-local incentive constraint is binding to θ is even simpler: Reducing

q(θ) to qr(θ) cannot violate the monotonicity constraint as q(θ) ≥ qr(θ) ≥ qr(θ) by proposition 2.

Proof of lemma 4: I proof the stronger statement, i.e. non-local incentive constraints do not

only bind at isolated interior types. The proof is by contradiction.

Suppose, non-local incentive constraints bound only from isolated interior types. Denote by θ′ the

30Note that η(θ) cannot be different for isolated types in such an interval: This would, by (5) and the continuity of

the derivatives of c(·), lead to q(θ) being discontinuous at isolated points. Such a discontinuity, however, violates local

incentive compatibility.
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supremum of all types with η(θ) > 0, i.e. θ′ = sup{θ : η(θ) > 0}. By theorem 1, a non-local incentive

constraint is binding from θ′ and η(θ) = 0 for all θ > θ′.31 As the set of types from which non-local

incentive constraints bind consists only of isolated types, there exists an ε > 0 such that non-local

incentive constraints are lax for all θ ∈ (θ′−ε, θ′). By theorem 1, η(θ) is constant on (θ′−ε, θ′) and by

the definition of θ′ there has to be a discontinuity in η(θ) at θ′, i.e. η−(θ′) > η+(θ′) = 0. The definition

of η(θ) in (5) implies then that q−(θ′) > q+(θ′). But this violates the monotonicity constraint. Hence,

θ′ cannot be isolated in the set of types from which non-local incentive constraints bind.

Similarly, take θ̂′ = inf(θ̂ : η(θ̂) > 0). It holds that η(θ) = 0 for all θ < θ̂′. Therefore, by

proposition 2, θ̂′ cannot be bunched. Consequently, a non-local incentive constraint has to bind to θ̂′.

If θ̂′ is isolated in the set of types to which non-local incentive constraints are binding, η(θ) has to be

discontinuous at θ̂′ by the definition of θ̂′. Then also q(θ) is discontinuous at θ̂′. But this is impossible

by lemma 3. Hence, θ̂′ cannot be isolated in the set of types to which non-local incentive constraints

bind.

It remains to show the closedness part of the lemma. Note first that a monotone solution is

continuous almost everywhere. Consequently, the principal’s payoff is not changed if q(·) is changed

at its discontinuity points. I want to resolve this ambiguity using the following convention: Say q(θ) is

discontinuous at θ′. Then q(θ′) = q−(θ′) if there exists an increasing sequence of types θi i = 1, 2, . . .

such that (i) limi→∞ θi = θ′ and (ii) a non-local incentive constraint is binding from or to each θi. If

such a sequence does not exist, q(θ′) = q+(θ′).

With this convention in mind, consider a sequence of types θn with n = 1, 2, . . . such that a non-

local incentive constraint is binding from each θn to some θ̂n. Assume that limn→∞ θn = θ′. Then it

has to be shown that Φ(θ′, θ̂′) = 0 for some θ̂′. Since all θ̂n belong to the closed and bounded interval

[θ, θ̄], there is a convergent subsequence of θ̂n. I will denote the elements of this subsequence by θ̂k

with k = 1, 2, . . . . The corresponding type from which a non-local incentive constraint is binding to θ̂k

is denoted by θk. Now, take θ̂′ = limk→∞ θ̂k. Note that there always exists a monotone subsequence

of θk. It is therefore without loss of generality to assume θk to be monotone. For concreteness, assume

θk+1 ≥ θk for all k = 1, 2, . . . . As Φ(θk, θ̂k) = 0 for all k = 1, 2, . . . , continuity of Φ(·) at (θ′, θ̂′) is

sufficient for Φ(θ′, θ̂′) = 0. As π(·) is continuous by local incentive compatibility and c(·) is continuous

by assumption, continuity of Φ(·) at (θ′, θ̂′) follows if q(·) is continuous at θ̂′. Since θk is monotonically

increasing, continuity from below is actually sufficient. But this is ensured by the convention above.

If θk+1 ≤ θk for all k = 1, 2, . . . , the convention establishes q(θ̂′) = q+(θ̂′) which is needed in this

case.

31Note that θ′ cannot be bunched because of proposition 4 and q−(θ′) = qr(θ′).
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The proof for the closedness of the set of types to which non-local incentive constraints bind works

in the same way.

Proof of lemma 5: From lemma 3, non-local incentive constraints cannot bind from any θ ∈

[θbs, θ
b
e). To satisfy similar properties as in theorem 1, η(θ) has therefore to be non-decreasing on

(θbs, θ
b
e).

Let η(θ) be defined by (5) for all types that are not bunched. Define η(θ) on the bunching interval

using the following two step procedure: First, all θ̂ ∈ (θbs, θ
b
e) such that Φ(θ, θ̂) = 0 and (C1’) as well

as (C2’) are satisfied are assigned η(θ̂) = η(θ). Second, types in θ ∈ (θbs, θ
b
e) who are not assigned a

value for η(θ) in step 1 are assigned the same η as the highest type θ′ < θ that was already assigned

a value η(θ′).

Now it is shown that the constructed η(θ) is non-decreasing on (θbs, θ
b
e): Say, there are two types

θ̂1, θ̂2 ∈ (θbs, θ
b
e) with θ̂2 > θ̂1 which are assigned an η in the first step. Then (C2’) implies that θ1 > θ2.

From theorem 1 and the structure of the solution as depicted in figure 5, it follows that η(θ2) ≥ η(θ1).

Therefore, η(θ̂2) ≥ η(θ̂1). The second step does not change the monotonicity of η(θ) which proves that

η(θ) is non-decreasing on (θbs, θ
b
e).

If non-local incentive constraints are not binding for the bunched types, no type is assigned a value

for η(θ) in step 1. Consequently, η(θ) is constant on (θbs, θ
b
e).

Next, it is shown that η(θ) is also non-decreasing at the types θbs and θbe. First, note that the proof

of theorem 1 can be easily extended to show that η(θbs) ≤ η(θbe): If this inequality did not hold, reduce

q(θ) on (θbs − ε, θbs) and increase q(θ) marginally on (θbe, θ
b
e + ε) such that

∫ θbe+ε

θbs−ε

∫ q(t)

q(θbs−ε)
cqθ(q, t) dq dt

remains the same before and after the change. As in the proof of theorem 1, this change would

increase the principal’s payoff without impeding incentive compatibility (note that non-local incentive

constraints cannot bind from the bunched types because of lemma 3). Consequently, η(θbs) ≤ η(θbe).

Second, it is necessary to show that–with the above constructed η(θ) on (θbs, θ
b
e)–there is no upward

jump of η(θ) at θbe (no downward jump of η(θ) at θbs). If no type is assigned an η in the first step of the

procedure above, this is obvious. Therefore, take the case where some type in the bunching interval is

assigned a value η(θ) in the first step of the procedure. Then the claim follows from theorem 1: Say,

η−(θbe) = η(θ1) for some type θ1 from which a non-local incentive constraint binds. The structure of

the solution (as depicted in figure 5) and theorem 1 imply that η+(θbe) = η−(θ1).
32 Since η(θ) is non-

increasing at θ1 according to theorem 1, it follows that η−(θ1) ≥ η+(θ1) and therefore η−(θbe) ≥ η+(θbe).

32If non-local incentive constraints bind from types θ′ ∈ (θbe, θ1) to types θ̂′ ∈ (θbe, θ1), this holds still true because of

the necessary condition (C3). Also discontinuities at θ′′ ∈ (θbe, θ1) do not matter as by lemma 3 and theorem 1 η(θ) is

non-increasing at θ′′. If there are several bunching intervals, the argument holds for the highest interval and given this,

it holds for the second highest etc..
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A similar argument holds for θbs.

It remains to show
∫ θbe
θbs

νθ(θ) dθ = 0. But this follows directly from ν(θbs) = ν(θbe) = 0.

Proof of proposition 3: By lemma 3, q(θ) cannot be discontinuous at a type to which a non-local

incentive constraint binds (with the exception of boundary types of bunching intervals). Therefore,

theorem 1 implies that a solution could only be discontinuous at types where η(θ) is non-increasing

or at the boundary types of a bunching interval to which a non-local incentive constraint is binding.

First, it is shown that η(θ) is also non-increasing at such boundary types of a bunching interval.

To see this take a bunching interval [θ̂1, θ̂2] to which non-local incentive constraints bind and suppose

the solution was discontinuous at θ̂, i.e. q−(θ̂2) < q+(θ̂2). By the arguments in the proof of lemma

3,
∫ θ

θ̂2
cqθ(q

−(θ̂2), t) dt > 0 for any θ such that Φ(θ, θ̂2) = 0. But then an argument as in the proof

of theorem 1 applies: There is an incentive compatible way to increase q(θ̂) for θ̂ ∈ [θ̂2 − ε, θ̂2] and

decrease the decision for types in [θ̂2, θ̂+ε]. Incentive compatible means that binding non-local incentive

constraints are not violated and the decision remains monotone (details in the proof of theorem 1). If

η(·) was strictly increasing at θ̂2, such a change would increase the principal’s payoff. Therefore, η(·)

has to be decreasing at θ̂2. A similar argument applies at θ̂1. A discontinuity is only possible at θ̂1 if
∫ θ

θ̂1
cqθ(q(θ̂1), t) dt < 0 for all θ such that Φ(θ, θ̂1) = 0. Therefore, decreasing the decision on [θ̂1, θ̂1+ ε]

and increasing the decision on [θ̂1 − ε, θ̂1) can be done in an incentive compatible way. If η(·) was

strictly increasing, such a change would increase the principal’s payoff.

Hence, q(θ) can only be discontinuous at types where η(θ) is non-increasing. Second, it is shown

that a discontinuity in q(θ) would lead to an upward jump of η(θ) at the discontinuity type which

implies that there cannot be a discontinuity in q(θ).

By local incentive compatibility, q(θ) can only jump upwards, i.e. q−(θ′) < q+(θ′) at a hypothetical

discontinuity type θ′. Using the definition of η(θ) in (5) one can calculate the change in η(θ′) at the

discontinuity type

η+(θ′)− η−(θ′) =

∫ q+(θ′)

q−(θ′)

d η(θ′)

d q(θ′)
dq

=

∫ q+(θ′)

q−(θ′)

(uqq − cqq)fcqθ + (1− F )cqqθcqθ − (uq − cq)fcqqθ − (1− F )cqθcqqθ
c2qθ

dq

where all functions are evaluated at (q, θ′). Note that the integrand is positive whenever q ≤ qfb(θ′).

If q > qfb(θ′), the integrand can be written as

f(uq − cq)

cqθ

(
uqq − cqq
uq − cq

−
cqqθ
cqθ

)

which is also positive due to the condition of the proposition. Hence, η(θ) would jump up at θ′ but

this contradicts that q(θ) can only be discontinuous at types where η(θ) is non-increasing.
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Proof of proposition 4: The proof is by contradiction. Suppose the optimal decision q(θ) was

above the first best decision for some types. Since there is no distortion at the top by assumption

and since the optimal decision cannot drop discontinuously downward (local incentive compatibility),

there has to be a type θ′ at which the optimal decision intersects qfb(θ) from above. The proof works

now in two steps. First, I show that a non local incentive constraint must bind from θ′ and second

that then non local incentive compatibility is violated for some type close to θ′.

Note that q(θ) > qfb(θ) if and only if η(θ) > 1 − F (θ). Since 1 − F (θ) is decreasing and q(θ) >

(<)qfb(θ) slightly above (below) θ′, it follows that ηθ(θ
′) is negative. But then, by theorem 1, a non

local incentive constraint has to be binding from θ′ to some θ̂′. Furthermore, the necessary condition
∫ q(θ′)

q(θ̂′)
cqθ(q, θ

′) dq = 0 has to hold.

Next consider a type θ′′ = θ′−ǫ with ǫ > 0 very small. Since qm(θ) is increasing and
∫ q(θ)

q(θ̂)
cqθ(q, θ

′) dq =

0, clearly
∫ qfb(θ′′)

q(θ̂′)
cqθ(q, θ

′′) dq < 0. Since q(θ′′) > qfb(θ′′), it has to hold that
∫ q(θ′′)

q(θ̂′)
cqθ(q, θ

′′) dq < 0 as

well. The same inequality holds for all θ ∈ (θ′′, θ′). But then Φ(θ′′, θ̂′) = Φ(θ′, θ̂′)+
∫ θ′

θ′′

∫ q(t)

q(θ̂′)
cqθ(q, t) dq dt <

0, i.e. incentive compatibility from θ′′ to θ̂′ is violated. Hence, the optimal decision cannot be above

the first best decision.

Continuity of the optimal decision is now straightforward: q(θ) ≤ qfb(θ) implies that 1 − F (θ) −

η(θ) ≥ 0. Therefore, the left hand side of the first order condition uq − cq + (1 − F − η)cqθ = 0 is

strictly decreasing in q. The same arguments as in the proof of proposition 3 show that q(θ) has to

be continuous.

Last it has to be shown that the decision is strictly monotone when it is below first best and

uqθ ≥ 0. This will be done in two steps. The first step is to show that q(θ) is strictly increasing if

ηθ(θ) ≥ 0. The second step is to show that in a hypothetical bunching interval there are types θ at

which ηθ(θ) ≥ 0 which by the first step contradicts that these types are bunched.

First, the decision q(θ) has to satisfy

[uq(q(θ), θ)− cq(q(θ), θ)] +
(1− F (θ)− η(θ))

f(θ)
cqθ(q(θ), θ) = 0 (11)

by theorem 1. From the implicit function theorem, the sign of qθ(θ) can be determined. Note that

q(θ) ≤ qfb(θ) implies 1 − F (θ) − η(θ) ≥ 0. This in turn implies that the derivative of the left hand

side of (11) with respect to q is negative. Hence, the sign of qθ(θ) is the sign of the partial derivative

of the equation above with respect to θ. Denoting (1− F (θ)− η(θ)) by λ(θ) this derivative is

uqθ(q(θ), θ)− cqθ(q(θ), θ) +
λ(θ)

f(θ)
cqθθ +

∂ λ(θ)/f(θ)

∂θ
cqθ(q(θ), θ). (12)

Now take a bunching interval [θ1, θ2] (closed or open). The first three terms are clearly positive as
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q(θ1) ≤ qfb(θ1) implies λ(θ) ≥ 0. The fourth term is positive if ηθ(θ) ≥ 0 as then

∂ λ(θ)/f(θ)

∂θ
=

−f2(θ)− fθ(θ)(1− F (θ))

f2(θ)
−

ηθ(θ)

f(θ)
+

fθ(θ)η(θ)

f2(θ)
< 0

where the inequality comes from the monotone hazard rate assumption if fθ(θ) ≤ 0. If fθ(θ) > 0, then

qfb(θ) ≥ q(θ) implies λ(θ) ≥ 0 which ensures the inequality above.

Now turn to the second step. Suppose contrary to the proposition that an interval (θ1, θ2) exists

in which types are bunched and non-local incentive constraints are either binding to these types or

are lax.33 Using the same argument as in the proof of theorem 1, it becomes evident that η(θ) as

defined by (5) cannot be decreasing on the whole interval (θ1, θ2): If this was the case, increasing q(θ)

for types ((θ2 + θ1)/2, θ2) and decreasing q(θ) slightly for the other bunched types would increase the

principal’s payoff (and can be done in an incentive compatible way). From the definition of η(θ) and

the differentiability of q on the bunching interval, it follows that η(θ) is continuous and differentiable

on this interval. Consequently, there has to be some type in the interior of the bunching interval where

ηθ(θ) ≥ 0. But then the first step shows that this type cannot be bunched.

Proof of proposition 5: Take two types θ′ and θ̂′ such that a non-local incentive constraint is

binding from θ to θ̂ under the optimal decision q(θ). By (C3), η(θ′) = η(θ̂′) and for this proof η (in

Φη()) simply denotes this common value η(θ′) = η(θ̂′).

First, suppose that (θ′, θ̂′) does not minimize Φη(θ, θ̂) on [θ̂′, θ] and call the minimizer (θ′′, θ̂′′).

Then incentive compatibility under the optimal decision requires Φ(θ′′, θ̂′′) ≥ 0. If q(θ) was q̃(θ) for all

types in [θ̂′, θ̂′′] ∪ [θ′′, θ′], then Φ(θ′, θ̂′) = Φη(θ′, θ̂′) + Φ(θ′′, θ̂′′) − Φη(θ′′, θ̂′′) > 0 where the inequality

stems from the definition of (θ′′, θ̂′′) as global minimizer of Φη(θ, θ̂). Therefore ic would not be binding

between θ′ and θ̂′.

If q(θ) 6= q̃(θ) for some types in [θ̂′, θ̂′′]∪ [θ′′, θ′], then ic must be binding for some of these types.34

But this will only relax ic, i.e. q(θ) > q̃(θ) in a monotone solution. Therefore Φ(θ′, θ̂′) will be even

higher than when q(θ) = q̃(θ) and therefore ic cannot bind between θ′ and θ̂′. This is the desired

contradiction. Consequently, (θ′, θ̂′) has to minimize Φη(θ, θ̂) on [θ̂′, θ′].

Second, suppose that (θ′′, θ̂′′) with θ̂′′ < θ̂′ < θ′ < θ′′ has Φη(θ′, θ̂′) > Φ′(θ′′, θ̂′′). In fact choose θ′′

and θ̂′′ such that it is the global minimizer of Φη(θ, θ̂) under the constraint θ̂ < θ̂′ < θ′ < θ.

Now suppose for the moment that all types in [θ̂′′, θ̂′] ∪ [θ′, θ′′] had q(θ) = q̃(θ). Then since

Φ(θ′, θ̂′) = 0 but (θ′′, θ̂′′) minimizes Φη(θ, θ̂), ic would be violated for θ′′ and θ̂′′.

If q(θ) 6= q̃(θ) for some types in [θ̂′′, θ̂′] ∪ [θ′, θ′′], then ic was binding for some types in those

intervals. In a monotone solution this implies that q(θ) < q̃(θ) for these types. Put differently, ic is

33By lemma 3, types from which non-local incentive constraints bind cannot be bunched.
34Because of lemma 2 ic cannot bind from outside [θ̂′, θ] into the interval (neither the other way round).
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stricter under q(θ) than under q̃(θ).35 But then ic will be even more violated for θ′′ and θ̂′′ under q(θ)

than under q̃(θ). Therefore, there cannot be a global minimizer (θ′′, θ̂′′) with θ̂′′ < θ̂′ < θ′ < θ′′.

Proof of corollary 1: Note first that the highest type θ from which a non-local incentive con-

straint is binding must have q(θ) = qr(θ) if θ is interior. This follows from the reasoning in the proof

of lemma 4. The same holds for the lowest type θ̂ to which a non-local incentive constraint binds.

Therefore, there is a type pair such that (i) q(θ′) = qr(θ′), (ii) q(θ̂′) = qr(θ̂′) and (iii) Φ(θ′, θ̂′) = 0.

Since (θ′, θ̂′) satisfy (C2) and (C1) with qr and given the results of proposition 5, (θ′, θ̂′) locally

minimize Φr(θ, θ̂). Proposition 5 rules out that θ̂r < θ̂′ < θ′ < θr and also θ̂′ < θ̂r < θr < θ′. Hence, it

still has to be shown that there cannot be an overlap between the two type pairs, i.e. θ̂′ < θ̂r < θ′ < θr

or θ̂r < θ̂′ < θr < θ′. To get a contradiction suppose θ̂′ < θ̂r < θ′ < θr. In a similar way as in lemma

2, one can now show that in this case Φr(θr, θ̂′) < Φr(θr, θ̂r) thereby contradicting that (θr, θ̂r) is the

global minimizer of Φr(θ, θ̂):

Φr(θr, θ̂′) = Φr(θr, θ̂r) + Φr(θ′, θ̂′) +

∫ θ′

θ̂r

∫ qr(t)

qr(θ̂r)
cqθ(q, t) dq dt−

∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dt

= Φr(θr, θ̂r) + Φr(θ′, θ̂′)− Φr(θ′, θ̂r)−

∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dt

By proposition 5, Φr(θ′, θ̂′) − Φr(θ′, θ̂r) ≤ 0. Furthermore,
∫ qr(θ′)

qr(θ̂′)
cqθ dq = 0 since (θ′, θ̂′) locally

minimize Φr(θ, θ̂). Therefore,
∫ q(θ̂r)

qr(θ̂′)
cqθ dq > 0 as qr(θ′) > qr(θ̂r) and cqqθ < 0. From cqθθ > 0 it

follows that
∫ θr

θ′

∫ qr(θ̂r)

qr(θ̂′)
cqθ(q, t) dq dt > 0 which shows that Φr(θr, θ̂′) < Φr(θr, θ̂r). This is the desired

contradiction.

A similar argument can be made for the case θ̂r < θ̂′ < θr < θ′. Consequently, the only possibility

is that (θ′, θ̂′) = (θr, θ̂r) which had to be shown.

If the highest/lowest type from/to which a non-local incentive constraint is binding is a boundary

type, this type’s decision is not necessarily the relaxed decision. However, the minimization argument

does not change which concludes the proof.

Proof of proposition 6: First, note that under the conditions of proposition 1 one can focus on

decisions above s(θ): If some q(θ) < s(θ) was used in a stochastic contract with positive probability,

the principal could do better by assigning qs(q(θ), θ) instead of q(θ). The proof is equivalent to the

one of proposition 1.36

35Strictly speaking one also has to show that ic did not bind from outside [θ̂′′, θ′′] into this interval (or the other way

round), thereby increasing q(θ) for some types in say (θ′, θ′′). If however this was the case and the increase in q(θ) was

such that ic between θ′′ and θ̂′′ was relaxed by it, then there has to exist a type θ̂′′′ ∈ (θ′, θ′′) and a type θ′′′ > θ′′ with

Φ(θ′′′, θ̂′′′) = 0 and q(θ̂′′′) = q̃(θ̂′′′). But this would contradict that (θ′′, θ̂′′) is a global minimum of Φη(θ, θ̂) (analogously

to the proof of lemma 2), i.e. Φ′(θ′′′, θ̂′′) < Φ′(θ′′, θ̂′′).
36Admittedly, it is not obvious whether lemma 1 holds for stochastic contracts. Therefore, I show here explicitly that
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Second, suppose the optimal contract was stochastic and denote by G(q, θ) the distribution of q at

type θ. Consider now an alternative deterministic contract q∗(θ) where q∗(θ) ≥ s(θ) is determined such

that cθ(q
∗(θ), θ) =

∫

q
cθ(q, θ) dG(q, θ). In short, the slope of the rent function π(θ) and therefore the

rent of each type remains the same under both contracts.37 It will be shown that under the assumptions

of proposition 6 this change increases the principal’s payoff and relaxes incentive compatibility.

Since only q(θ) ≥ s(θ) have to be considered, there is a one to one relationship between q and

−cθ(q, θ). Define h(z, θ) ≥ s(θ) as the decision corresponding to −cθ being z, i.e. z = −cθ(h(z, θ), θ).

Then the principal’s objective can be written as

W =

∫ θ̄

θ

[u(h(z, θ), θ) − c(h(z, θ), θ)]f(θ)− [1− F (θ)]z dθ. (13)

The next step is to show that W is concave in z. This implies that the deterministic decision q∗

increases the principal’s payoff. The last step will then be to show that this deterministic decision is

also incentive compatible.

Using hz(z, θ) =
1

−cqθ(h,θ)
, which follows from the definition of h(z, θ), it is straightforward to derive

∂2W

∂z2
=

∫ θ̄

θ

cqqθ(h, θ)

c2qθ(h, θ)

[
uqq(h, θ)− cqq(h, θ)

cqqθ
−

uq(h, θ)− cq(h, θ)

cqθ(h, θ)

]

f(θ) dθ.

By condition (7), the integrand is negative and therefore W is concave in z.

Incentive compatibility of q∗ means that for arbitrary types θ and θ̂

Φ∗(θ, θ̂) ≡

∫ θ

θ̂

cθ(q
∗(θ̂), t)− cθ(q

∗(t), t) dt ≥ 0.

To verify this, it is useful to see that (8) implies that −cθθ(h(z, θ), θ) is convex in z:

d2{−cθθ(h(z, θ), θ)}

dz2
=

−1

cqθ

∂
cqθθ
cqθ

∂q
≥ 0

This convexity implies

d

dθ

{∫

q

−cθ(q, θ) dG(q, θ̂) + cθ(q
∗(θ̂), θ)

}

=

∫

q

−cθθ(q, θ) dG(q, θ̂) + cθθ(q
∗(θ̂), θ) ≥ 0.

The last inequality implies that
∫ θ

θ̂

∫

q
−cθ(q, t) dG(q, θ̂) + cθ(q

∗(θ̂), t) dt is a convex function of θ with

a minimum at θ = θ̂ where the function value is 0. Consequently,
∫ θ

θ̂

cθ(q
∗(θ̂), t) dt ≥

∫ θ

θ̂

∫

q

cθ(q, t) dG(q, θ̂) dt.

upward incentive constraints are relaxed if all q(θ) < s(θ) are substituted by qs(q(θ), θ). Take θ̂ > θ, then the incentive

constraint can be written as
∫ θ̂

θ

∫
q
cθ(q, t) dG(q, t) −

∫
q
cθ(q, t) dG(q, θ̂) dt ≥ 0. Changing q(θ) < s(θ) to qs(q(θ), θ) does

not change the first term. But since
∫ qs(q(θ),θ)

q(θ)
cqθ(q, t) dq < 0 for all t < θ̂, the change relaxes the incentive constraint

through the second term.
37It is straightforward to check that local incentive compatibility requires the slope of the rent function under the

stochastic contract to be
∫
q
cθ(q̃, θ) dG(q, θ).
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But then,

Φ∗(θ, θ̂) =

∫ θ

θ̂

cθ(q
∗(θ̂), t)− cθ(q

∗(t), t) dt ≥

∫ θ

θ̂

∫

q

cθ(q, t) dG(q, θ̂) dt− cθ(q
∗(t), t) dt ≥ 0

where the last inequality follows from the incentive compatibility of the stochastic contract G(q, θ)

and the definition of q∗.

C. Existence of an optimal contract

This appendix shows that an optimal contract exists and therefore the characterization done in the

paper is meaningful. It is assumed that qv(q, θ) ≥ qs(q, θ) for all q ∈ [0, qf (θ)] and all θ ∈ [θ, θ̄] and

therefore proposition 1 applies. Before showing existence, two useful lemmata are derived.

Define q̃ such that
∫ q̃

0 cqθ(q, θ̄) dq = 0. Since cqqθ < 0, q̃ is unique and therefore properly defined.

Lemma 6. Any incentive compatible contract with a decision q(θ) above q̄ = max{qfb(θ̄), q̃} for some

type is dominated by a contract consisting of decision

qc(θ) = min{q(θ), q̄}

and transfers such that π(θ) = 0 and πθ(θ) =
∫ θ

θ
−cθ(q(t), t) dt.

Proof. The concavity of the virtual valuation implies that the principal’s payoff under qc(θ) is

higher than under q(θ). Hence, the lemma holds if the changed contract is incentive compatible.

Note that incentive compatibility of qc(θ) is obvious if q(θ) > q̄ for all θ. Now define θm = inf{θ :

q(θ) > q̄}. Note that incentive compatibility from θm to any lower type is not affected by the change

from q(·) to qc(·) since Φ(θm, θ̂) does not change.

The next step is to see that q(θ) > q̄ for all θ > θm. The reason is that local incentive compatibility

does not allow for any decision in [s(θ), q̄] as long as q(θ) stays above s(θ). Furthermore, downward

jumps to a decision below s(θ) would require that
∫ q−(θj)
q+(θj)

cqθ(q, θ
j) dq ≥ 0 at the jump type θj (for

local incentive compatibility). But by the definition of q̄ and from cqθθ > 0, this inequality cannot hold

for any type below θ̄ (and a jump at the boundary type θ̄ would not hurt the following argument).

Therefore, all types above θm will have q̄ as their changed decision. From lemma 1 it follows that

only incentive compatibility from types above θm to types below θm has to be checked. Therefore take

an arbitrary θ > θm and some θ̂ < θm. Then Φ(θ, θ̂) = Φ(θm, θ̂) −
∫ θ

θm

∫ q̄

q(θ̂)
cqθ(q, t) dq dt > 0 where

the inequality follows from the incentive compatibility between θm and θ̂ under q(θ), the definition of

q̃ and cqθθ > 0.
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Lemma 7. Take a sequence of incentive compatible decision functions38 qn(θ) ≤ q̄, n = 1, 2 . . . , and

let this sequence converge to q(θ). Then q(θ) is incentive compatible.

Proof. Define c̃qθ = maxq∈[0,q̄], θ∈[θ,θ̄] |cqθ(q, θ)|. Since [0, q̄]× [θ, θ̄] is compact and cqθ(·) is contin-

uous by assumption, c̃qθ exists.

Now suppose contrary to the lemma that Φ(θ, θ̂) = −ε for some θ, θ̂ ∈ Θ and ε > 0 and therefore

incentive compatibility is violated under q(θ). From convergence of {qn(θ)}, for each δ > 0 there exists

an Nδ such that |qn(θ)− q(θ)| ≤ δ for all types and all n > Nδ. Therefore,

Φ(θ, θ̂) =

∫ θ

θ̂

∫ q(t)

q(θ̂)
−cqθ(q, t) dq dt ≥

∫ θ

θ̂

∫ qn(t)

qn(θ̂)
−cqθ(q, t) dq dt−

∫ θ

θ̂

2δc̃qθ dt

for an arbitrary n > Nδ. But then choosing a δ < ε
2c̃qθ(θ̄−θ)

shows that Φ(θ, θ̂) > −ε as Φn(θ, θ̂) ≥ 0

where Φn(·) denotes Φ(·) under qn(·). This contradicts the definition of ε and therefore q(θ) is incentive

compatible.

Given proposition 1 and the previous two results, the existence proof in Jullien (2000) applies. For

completeness, I replicate the proof briefly. The problem of the principal is the program:

max
q(θ)

∫ θ̄

θ

(u(q(θ), θ)− c(q(θ), θ))f(θ) + (1− F (θ))cθ(q(θ), θ) dθ

subject to

Φ(θ, θ̂) ≥ 0 for all θ, θ̂ ∈ [θ, θ̄]

0 ≤ q(θ) ≤ q̄

Let W ∗ be the maximum value of the program. Take a sequence of decision functions such that

qn(θ) induce a value larger thanW ∗− 1
n
and each qn(θ) is incentive compatible . Because of proposition

1, the sequence can be chosen such that each qn(θ) is an increasing function. Then Helly’s selection

theorem, see Billingsley (1986) Thm. 25.9, yields that there exists a non-decreasing function q(θ)

which is the limit of a subsequence qnk(θ) at every point of continuity of q(θ) and therefore almost

everywhere on [θ, θ̄]. Lebesgue’s dominated convergence theorem, see Billingsley (1986) Thm. 16.4,

yields that the principal’s payoff under q(θ) is W ∗. By lemma 7, q(θ) is implementable and therefore

an optimal contract exists.

38An incentive compatible decision is a decision such that the menu consisting of this decision and transfers defined

by π(θ) =
∫ θ

θ
−cθ(q(t), t) dt is incentive compatible.
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