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Abstract

The aim of this paper is to understand the interactions between productive effort and the
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tion, and social interactions. We model this interaction in a way that allows us to characterize
how agents devote resources to both activities. This permits a full-fledged equilibrium/welfare
analysis of network formation with endogenous productive efforts, to derive unambiguous com-
parative statics results and to analyze community sorting by individual traits. In spite of its
parsimony the model retains enough richness to replicate a broad range of empirical regularities
displayed by social and economic networks, and to relate them to individual and social welfare.
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1 Introduction

External effects (spillovers) pervade economies and societies in general. Both inter- and intra-
industry cross interaction between firms have been the object of studies, since at least the work of
Marshall (1890), for the former, and Jacobs (1969), for the latter.1 Social interactions also have
a crucial importance in the determination of individuals’ well-being, as pointed early by Becker
(1974) and recently emphasized by the literature on social capital.2

Given the importance and pervasiveness of these external effects, it is natural that individuals
and firms may want to control and manipulate the size and scope of those external benefits to
their advantage. For example, regional economists have convincingly shown that economic agents
agglomerate in few locations in the economic landscape, precisely in order to reap these localization
externalities (Ciccone and Hall 1996, Guiso and Schivardi 2007).3 In a similar vein, it is difficult
to understand technological collaboration agreement between firms (“joint ventures” and other
similar contracts) without thinking that these are done to control external effects (d’Aspremont
and Jacquemin 1988).4 Finally, the persistent stratification of social groups among many dimensions
(such as income, race, education) is prima facie evidence of the desire of social groups to arrange
themselves so as to internalize spillovers (Tiebout 1956, Benabou 1993).

In this paper, we investigate the interaction between productive effort and the creation of
synergies. We model this in a way that allows us to characterize how agents devote resources
to both activities optimally. In turn, this permits a full-fledged equilibrium/welfare analysis of
individual decisions and to derive unambiguous comparative statics results. In particular, optimal
individual decisions induce preferences over the composition of the interacting group, and we analyze
segregating forces deriving from these induced preferences. The model is also flexible enough to be
brought to the data.

The environment Our model has three main ingredients.
First, we consider a model with local complementarities in productive investment. More pre-

cisely, spillovers are generated by paired agents and are multiplicative in own’s and other’s pro-
ductive effort. We allow for two different sources of heterogeneity. On the one hand, agents can
differ in their marginal returns to own productive effort. On the other hand, for identical levels of
productive efforts, spillovers can vary with the strength of the synergistic linkage across different
pairs of agents. It turns out that this payoff structure allows to pin down exactly how the level of
productive effort varies with the pattern of external effects exerted on each individual, and with
the idiosyncratic characteristics of the agents.

1See Duranton and Puga (2004) for a review of this literature.
2Coleman (1990) and Putnam (2000) are standard references. Sobel (2002) and Durlauf (2002) offer critical

surveys of this literature.
3See Rosenthal and Strange (2004) for a survey.
4See also Suzumura (1992).
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Second, we assume that agents devote a (joint) amount of resources to building synergies with
others. The collection of socialization efforts determines the meeting possibilities across pairs of
agents and results in a pattern of, possibly heterogeneous, bilateral interactions. The intensity of
each bilateral interaction which results from this socialization process becomes a scaling factor on
the local production complementarities arising between these two agents.

Third, while socialization is not earmarked in that individuals do not invest in nominal so-
cial relationships, it is anyway circumscribed to the boundaries of the community to which every
agent belongs. Given that individuals have idiosyncratic traits, a community is characterized by a
population size and a distribution of individual characteristics.

An innovation of our study is, precisely, that the synergistic effort is generic within a community
−a scalar decision. Socializing is not equivalent, in our approach, to elaborating a nominal list of
intended relationships, as in the literature on network formation surveyed by Jackson (2005). This
is realistic in many applications,5 particularly when networks are so large that keeping track of
every participant becomes a burdensome task. In addition, this shortcut greatly improves the
tractability of the model. Unlike with richer models of link formation, we can resort to off-the-
shelf Nash equilibrium analysis without being burdened by the extreme (combinatorial) multiplicity
problems of the other models.6 As a result, we can perform a standard type of equilibrium analysis
that equates marginal costs and benefits of both production and socialization. Of course, this
equilibrium characterization also greatly simplifies welfare and comparative statics analyses. At
the same time, our analysis permits to draw a close connection between topological features and
welfare and economic implications.

We believe that this link between topology, equilibrium, community composition and welfare is
the main value added of the model.

Results We first characterize the equilibria of the model, when agents take their decision
about their productive effort and their socialization effort simultaneously. We show that there are
two interior equilibria and one (partially) corner equilibrium, when a sufficiently large number of
individuals is implicated. The (partially) corner equilibrium where agents do not invest at all in

5Researchers go to fairs, or congresses to listen, to be listened to, and to meet other investigators in general. More

generally, face-to-face meetings among agents that share a common location often result from random encounters

among these agents, as the early literature on segregation indexes already points out (Bell 1954).
6In a typical game of network formation, players simultaneously announce all the links they wish to form with. The

links that form are those that are mutually announced by both partners. The cost of creating and maintaining links

are then payed. As a consequence of the large multi-dimensional strategy space, and because link creation requires

the mutual consent of the two involved parties, a severe coordination problem arises. As such, the game often displays

a multiplicity of Nash equilibria, and very different network geometries can arise endogenously. A partial solution to

this problem can be found by allowing pair-wise or coalitional deviations, or by restricting to cooperative-like network

stability notions (Jackson and Wolinsky, 1996). Jackson (2005) surveys this literature, while Calvó-Armengol and

Ilkiliç (2006) derive the connections between this approach and standard game-theoretic refinements.
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building synergies is unstable. Instead, the two interior equilibria are stable. Existence and stability
of interior equilibria are obtained when the level of cross synergies as well as the heterogeneity in
individual traits are not too high, which amounts to bounding from above a compound index of
both payoff parameters.

For large enough populations, equilibrium actions take a particularly simple form. Recall that
agents can display different marginal returns to own productive effort. We label “individual type”
the value of this marginal return at the origin. We first show that the ratios of productive as well
as socialization efforts across different pairs of agents are all equal to the ratio of their individual
types. In other words, at equilibrium, the productive and socialization efforts for a given agent are
the product of his individual type with some baseline values for the productive and socialization
efforts. These baseline values, in turn, are obtained from a system of two equations with two
unknowns that admits exactly two positive solutions −hence the two interior equilibria. Compared
to the case of an isolated agents, these baseline values are all scaled up, by a synergistic multiplier

which homogeneous across players and which depends on a compound index of heterogeneity in
the community within which they interact.

This simple equilibrium characterization has a number of interesting implications. In particular,
we can show that one of the interior equilibria displays both higher socialization and productive
effort than the other, so that we can talk of high-action and low-action equilibrium. It also turns
out that the high-actions equilibrium is Pareto superior. Furthermore, the socially efficient outcome
lies in between the two equilibria, so that we can effectively talk about a too-high and a too-low
equilibrium.

An important question is then how an exogenous change in the returns to production and
socialization affect the relative production and socialization efforts at equilibrium. In turns out
that, when the returns increase, all equilibrium actions decrease at the Pareto-superior equilibrium,
while they increase at the Pareto-inferior equilibrium. In both cases, the percentage change in
socialization effort is higher (in absolute value) than that of the productive effort. We think this
may provide an explanation, for example, of the large increase in agreements of collaboration in
R&D in the recent past (Caloghirou, Ioannides, Vonortas 2003). It could also explain the decline
in social capital documented by Putnam (2000).

The equilibrium payoffs have sorting-inducing effects. More precisely equilibrium payoffs de-
pend on the synergistic multiplier which itself depends on the compound index of heterogeneity.

Therefore changes in the composition of the population have a direct impact on equilibrium pay-
offs, asymmetric across different types. This asymmetry provides incentives for agents at the two
extremes of the type distribution to segregate themselves from the rest, as long as segregating
institutions or mechanisms are available. This segregation, when it occurs yields a more efficient
community assignment than the equilibrium with all the population mixed within the same com-
munity.
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We then turn to the implications of the model for the topology of networks. When synergy
values are all between zero and one, our equilibrium socialization efforts can be interpreted as a
(multinomial) random graph with independent link probabilities, where the expected number of
links accruing to each agent (also known as the degree of the corresponding network node), is
equal to the socialization effort of this agent. Models of random graph with given expected degree
sequence (here, the equilibrium profile of socialization efforts) have been analyzed by Chung and
Lu (2002). They can replicate many of the observed features of real-life networks. We examine the
implication of our model for the connectivity distribution, the clustering (namely, the propensity of
friends of an individual to be friends between themselves), and the average distance, as well as the
emergence of a giant component, that is, the existence of a connected sub-network encompassing a
large fraction of the population.

To summarize, we propose a methodology that can usefully relate network topology to economic
features of the model (and vice versa), which is an advantage with respect to other models that
replicate well observed network topology.7

The paper is organized as follows. Section 2 describes the model, and introduces the baseline
game as well as the replica game. Section 3 contains the equilibrium and welfare analysis. The
comparative statics results are gathered in Section 4. Section 5 discuss the equilibrium and welfare
implications for (and from) the network topology. Section 6 analysis the particular case of homoge-
neous populations with general cost structures, and the emergence of giant components. All proofs
are gathered in the appendix.

2 The game

The replica game N = {1, ..., n} is a finite set of players, and T = {1, . . . , t} is a finite set
of types for these players. We let n be a multiple of t, that is, n = mt for some integer m ≥ 1, so
that there is the same number of players of each type.

More precisely, we refer to the case n = t as the baseline game, and to the general case n = mt

as the m−replica of this baseline game. In an m−replica game, there are exactly m players of each
type τ ∈ T .

For each player i ∈ N , we denote by τ (i) ∈ T his type.
We consider a simultaneous move game of network formation and investment. The returns

to the investment are the sum of a private component and a synergistic component. The private
returns are heterogeneous across players and depend on their type. We denote by b = (b1, ..., bt)
the profile of these private returns, where 0 < b1 ≤ b2 ≤ ... ≤ bt. Even though each type in the
replica game has the same number of individuals, we can match any finite distribution of types in

7Kirman (1983), Kirman, Oddou and Weber (1986) and Ioannides (1990) propose and analyze early models relating

random networks of interaction with economic outcomes.
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a population by adding multiple copies of an individual type.8

The synergistic returns depend on the network formed on account of individual choices, as
described below.

Network formation Consider some m−replica game, m ≥ 1. Let n = mt.
Each player i selects a socialization effort, si ≥ 0. Let s = (s1, ..., sn) be a profile of socialization

efforts. Then, i and j interact with a link intensity given by:

gij(s) = ρ (s) sisj (1)

By definition, links are symmetric, that is, gij = gji. We also allow for self-loops (when i = j).
The total interaction intensity for a player i is:

gi(s) =
n∑

j=1

gij(s) = ρ (s) si

n∑
j=1

sj .

We set

ρ (s) =

{
1/
∑n

j=1 sj , if s 6= 0
0, if s = 0

(2)

so that gi(s) = si. That is, players decide upon their total interaction intensity.
In this model, the exact identity of the interacting partner is not an object of choice. Rather,

players choose an aggregate level of socialization effort. This total effort is then distributed across
each and every possible bilateral interaction in proportion to the partner’s socialization effort. This
interaction pattern arises naturally when meetings result from casual encounters rather than from
an ear-marked socialization process.

The functional form in (1) and (2) can be tied back to simple properties of the link intensity
gij (s), as established below.

Lemma 1 Suppose that, for all s 6= 0, the link intensity satisfies:

(A1) symmetry: gij (s) = gji (s), for all i, j;

(A2) aggregate constant returns to scale:
∑n

j=1 gij (s) = si;

(A3) anonymous socialization: gji (s) /sj = gki (s) /sk, for all i, j, k;

then, the link intensity is given by (1) and (2).

Conditions (A2) and (A3) reflect the fact that i controls his total number of contacts si, but the
actual type composition of these contacts depends on others’ socialization efforts. More precisely,
each player devotes the same share of his total socialization effort to interacting with player i.

8With enough replications, of course.
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When maxi s
2
i < 1/ρ (s), all link intensities are between 0 and 1. In this case, we can view

the network as a random graph where gij(s) is the probability of having an edge between i and j,
and links are independent across different pairs of players. This random graph model with given
expected degrees s = (s1, ..., sn) is analysed, e.g., in Chung and Lu (2002). This model can replicate
many of the connectivity distributions encountered in real-life networks, and displays some other
interesting topological features that we analyse in Section 5.9

Investment Each player i makes a productive investment, ki ≥ 0. The choices of si and ki

are simultaneous. Let k = (k1, ..., kn) be a profile of investments. These individual investments
yield both a private and a synergistic return.

The private return to player i depend only on his own investment level ki and his idiosyncratic
traits, summarized by bτ(i) ≥ 0. We adopt a simple quadratic expression bτ(i) ki − k2

i /2.
The synergistic return depends on both s and k. We consider multiplicative synergies kikj that

are additively separable across pairs of players. For each pair of players i, j, these cross effects
are scaled by a factor that reflects the intensity of the interaction between the two players. More
precisely, we assume that:

∂2ui(s,k)
∂ki∂kj

= agij(s), for all i 6= j, (3)

where a ≥ 0 corresponds to the level of synergistic returns.
Notice that the symmetry (A1) in Lemma 1 is tantamount to payoffs being twice continuously

differentiable in the productive investments k.

Payoffs Let c > 0. Player i’s utility is given by:

ui(s,k) = bτ(i) ki + a
n∑

j=1,j 6=i

gij (s) kjki −
1
2
ck2

i −
1
2
s2
i (4)

Payoffs are a linear-quadratic function of kis with non-negative cross effects (3) reflecting strate-
gic complementarities in productive investments. The size agij(s) ≥ 0 of these complementarities
depends on the profile of socialization efforts, and varies across different pairs of players.

Payoffs also display strategic complementarities in socialization efforts, ∂2ui(s,k)/∂si∂sj ≥ 0.

3 Equilibrium analysis and Pareto ranking of equilibria

3.1 Equilibrium analysis

We solve for the interior Nash equilibria in pure strategies (s∗,k∗) = (s∗1, ..., s
∗
n, k∗1, ..., k

∗
n) of the

m−replica game with heterogeneous types b = (b1, ..., bt), and for m large enough.
9See Ioannides (2006), Jackson (2007) and Vega-Redondo (2007) for more on random graphs and their connections

to economics.
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Under some conditions that we provide, there are exactly three such equilibria.
In one (partially corner) equilibrium, the level of socialization effort is null for all players.

Indeed, non-reciprocated unilateral socialization efforts do not yield to any interaction supportive
of synergies.

The two other equilibria are interior.
We first identify the (partially) corner equilibrium of the game.

Lemma 2 For all m−replica game, (s∗i , k
∗
i ) =

(
0, bτ(i)/c

)
for all i = 1, ...,mt is a pure strategy Nash

equilibrium with corresponding equilibrium payoffs b2
τ(i)/2c. For m high enough, this equilibrium is

not stable for the best-reply dynamics.

This is a strict equilibrium, thus it cannot be discarded on the basis of standard refinements.
However, this equilibrium is not stable for sufficiently large populations. Indeed, any socialization
effort, however small, leads to a social interaction that generates synergy payoffs when at least one
additional agent socializes as well, which induces every other agent to socialize further.

Given that the partially corner equilibrium is un-stable for high enough replications, we con-
centrate on the interior equilibria.

Define:

a(b) = a

∑t
τ=1 b2

τ∑t
τ=1 bτ

. (5)

Holding the average type
∑t

τ=1 bτ/t constant, the parameter a(b) increases with the hetero-
geneity in types. More generally, a(b) increases with the ratio

∑t
τ=1 b2

τ/
∑t

τ=1 bτ , which many
authors refer to as the second-order average type (e.g., Vega-Redondo 2007). When types are all
homogeneous, that is, b1 = ... = bt = b, we have a(b) = ab.

Theorem 1 Suppose that 2 (c/3)3/2 > a(b) > 0. Then, there exists an m∗ such that for all
m−replica games with m ≥ m∗, there are exactly two interior pure strategy Nash equilibria. These
pure strategy Nash equilibria are such that, for all players i of type τ , the strategies (si, ki) converge
to (s∗τ(i), k

∗
τ(i)) as m goes to infinity, where s∗τ(i) = bτ(i)s, k∗τ(i) = bτ(i)k, and (s, k) are positive

solutions to: {
s = a(b)k2

k [c− a(b)s] = 1
. (6)

For m high enough, these two Nash equilibria are stable for the best-reply dynamics.

When a(b) is small enough compared to the infra-marginal cost for a productive investment, the
system of two equations (6) with two unknowns has exactly two positive solutions. As m gets large,
each such solution gets arbitrarily close to a pure strategy Nash equilibrium of the corresponding
m−replica game. We get two approximate Nash equilibria. Besides, as m gets large, every pure
strategy Nash equilibrium gets arbitrarily close to a solution of (6).
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Table 1 shows the discrepancy between equilibrium and approximated equilibrium actions for
various population sizes. The last column corresponds to the approximated equilibrium actions;
the other columns give the exact Nash equilibrium actions as m varies.

Table 1: Simulations with a = 2, c = 1, t = 1 and b1 = 0.1.10

m 2 5 10 20 50 100 500 ∞
Low equilibrium

k∗ 1,898 1,195 1,101 1,065 1,049 1,046 1,046 1,046
s∗ 2,366 815 458 303 234 222 218 219

High equilibrium

k∗ 3,346 4,643 4,591 4,508 4,444 4,420 4,400 4,394
s∗ 3,506 3,923 3,911 3,891 3,875 3,869 3,864 3,862

For an homogeneous population with common trait b, one can verify that the exact equilibrium
equations are: {

s = abk2
(
1− 1

m

)2
k
[
c− abs

(
1− 1

m

)]
= 1

Comparing with (6), it can be checked that the approximation error is of the order of m−3/2. In
particular, when m = 100, the approximation error is of the order 10−3.

The approximated equilibria (s∗,k∗) characterized in Theorem 1 display three important fea-
tures.

First, the level of socialization per unit of productive investment is the same for all players,
that is, s∗i /k∗i = s∗j/k∗j , for all i, j. Given our quadratic cost structure, this is equivalent to having
a marginal rate of substitution of socialization versus investment for gross benefits uniform across
all players. An approximate equilibrium is thus fully characterized by specifying the value of this
ratio together with the population profile of productive investments.

Second, differences in productive investments reflect differences in idiosyncratic traits. More
precisely, k∗i /k∗j = bτ(i)/bτ(j), for all i, j. Absent any synergy payoffs, private returns are maximal
when productive investment is equal to bτ(i)/c, and the ratio of these maximal investments is
then also equal to bτ(i)/bτ(j). At an approximate equilibrium, the relative value of productive
investments thus remains unchanged with and without synergies. The presence of synergies only
affects the absolute value of those investments.

Third, in the presence of synergies, productive investments are all scaled up (compared to the
case without synergies) by a synergistic multiplier given by:11

1
1− a(b)s∗/c

. (7)

10Numbers are multiplied by 104.
11This is obtained by rewriting the second equation of (6) as k∗

i = bτ(i)k
∗ = bτ(i)/ (c− a (b) s∗), and by dividing

the right-hand term by the optimal productive investment level in the absence of synergies, bτ(i)/c.
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This synergistic multiplier, which is homogeneous across all players, is a decreasing function of the
infra-marginal productive investment cost c, and an increasing function of the second-order average
type a(b). Beyond these dependence on exogenous payoff parameters, the synergistic multiplier
also depends on the endogenous baseline equilibrium socialization effort s∗.

In substance, individual traits enter multiplicatively into own actions at approximate equilibria.
Also, the population-wide heterogeneity collapses into a single index, a(b). Compared on the case
without synergies, productive investments are all scaled up by a common synergistic multiplier that
depends on this index. Finally, the ratio of socialization to productive effort is uniform across all
agents.

These properties of the equilibrium actions have implications for the type composition of the
social interaction circle of each player. Recall that s∗i gives the total interaction intensity, or size, of
the social circle of agent i. We deduce from the above discussion that social circles across players
of different types τ and τ ′ vary in fixed proportions bτ/bτ ′ . Beyond this size effect, the inner
composition of social circles is the same for all agents. More precisely, every agent i devotes an
identical fraction bτ ′/

∑
τ∈T bτ of his total socialization intensity to interacting with type τ ′ agents,

and this fraction is independent of his own type.
Figure 1 plots equations (6).
From the graph, it is clear that the system (6) needs not always have a non-negative solution.

The upper bound on a(b) in Theorem 1 is a necessary and sufficient for the two graphs to cross in
the positive orthant of the space (s, k). When a(b) is too large, the synergistic multiplier operates
too intensively and there is no intersection. More precisely, holding s fixed, the level of productive
investments escalates without bound. In turn, this triggers and unbounded increase in socialization
effort, and both effects positively feed back into each other.

Remark 1 When 0 < a(b) < 2 (c/3)3/2, the system of equations (6) has two different non-negative
solutions. When a(b) = 2 (c/3)3/2, there is a unique non-negative solution (s, k) =

(
3/c,

√
3/c
)

/2.

When a(b) > 2 (c/3)3/2, there is no non-negative solution.

3.2 Pareto ranking of equilibria and the efficient outcome

Given an approximate equilibrium (s∗,k∗), we denote by u (s∗,k∗) = (u1 (s∗,k∗) , ..., um (s∗,k∗))
the corresponding equilibrium payoffs. Denote also by and

(
sE ,kE

)
the (approximate) efficient

outcome, i.e., the one (almost) maximizing the sum of payoffs for all players in a large m−replica
game.

The next result compares equilibrium actions and payoffs across the two approximate equilibria
characterized in Theorem 1.12

12Notice that all the claims to follow are made on approximate equilibria rather than on the exact Nash equilibria

of the game. Given the local continuity of the equilibrium correspondence around interior equilibria, the claims about
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1/a(b) k

s

0

s[1-a(b)k] = 1

1/a(b)

k = a(b)s2

a(b)

Figure 1.

(s*,k*)

(s**,k**)1

Figure 1: Equilibrium conditions

11



Proposition 1 Let (s∗,k∗) and (s∗∗,k∗∗) be the two different approximate equilibria of an m−replica
game . Then, without loss of generality, (s∗,k∗) ≥

(
sE ,kE

)
≥ (s∗∗,k∗∗) and u

(
sE ,kE

)
≥

u (s∗,k∗) ≥ u (s∗∗,k∗∗), where ≥ is the component-wise ordering.

In words, the equilibrium actions are ranked component-wisely and the equilibrium payoffs are
Pareto-ranked accordingly. From now on, we refer to the Pareto-superior and to the Pareto-inferior
approximate equilibrium as the high and the low equilibrium, respectively. The socially efficient
outcome lies in between the two equilibria, so that we can effectively talk about a too-high and a
too-low equilibrium.

Denote by (s∗, k∗) and (s∗∗, k∗∗) the baseline socialization and productive efforts that solve
(6), and that enter the calculation of the high and the low equilibrium, respectively. Then, it is
already apparent from Figure 1 that s∗/k∗ ≥ s∗∗/k∗∗. That is, the level of socialization per unit
of productive investment is higher at the high equilibrium. At the high equilibrium, a high joint
socialization effort creates tight links across players which then invest heavily in productive effort
to build high cross synergies on this fertile ground. At the low equilibrium, low joint socialization
efforts lead to a loose interaction pattern which hampers the scope for cross synergies, and thus
the level of private investments. As a matter of fact, the synergistic multiplier is higher in the high
equilibrium, and pulls up the level of production investments compared to the low equilibrium.

The equilibrium multiplicity identified in Theorem 1 reflects an inter-twinned coordination
problem in the socialization process and in the production technology. These two coordination
problems are rooted separately on the payoffs strategic complementarity both in socialization effort
and in productive investment. The dependence of the cross returns in production on the population
socialization profile, ∂2ui(s,k)/∂ki∂kj = agij(s) for i 6= j, relates these two coordination problems
with each other, as reflected by the endogenous dependence of the synergistic multiplier (7) on the
baseline socialization effort.

4 Socialization and investment

Recall that a(b) is a compound index of the technological synergy parameter and of the second-order
average type

∑t
τ=1 b2

τ/
∑t

τ=1 bτ , that measures the population heterogeneity in private returns to
productive investment. This compound index enters directly in the equilibrium behavior (6) and,
in particular, in the value of the synergistic multiplier (7).

Exogenous changes in the value of the technological parameter and/or in the group character-
istics have an impact on socialization and investment that is channeled through the variations in
a(b) that follow these changes. The next result clarifies how socialization and investment react to
changes in a(b).

approximate equilibria are generally portable to properties of Nash equilibria, although some qualifications may be

sometimes required.
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Proposition 2 Suppose that a(b) increases. Then, in both approximate equilibria of the replica
game, the percentage change in socialization effort is higher than that of productive investment
for all agents. Besides, the baseline equilibrium actions that solve (6) both increase at the low
equilibrium and decrease at the high equilibrium.

Recall that equilibrium actions are multiplicative in own traits, (s∗i , k
∗
i ) = bτ(i) (s∗, k∗), where

(s∗, k∗) are the baseline socialization and productive investments that solve (6). Proposition 2
implies that the socialization effort per unit of productive investment, s∗i /k∗i , decreases at the high
equilibrium and increases at the low equilibrium when a(b) goes up. It also states that the elasticity
of socialization with respect to productive investment, that accounts for the relative variation of
these two actions, is smaller than one at all equilibria.

At the high equilibrium, where socialization is overwhelming, agents substitute an increase in
a(b) by an endogenous decrease in baseline socialization s∗. As a result, the synergistic multiplier
decreases and the baseline productive investment is pulled down. These decrease in production feeds
back and further dampens the level of socialization. And so forth, until this chain of cross influences
sets at a new equilibrium. It turns out that socialization is more responsive than productive
investment.

At the low equilibrium, instead, where the interaction pattern is diffuse, agents complement
an increase in a(b) by an increase in socialization, which triggers an upwards jump in baseline
productive investment. Again, socialization is here more responsive than productive investment.

The reason for this over-responsiveness of socialization can be better understood by inspecting
the first order condition for socialization:

s = a(b)k2

which implies that:
1
s

∂s

∂a(b)
=

k2

s
+ 2

1
k

∂k

∂a(b)
>

1
k

∂k

∂a(b)

In words, the fact that the marginal benefit of socialization effort is of the order of the square of
k, whereas the marginal benefit is of the order of s is what drives this finding. This result, as we
mentioned in the introduction, has interesting implications to understand the explosive increase in
scientific collaborations as well as the large decreases of social capital in many developed societies.

Figure 2 illustrates how, at the low equilibrium, an increase in a(b) leads to an increase in
both socialization and investment. At the high equilibrium, instead, baseline socialization and
investment decrease.

Changes in the compound index a(b) can subsume various effects of very different nature. More
precisely, this compound index responds positively to upwards shifts in the technological scale of
synergistic returns a, to changes in the population that increase the second-order average type∑t

τ=1 b2
τ/
∑t

τ=1 bτ , and to combination of both effects.
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s

0
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Figure 2.
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1

Figure 2: Equilibrium comparative statics
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For instance, a mean-preserving spread in idiosyncratic traits leaves
∑t

τ=1 bτ constant while∑t
τ=1 b2

τ grows. The ensuing upwards shift in the second-order average type increases a(b).
Suppose also that a and all the bτ ’s a are all scaled up by a common factor. In particular,

consider the following variation of payoffs (4), where λ > 0:

ui(s,k) = bτ(i) ki + a
n∑

j=1,j 6=i

gij (s) kjki −
λ

2
ck2

i −
λ

2
s2
i , (8)

The game with payoffs (8) has the same equilibria than the game with original payoffs (4), where
the types bτ and the synergy scale parameter a, and thus the compound index a(b), are all scaled
homothetically by 1/λ.

Proposition 2 encompasses all those cases and many others, and pins down the relative variation
of socialization and productive investment, and the absolute variation of baseline socialization and
productive investment, for all these multifarious changes in parameters.

Notice, however, that equilibrium actions (s∗i , k
∗
i ) = bτ(i) (s∗, k∗) need not move in the same

direction than baseline equilibrium actions (s∗, k∗). This may be so at the low equilibrium when
the changes in a(b) result from variations in parameter values for which bτ(i) moves in the opposite
direction than a(b), and at the high equilibrium if bτ(i) moves in the same direction than a(b).

The following result clarifies this point.

Corollary 1 An increase in a (b) for which bτ does not decrease (resp. does not increase) in-
creases (resp. decreases) the socialization and investment efforts of all type τ players at the low
equilibrium (resp. at the high equilibrium).

5 Population composition and welfare

We now document the comparative statics of individual and aggregate equilibrium payoffs when
a(b) varies, with a particular emphasis on the effect of the group heterogeneity.

5.1 Welfare

When m gets large, approximate equilibrium payoffs corresponding to baseline efforts (s∗, k∗) that
solve (6) are given by the following expression:

u∗i =
b2
τ(i)

2a(b)
s∗

k∗
+ o (1) =

b2
τ(i)

2
k∗ + o (1) , for all i = 1, ...,mt. (9)

Given the expression for equilibrium payoffs (9), the comparative statics of equilibrium actions
established in Proposition 2 and Corollary 1 above have straight implications for the reaction of
individual well-being to changes in the compound index a(b).
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Proposition 3 An increase in a (b) for which bτ does not decrease (resp. does not increase)
increases the low equilibrium payoffs (resp. decreases the high equilibrium payoffs) of all type τ

players.

In particular, an increase in the synergy parameter a induces a downwards shift of equilibrium
payoffs at the high equilibrium, and an upwards shift at the low equilibrium. Indeed, scaling
up the scope for synergies helps alleviating the coordination features of both equilibria. At the
low equilibrium, characterized by an under-provision of production and socialization efforts, the
interaction pattern is tightened and investments increment. At the high equilibrium, instead, where
over-provision prevails, the social network is loosened and investments reduced.

Proposition 3 also documents the changes in individual welfare following a change in the pop-
ulation distribution of types. We explore some changes in the types profile b = (b1, ..., bt) that
induce an increase in a (b).

Consider two type profiles b′ ≥ b, where ≥ is the component-wise ordering. The marginal
private returns to productive investment of every agent are not smaller under b′ than under b,
and are strictly higher for at least one type when b′ 6= b. Even though b′ is obtained from b
by increasing the type of some agents, it is not always true that the value of a (b′) so obtained is
higher than that of a (b). The following results clarify this point.

Recall that 0 < b1 ≤ b2 ≤ ... ≤ bt.

Proposition 4 Let b = (b1, ..., bt) be a type profile such that 2b1 ≥ bt. Then, the low equilibrium
payoffs of every player increase with bτ , while the high equilibrium payoffs of every player of type
τ ′ 6= τ decrease with bτ , for all τ ∈ T .13

Recall that, at equilibrium, all agents have the same distribution of types in their social circle,
and interactions with a type τ represent a fraction bτ/

∑
τ ′∈T bτ ′ of the agent’s total socialization

intensity. When 2b1 ≥ bt, the ratio of higher to lower type values is never higher than two. As a
result, the type composition of agent’s social circles are moderately uneven, and high types are not
over-represented with respect to lower types.

With a moderately uneven type distribution, agents of different types contribute in not too
disparate proportions to the creation of cross-synergies.

More precisely, the synergistic payoff to a bilateral interaction between players i and j is
agij (s) kikj . At equilibrium, we can rewrite this spillover as as∗i s

∗
jk

∗
i k

∗
j /
∑

τ∈T bτs
∗. Holding the

average type constant, the two partners contribute, respectively, s∗i k
∗
i and s∗jk

∗
j , to the creation

of the synergy payoffs. Relative contributions to the synergy are thus equal to b2
τ(i)/b2

τ(j). Two
interacting partners with identical type contribute symmetrically to the cross spillover they exert
on each other, while two interacting partner with different type contribute asymmetrically. When

13A weakening of the sufficient condition 2b1 ≥ bt is to assume that b2
τ +2bτ

P
τ ′ 6=τ bτ ′ ≥ 2

P
τ ′ 6=τ b2

τ ′ , for all τ ∈ T .
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2b1 ≥ bt, these asymmetric contributions are not too strikingly different, with values in [1/4, 4],
and cross spillovers are moderately asymmetric.

With moderately asymmetric cross spillovers, any type value unilateral increase benefits all
players at the low equilibrium who each increase the spillovers they exert to every other interacting
partner.

Instead, when type values differ drastically with each other, players’ contributions to the
spillovers with players of a different type are highly asymmetric. An increase in the low type
value can now decrease the welfare of high type players at the low equilibrium, as illustrated below.

Example 1 Consider two types b = (b1, b2) with b1 <
(√

2− 1
)
b2. Then, a (b) is a strictly

decreasing function of the low type b1.14 An increase in b1 decreases the payoffs of the high type
players at the low equilibrium.

When b1 <
(√

2− 1
)
b2, the fraction of type 2 players in every individual social circle is bounded

from below by 1/
√

2, a lower bound of roughly 70, 7% interactions with type 2 players. In particular,
high type 2 players interact overwhelmingly with players of the same type. This in-breeding bias
is accompanied by symmetric cross-spillovers across high type players to which they all contribute
intensively. High type players also contribute asymmetrically to spillovers they exert on low type
players. But the interactions sustaining these spillovers are rare, and they main concern is the
creation of within-type symmetric spillovers.

Suppose now that the value of b1 increases. The asymmetric high-low type interactions become
more prevalent. A higher share of the socialization and production efforts of high type players is now
beneficial to low type players, who partially free-ride on these spillovers to which they themselves
don’t contribute much. High type players then react to this increase in b1 by narrowing down the
size of their social circles at the low equilibrium and, more generally, by decreasing the generation
of cross-spillovers that they now share symmetrically among themselves in a smaller proportion.

The previous results characterize the effect on individual payoffs of changes in type composition.
Now following a mean preserving effect in types, the compound index a (b) increases. This induces
an upward shift of baseline actions at the low equilibrium. Individuals experiencing an increase
in type will certainly experience an increase in payoffs, but the effect is ambiguous for agents
experiencing a decrease in types. The next result shows, however, that the overall aggregate effect
is positive. The argument is symmetric at the high equilibrium.

Proposition 5 Aggregate payoffs increase at the low equilibrium and decrease at the high equilib-
rium following a mean-preserving spread of the population type profile b = (b1, ..., bt).15

14We have a(b) =
`
b2
1 + b2

2

´
/ (b1 + b2). The sign of ∂a(b)/∂b1 is that of b2

1 + 2b1b2 − b2
2, which is negative when

(b1 + b2)
2 < 2b2

2, that is, b1 <
`√

2− 1
´
b2.

15That leaves
Pt

τ=1 bτ constant but increases
Pt

τ=1 b2
τ .
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5.2 Community segregation

In section 5.1 we document the welfare consequences of changes in the type distribution of com-
munities, for both individual types and for communities as a whole. Implicitly this mapping allows
us to characterize the individual preference induced by equilibrium behavior and payoffs over the
type composition to which the individual belongs. Our equilibrium analysis generates endoge-
nous preferences over groups, embodied in the indirect utility function created by the equilibrium
mapping.

Individual tastes over group composition irremediably pose the question of group formation.
Previous research on group formation typically consider individuals exogenously endowed with

preferences over groups. For instance, in the seminal work of Becker (1957) and Schelling (1971), in-
dividuals with different idiosyncratic traits intrinsically like or dislike each other. Here, in contrast,
the group externality results from equilibrium behavior. Other’s idiosyncratic traits do not enter
directly into the specification of an individual’s utility function. They only do so at equilibrium,
where individual actions subsume the group heterogeneity in a consistent manner.

Following this early literature, we analyse how preferences over groups affect group formation.
Because we deal with endogenous preferences, our analysis sheds light on the impact of technological
parameters (such as returns to private investment and the scope for building spillovers) on individual
incentives to group formation and social welfare. This, in turn, opens the scope for the design and
implementation of viable public policies based on observable technological parameters rather than
on some exogenous (dis)taste for diversity. We also derive implications for interaction patterns
(intra and between group socialization) for endogenously formed groups.

In our model, the preference over group composition depend on the compound index a(b). More
precisely, consider a group with a population type profile b = (b1, ..., bt). Denote by b(m) the vector
of length n = mt obtaining by replicating m times the population with type profile b. Clearly
a(b) = a(b(m)). Consider an individual i with type bi that joins this group. Now the population
size is m + 1 and the new type profile is (bi,b(m)). When m is large enough it is clear that the
compound index for this community of size m + 1 can be written as:

a(bi,b(m)) = a(b) + o (1) . (10)

Therefore the payoff accruing to the new community member is:

u∗i =
1
2
b2
i k

∗ (a(b)) + o (1) , (11)

where k∗ (a(b)) is the baseline productivity that solves (6) when the vector of type profiles is exactly
b.

Communities with a higher a(b) thus lead to higher (resp. lower) payoffs for the newcomer
at the low (resp. high) equilibrium compared to the source community. Also, the returns from
changing community are proportional to the square of the type of the individual who moves, b2

i .
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An individual with a higher type gains more to a community with a higher a(b) than an individual
with a lower type (at a low equilibrium, the situation is reversed at a high equilibrium). This
differential sensitivity of low and high type movers to the composition of the community profile the
individual belongs to has segregation-inducing effects that we now analyze.

Take two communities, b and b′. Consider an individual i who is pondering whether to move
from b′ to b. Using (11) the relative gains from moving are:

u∗i
(
bτ(i),b

)
− u∗i

(
bτ(i),b

′) =
1
2
b2
τ(i)

[
k∗ (a (b))− k∗

(
a
(
b′
))]

+ o (1)

If a player of arbitrary type bτ(i) gains from the move, any player with any other type would
also gain. However, the gains are higher for higher type players. This type-monotonicity in relative
gains is what leads to an equilibrium with community stratification by types.

More precisely, consider a finite set of communities ` ∈ {1, ..., L}, each with n` slots where∑L
`=1 n` ≥ n = mt for a high enough m. We also assume that each n` is high enough so that

the compositional impact of changing one players’ type on the compound index for community ` is
small, as in (10).

Order arbitrarily the available communities.
We denote by top-down sorting the following assignment of players into communities according

to their type. Community 1 gets assigned the n1−highest type players, community 2 the n2−highest
type players among the remaining ones, and so on until all players are assigned to one (and only
one) community.

Recall that there are m players of each type. If m ≥ n1, the top-down sorting assignment
produces a homogeneous community 1 that contains only individuals with the highest type. Instead,
if 2m ≥ n1 > m, community 1 contains all the individuals with the highest type available in the
population, and some (exactly m− n1) individuals with the next highest type.16 And so on.

The top-down sorting leads to a segregated community structure with types stratified from
higher to lower. Namely, given two communities ` > `′ and two players i, i′ that are assigned to
either community by top-down sorting, then bτ(i) ≥ bτ(i′). To ensure that this inequality is strict for
at least one pair of players in two different communities, we assume that two successive communities
cannot be fully occupied by players of the same type, that is, m > n` + n`+1 for all ` = 1, ..., L− 1.

We define similarly an assignment that allocates successively individuals starting from low types
and moving on to higher ones that we refer to as bottom-up sorting.

To join a neighborhood `, individuals must pay a fee p` to the owner of the community `.
We say that an assignment of individuals to communities and a vector of community prices forms
an equilibrium when, given the prices, no individuals prefers to change communities and either a
community is full or its associated fee is zero.

16More generally, let k be an integer such that (k + 1)m ≥ n1 > km. Then, Community 1 contains all the m type

t, ..., t− k + 1 players, and n1 − km type t− k players chosen arbitrarily among the m type t− k players available in

the population.
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Proposition 6 There exists an assignment equilibrium with top-down sorting where individuals
play their low equilibrium actions for their community. Denote by b` the type profile in community
` under top-down sorting, and by b` the lowest type in this community. Then, the fee for a full
community ` is:

p` =
1
2
b`2
[
k∗
(
a
(
b`
))

− k∗
(
a
(
b`+1

))]
, ` = 1, ..., L− 1, (12)

and pL = 1
2bL2

k∗
(
a
(
bL
))

. Symmetrically, there exists an assignment equilibrium with bottom-up

sorting where individuals play their high equilibrium actions for their community; the fee for a full
community ` under bottom-up sorting is computed with (12) where b` is replaced by the highest
type in community `.

It would not be very hard to reformulate the model so that segregation is not complete, but only
partial, in that the cross communities interactions are still allowed although at lower intensities
than intra-community ones.

Proposition 7 Social welfare is higher with the top-down segregated low equilibrium than with a
fully integrated low equilibrium community.

Recall that segregation at the low equilibrium is sponsored by the high types. Instead, segre-
gation at the high equilibrium is sponsored by the low types. These equilibria reflect fundamental
coordination problems arising from externalities. In one of them, there is underinvestment in both
productive effort and social capital. In the other one, there is overinvestment. In the low equilib-
rium there is underinvestment. Notice that all individuals benefit symmetrically from the synergy
in every bilateral interaction in which they are involved. However, despite the symmetric benefits,
contributions to the synergies are very different for different types. In this way, the high types
are relatively more harmed from the underinvestment. They would benefit more from a change in
the environment that increased the number of high contributors, than the low contributors would
be harmed from a decrease in the share of high contributors in their neighborhood. Thus a new
equilibrium with segregation would increase total social surplus. Proposition 5 already hints at this
kind of convexity, that is, the fact that social welfare decreases with mixity at the low equilibrium.

The literature on the productivity effects of “economic density”17 has concentrated on agglom-
eration externalities to explain why denser economic areas are more productive. The models in
that literature typically assume away individual heterogeneity and its impact in the observed pro-
ductivity differentials by location. Combes, Duranton and Gobillon (2007), however, note that
“individual skills account for a large fraction of existing spatial wage disparities with strong evi-
dence of spatial sorting by skills.”18 An advantage of our model is that it incorporates a particular

17See Ciccone and Hall (1996) for a seminal contribution. Duranton and Puga (2004) survey this literature.
18Andersson, Burgess and Lane (2007) make a similar point.

20



form of agglomeration externalities as well as individual heterogeneity. This combination, in turn,
allows us to explain the pattern of sorting into different locations by differently able individuals,
and therefore the wage disparities that go along with productivity differentials.

By placing the individual heterogeneity in a parameter clearly identifiable with productivity we
can model the effect of policies that impact individual productive effort into segregation. These
turn out to have different properties, in general, from those of other models that have been explored
in the literature for similar problems.

For example, the skill complementarities in our model are endogenous. This differentiates it
from other models of type complementarity, like the one in Kremer and Maskin (1996). Our agents
care about the type of others only because of the effect that type has on effort. Thus, a policy which
subsidized the cost of production of agents with a lower bi would have an immediate desegregating
effect (whereas it would have no impact in a world à la Kremer and Maskin 1996).

Also, contrary to the model of Bénabou (1996) which has no type heterogeneity, de-coupling
local investment in education from local income taxes need not change the amount of segregation
in our model. To see this, suppose that individuals are initially different in their bi’s, but that
investment in human capital can raise it (or lower costs). Even if all individuals invest the same in
their bi’s, segregation would still occur. In fact, in a model with this effect of human capital on bi,
any investment that is neutral or favors the high types, would increase segregation, not decrease it
(with respect to a situation with no investment at all)..

6 The topology of social interactions

In our model local externalities come from two sources. On the one hand, the pure productive
synergistic return kikj . On the other hand, the intensity of the local interaction gij which allows
this synergy to take effect. Up to now, we have thought of the social interaction variable si as
the intensity of a bilateral relationship. One could also interpret social interaction intensities as
the probability of crystallizing a particular bilateral relationship.19In other words, we could view a
realized meeting as a link between the two involved parties, activated with some probability gij . In
this way, the whole pattern of social interactions can be viewed as a random graph, where each link
ij is activated with independent probability gij , known as the multinomial random graph model.

Viewing social interactions through the lens of random graph theory brings a number of in-
teresting implications. In particular, one can discuss a number of topological regularities of the
social interaction pattern, such as the distribution of individual connectivities, the network inter-
nal community structure, and confront them with known empirical regularities for these variables.
More importantly, in our case, the parameters that determine the random graph model are an
equilibrium outcome that reflect individual incentives. Therefore our model sheds light on the

19This interpretation, of course, require that in equilibrium gij ≤ 1.
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interplay between network formation and the private economic use of this jointly created device,
and connects topological features of the network to individual behavior and payoffs.

For all x ∈ Rt
+, define x =

∑t
τ=1 xτ/t, and v (x) =

∑t
τ=1 x2

τ/t − x. These are, respectively,
the average and the empirical variance of the coordinates of x. We extend this definition to any
non-negative vector in an Euclidean space of finite arbitrary size.20

Consider an approximate equilibrium (s∗,k∗) of the m−replica game, that corresponds to some
solution (k∗, s∗) to (6).

Theorem 1 and (6) imply that the distribution of socialization efforts gi (s∗) = s∗i = s∗bτ(i) is
related, at equilibrium, to the distribution of types b = (b1, ..., bt). In equilibrium each link ij is
formed with independent probability gij (s∗).This random graph has therefore an expected connec-
tivity sequence (s∗1, ..., s

∗
n). We can map the population ex ante heterogeneity into the connectivity

distribution for the equilibrium random graph.
More precisely, the average connectivity is s∗ = s∗b, proportional to the average type (a com-

positional effect) and to the baseline socialization level (a level effect). However, at equilibrium,
the baseline socialization is affected by the type profile. Thus, the individual heterogeneity impacts
the average socialization level both directly and indirectly. In particular, if we consider a top-down
segregated low equilibrium, the overall average connectivity differs from that of a fully integrated
society.

Also, the empirical variance of connectivities is v (s∗) = s2∗v (b). Therefore,√
v (s∗)
s∗

=

√
v (b)
b

. (13)

The heterogeneity in connectivities in the resulting equilibrium network is thus solely driven
by the heterogeneity in private returns, and is thus the same for both equilibria. Increasing the
latter increases the former, and by varying b adequately we can cover a broad range of random
graph topologies, including the heavy tailed connectivity distributions identified in the data.21

For instance, a mean-preserving spread in b increases
√

v (s∗)/s∗, and leads to a connectivity
distribution with a fatter tail.

Beyond this comparative statics about ratios (13), Proposition 2 allows to conduct comparative
statics directly about the average connectivity s∗ and the variance v (s∗).

More precisely, a mean-preserving spread in private returns b has an indirect effect on the
average connectivity (through the change in s∗, the solution to (6)), and both a direct and an
indirect effect on the variance of connectivities (through both the change in s∗ and the change in
v (b). At the low-action equilibrium, both the variance and the average connectivity increase. At

20For all x ∈ Rn
+, we set x =

Pn
i=1 xi/n, and v (x) =

Pn
i=1 x2

i /n− x, for all n ≥ 1.
21The distribution of network connectivities tends to be fat tailed for some networks (see Jackson and Rogers 2007

for amendments to this claim). That is, there is in some networks a much higher proportion of network nodes with a

high number of network links than if the network links were created uniformly and independently at random. Notice,

however, that a fat tailed degree distribution requires a fat tailed distribution of population traits.
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the high-action equilibrium, instead, the average connectivity decreases while the impact on the
variance remains ambiguous. Invoking Proposition 5, we can conclude that an increase in both
the variance and the average connectivity is concomitant to a decrease in total welfare. Instead, a
decrease in average connectivity together with an increase in the variance of connectivities comes
together with an increase in total welfare (provided, of course, that the variations in the network
topology result from a mean-preserving spread in private returns).

Note that an increase in a alone also affects the variance and the average connectivity through
the resulting impact on s.

More generally, an increase in a (b) increases the variance and the average connectivity at the
low-equilibrium, and decreases the average connectivity at the high-equilibrium, although it may
have an ambiguous impact on

√
v (s∗)/s∗.

Our static model also allows to draw conclusions on the average distance in the equilibrium
random network.22 Following Chung and Lu (2002) the average distance in a random graph with
given expected connectivity (s∗1, ..., s

∗
n) = s∗

(
bτ(1), ...., bτ(n)

)
is given by:23

(1 + o (1))
log (mt)
log
(
s∗b
) .

This average distance increases slowly with the population size mt.
When the level of synergistic returns a increases while private returns b = (b1, ..., bn) remain

constant, the average distance decreases at the low equilibrium while equilibrium payoffs increase.
Instead, the average distance increases at the high equilibrium together with a decrease of equilib-
rium payoffs.

Suppose now that a and b change homothetically, and are all scaled up by a common param-
eter. We still have a decrease of the average distance coupled with increasing payoffs at the low
equilibrium. The impact of this exogenous change of parameters at the high equilibrium is now
ambiguous. However, an increase of the average distance can only happen at this high equilibrium,
and is then concomitant with a decrease in payoffs for all agents.

The impact of a mean-preserving spread in private returns on the average distance is similar
to a change in the level a of synergies. That is, the average distance goes down and the average
payoffs go up at the low equilibrium, and reciprocally at the high equilibrium (average distance up
and average payoffs down).

The next table summarizes this discussion.

Table 2. Comparative statics in the low and high equilibrium
22The average distance (or shortest path) between two network nodes is very small compared to the network size,

and grows very slowly with this size in many empirically observed networks. For instance, the network of actors who

have acted together in at least one Hollywood movie comprises 225,226 individuals and has an average path length

of 3.65. See Albert and Barábasi (2002).
23Provided that link intensities are all smaller than one, and under some additional technical conditions.
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Low equilibrium High equilibrium
s v (s) Clust. dist. payoffs s v (s) Clust. dist. payoffs

a up + + + − + − − − + −
(a,b) all up + + + − + · · · · −
b spread + + + − +

(total payoffs)
− · · + −

(total payoffs)

Our static model of network formation also delivers implications for the convolutedness of social
interaction. An observational measure for this is probability with which two given linked nodes are
linked to a common third-party. This is called the clustering coefficient. Take three nodes i, j, l

such that i and j are linked, and so are j and l. Then, in our model, the probability that i and l are
linked when m is high is roughly gil (s∗), independent of the links ij and jl and of the order of the
inverse of population size. More precisely, an approximate expression for the size of the clustering
is:24

1
mt

s∗

b

(
1 +

v (b)
b

)2

. (14)

Notice that this number in inversely proportional to population size mt. In some large real-
life networks, though, the actual clustering coefficient is much higher. For example the clustering
coefficient of the movie actor network is almost 3,000 times higher that of a purely random network
with identical average connectivity. However, equation (14) suggests that small circles of interaction
deliver levels of clustering similar to those observed in the data. Segregation into communities of
moderate size thus helps accommodating the model predictions with moderate to high clustering
levels.

Finally, empirically observed social networks sometimes display a giant component, that is,
they contain a subnetwork including a huge share of the population and for which there is a path
inside it connecting any two players in this population share.25 In the section7.2 below, we provide
conditions on the exogenous parameters of the model for the emergence of a giant component for
the case of an homogeneous populations, b1 = ... = bt, and general costs.

7 The case of homogeneous populations

Proposition 6 implies that individuals of the either extreme type prefer a society composed only of
individuals such as themselves to any other mixture. Provided that the institutional environment

24This clustering coefficient is computed averaging over all players, the percentage of triangles they are involved

in, out of the total potential triangles.
25However, giant components are not always the rule. For instance, the biggest component of a network of scientific

collaborations among academic economists analyzed by Goyal, Moraga-González and van der Leij (2005) comprises

33,027 authors out of a total of 81,217 authors, that is, 40.7 percent of the total population.
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allows them to segregate themselves, they will form a separate society. One should thus expect that
at least some homogeneous groups would exist in a given society. However, given that at least some
of the types within a subgroup would lose from the segregation of the opposite types, it should not
be excluded that the society would not leave complete freedom for segregation at all levels, and
heterogeneous group may anyway form.26

In what follows, we concentrate our attention on homogeneous groups, for which we can conduct
some robustness checks on the technology and for which further insights on the topology are possible.

7.1 Equilibrium analysis and comparative statics

We now consider an homogeneous population of players with a single type b, but allow for non-linear
marginal costs of both socialization and investment. Player i’s utility is:

ui(s,k) = bki + a
n∑

j=1,j 6=i

gij (s) kikj −
1

d + 1
kd+1

i − 1
d + 1

sd+1
i , (15)

where a, b ≥ 0 and d ≥ 1. The case d = 1 corresponds to quadratic costs. As d increases, the cost
function becomes steeper both for socialization efforts and for productive investments.27

We focus on symmetric equilibria, where all (homogeneous) players choose the same social-
ization effort and productive investment. When the resulting link intensity is smaller than one,
such symmetric equilibria give rise to random graphs where the probability of link creation is inde-
pendent and identical across all links. This Bernoulli process of link formation was first analyzed
by Erdös and Rényi (1959), who provides a number of interesting topological properties for large
Bernoulli networks, that is, as the number of the nodes tends to infinity. In particular, when the
population gets large, the Erdös and Rényi random graph induces a Poisson distribution over node
connectivities.

We analyze the topology and welfare properties of Poisson-Nash networks for the class of cost
functions defined in (15).

We first introduce some notations.
For all α < β, define:

1(α,β] (x) =

{
1, if α < x < β

0, otherwise
.

We introduce also the following function φ : R → R given by:

φ (x) = d
1

d+1

[
xd+1 − b1+ 1

d

] 1
d+1

.

We are now ready to state the main characterization result.
26Of course, it is also possible that there are technological restrictions, such as increasing returns at certain levels,

which would make very small groups inefficient.
27Compared to (4), we also consider interchangeable cost structures for socialization and productive investment,

i.e., c = 1, a simplification that does not alter our qualitative conclusions.
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Theorem 2 Suppose that d2

2+d2

(
2

2+d2

) 2
d2

> a1+ 1
d b

2
d2 . Then, as the population size increases, the

pure strategy Nash equilibrium strategies converge to the solutions to:{
sd = 1(−∞,φ(k)] (s) ak2

kd [1− as] = b
. (16)

There is always one partially corner equilibrium, and up to two different interior equilibria.

Notice that (s∗, k∗) =
(
0, b1/d

)
is always a solution to (16), which corresponds to the partially

corner equilibrium identified in Lemma 2 for the case of quadratic costs, d = 1, a symmetric cost
structure, c = 1, and an homogeneous population. The corresponding equilibrium payoffs are
db1+1/d/ (d + 1). At this equilibrium, the network of synergies is empty.

For large enough populations, we can also have up to two interior symmetric equilibria. In-
specting (16), these interior equilibria (s∗, k∗) solve:{

sd = ak2

kd (1− as) = b
, (17)

which generalizes (6) for arbitrary d with the added condition that the equilibrium strategies (s∗, k∗)
are such that s∗ ≤ φ (k∗). In fact, it can be readily checked that this last inequality is equivalent
to:

1
d + 1

(
dk∗d+1 − s∗d+1

)
= ui (s∗, k∗) > ui

(
b1/d, 0

)
=

d

d + 1
b1+ 1

d . (18)

In words, the condition s∗ < φ (k∗) guarantees that
(
b1/d, 0

)
is not a strict best-response by some

arbitrary player i to the others playing (s∗, k∗).28

The fact that the inequality (18) holds for any interior Nash equilibrium implies that any interior
equilibrium Pareto dominates the partially corner equilibrium where players do not socialize and
invest the optimum level b1/d that corresponds to their private costs and returns.

Suppose now that the exogenous parameter values are such that two interior equilibria exist. It
turns out that their corresponding actions can also be ranked unambiguously. As in Proposition 1,
we can thus speak of a low-actions (interior) equilibrium and a high-actions (interior) equilibrium
for large enough populations. The response to these equilibrium actions to incentives is identical
to that documented in Proposition 2.

Proposition 8 Suppose that (17) has three different solutions. Let (s∗, k∗) ≥ (s∗∗, k∗∗) be the two
ranked interior symmetric approximate equilibria for a large enough population. When a increases,
the low equilibrium actions (s∗∗, k∗∗) increase, while the high equilibrium actions (s∗, k∗) decrease.
In both cases, the percentage change in socialization effort is higher than that of productive invest-
ment (in absolute values).

28The conditions on the exogenous parameter values imposed in Theorem 2 guarantee that the first-order conditions

for interior equilibria (17) have at least one solution, and that the second-order conditions hold at these points.
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Notice that the previous result implies that ther ratio of socialization to production s/k is
an increasing function of a at equilibrium. Factorizing by s∗d+1 in the expression for equilibrium
payoffs given by (18), one can readily conclude that individual payoffs decrease with a at the high
equilibrium.

7.2 The topology of Erdös-Rényi equilibrium networks

In the Erdös-Rényi (Bernoulli) random graphs that correspond to the interior and symmetric Nash
equilibria of Theorem 2, the expected number of links to each player is s∗, and each potential link
in the network is created with (approximately) independent probability s∗/n when the population
gets large. The fact that link creation is i.i.d. implies, in particular, that the network connectivity
(or degree) is not correlated across different nodes.

Beyond this vanishing degree-degree correlation across nodes as the population gets larger, large
Erdös-Rényi networks display a number of interesting topological features.

For instance, when s∗ < 1, realizations of the random graph are composed of a huge number
of disjoint small trees with very high probability. We say that the network is fragmented. Instead,
when s∗ > 1, realizations of the random graph display a single giant component that encompasses
a high fraction of all the network nodes with very high probability.29

The next result ties down the existence of a giant component to conditions on the exogenous
parameter values of the model.

Proposition 9 When a ≥ 1, no equilibrium network has a giant component. Suppose that a < 1
and that there are two non-empty equilibrium networks. Then, the high equilibrium network has
a giant component while the low equilibrium is fragmented if and only if ab2/d < (1− a)2/d. If,
instead, ab2/d > ( d

a+d)2,30 then both equilibrium networks have a giant component.

In some cases, both the low and the high equilibrium random graphs have a giant component.
In some other cases, the low equilibrium random graph is fragmented while the high equilibrium
contain a connected component encompassing a nontrivial fraction of all the players with high
probability. In principle, Proposition 9 does not exclude the possibility of coexistence of two
fragmented equilibrium networks (for high and low actions). We conjecture, however, that the only
two possibilities are those described in the Proposition 9.

Holding b = , Figure 3 displays for values of d ranging from 1 to 10, amin and amax, respectively
the minimum and maximum values of a for which equilibrium exists.

The line in between amin and amax represents a phase transition separating two parameter
regions for a and d. For values of a above this line, the two equilibrium random graphs have a

29See Vega-Redondo (2007) and Jackson (2008) for more details about the topological properties of Erdös-Rényi

random graphs. Some of these topological properties carry over to the multinomial generalization of this random

graph model, where links are independent Bernoulli random variable with heterogeneous success probabilities.
30Notice that ( d

a+d
)2 ≥ (1− a)2/d. See the proof for details.
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giant component. Instead, for values of a below this line, the low equilibrium random graph is
fragmented.

Notice that this transition is sharp, that is, the topological properties of the low equilibrium
change discontinuously as a function of the synergistic parameter a.

8 Discussion

8.1 Summary

We have provided a simple operational model of network formation with welfare and topology
predictions, and clear-cut comparative statics. In substance, we identify a “too cold” and a “too
hot” equilibrium. We show that socialization is more responsive than production to exogenous
shocks in the parameters and that individual preferences over group composition leads to assortative
community formation.

8.2 The literature on network formation and social interactions

A growing literature over the last two decades has examined the problem of social network formation
and its implications for economic phenomena. With respect to this literature (see the survey of
Jackson 2005) our model first fixes the boundaries of socialization but then socialization is modeled
via a generic effort variable, rather than viewing network formation as the result of an earmarked
socialization process (see also Jackson 2008).

In some cases, our model with synergies of varying strengths across different pairs of players31

can also be understood as a (multinomial) model of a random graph, where independent link
probabilities correspond to the synergistic values. Albeit simple, this random graph model is
flexible enough to encompass many (if not all) of the topological properties of real life networks.32

Our equilibrium analysis naturally inherits all the descriptive topological features of this random
graph model (as well as its limitations, of course). At the same time, our analysis permits to draw
a close connection between topological features and welfare and economic implications. In spite of
its parsimony that ensures tractability, the model retains enough richness to replicate a (relatively)
broad range of empirical regularities displayed by social and economic networks, and is directly
estimable to recover is structural parameters.33

31See Bloch and Dutta (2005) for a model with endogenous link strength but in a standard framework of non-random

network formation.
32See Chung and Lu (2002) for an analysis of this random graph model, and Bender and Canfield (1978) for the

analysis of the closely related configuration model. For an economic model of dynamic network formation leading to

a broad class of random graph distributions, see Jackson and Rogers (2007).
33See Ioannides and Soetevent (2006) for an interesting application of random networks to the labor market.
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8.3 The payoff function

We show and state our results with a class of payoffs corresponding to the functional form given in
equation (4). However, the thrust of our analysis carries over to some generalizations of this setup.

The three main characteristics of this functional form are:

(a) the linear-quadratic returns to productive investment,

(b) the generic socialization effort (condition (A3) of Lemma 1),

(c) aggregate constant returns to scale in socialization effort (condition (A2) of lemma 1).

We discuss possible generalizations of these three building-blocks.
Linear-quadratic production payoffs give rise to linear equilibrium conditions for the levels of

productive investment. The results obtained with an homogeneous population and non-quadratic
cost structures already shows that our analysis is robust to (at least some form of) non-linearities in
these equilibrium conditions. Still, linear equilibrium conditions for productive investment play an
important role in the analysis, as they allow to express existence and interiority of the productive
investment decisions (for a given socialization profile s) as a a function of the spectral radius of the
matrix of link intensities G(s) = [gij (s)]. However, it is important to stress that linear-quadratic
payoffs are not a necessary condition for equilibrium equations to be linear. Indeed, equilibrium
analysis boils down to solving a so-called linear complementarity problem for a relatively broad
class of payoff function, beyond the particular linear-quadratic specification. Ballester and Calvó-
Armengol (2007) provide examples of these payoff functions. Our analysis would carry over to any
such environment.

Combining the linear equilibrium equations for productive investment with conditions (A2) and
(A3), Nash equilibrium conditions (both for productive investments and for socialization efforts)
take a relatively manageable closed-form matrix expression. In turn, when the population gets
large, and because we are able to control the population size effect in our matrix closed-form
expression, approximate equilibrium conditions boil down to a simple system of equations (6).

On top of its operational virtues, condition (A3) is hard to dispense with as it embodies the cen-
tral assumption of our approach, the genericity of socialization efforts, not earmarked to particular
targets.

Condition (A2), instead, is chosen mainly for its operationally virtues. We could accommodate
variations of this condition, and thus alternative expressions for the link intensities gij(s) that allow
for some aggregate scale effects in socialization, as long as population size effects can appropriately
dealt with. Essentially, we need that both the spectral radius of G(s) and that the diagonal cells of
the matrix [I−G(s)]−1 are of finite order (with the population size), while the off-diagonal terms
of the same matrix be of order inverse of the population size.
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8.4 Multiplicity of equilibria

One slightly artificial feature of the model is the fact that the effort variables are unbounded. This
creates existence problems and generates the need for the assumption 2/3

√
3 > a(b). In addition,

this generates a failure of upper-hemicontinuity in the equilibrium correspondence as the high-
action equilibrium diverges to infinity as a(b) goes to zero. A simple way to deal with this problem
is to assume that the effort of each individual is bounded. That is, si + ki ≤ T. This is natural
when one interprets the sum of efforts of an individual as related to the time at his disposal, or,
more generally as activities that consume resources of this sort. It is relatively easy to characterize
the equilibria and their topological and welfare properties under this modification. In particular,
the Pareto superior equilibrium disappears for a(b)T low enough. A bounded strategy space can
introduce upper corner equilibria that may be stable.

Another economically compelling modification of the original setup is to introduce a market for
effort resources that are limited in supply. For example, suppose that there is a fixed amount of
productive effort

∑n
i=1 ki = k sold in a competitive market. If one interprets (4) as the amount of

numeraire produced by agent i, the total profit for an agent is:bτ(i) ki + a
n∑

j=1

pij (s) kjki −
1
2
k2

i −
1
2
s2
i

− pkki (19)

which is equivalent to:

(
bτ(i) − pk

)
ki + a

n∑
j=1

pij (s) kjki −
1
2
k2

i −
1
2
s2
i (20)

This corresponds to our standard model, where the types are now bτ(i) − pk. An equilibrium
(p∗k,k

∗, s∗) is now simply a solution to (6) with the modified types and the market clearing condi-
tions, for large populations.

It should be clear that, for a fixed (low enough) pk, the new system (6) has a solution. For the
low equilibrium, lowering types makes the k∗ smaller coordinatewise (this is Proposition 2). This
yields, in fact, a (downward sloping) demand function for k. Supply is a vertical line, so there is
always an equilibrium (potentially at a price of zero and excess supply). The shape of the demand
function for the high equilibrium is less straightforward because the comparative statics of the high
equilibrium as pk changes are now ambiguous (see again Proposition 2). In some cases, this demand
function will actually be upward sloping at the high equilibrium. Because upward sloping demands
give rise to unstable market dynamics, the low equilibrium is then uniquely selected.
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Appendix

Proof of Lemma 1: Fix s. Combining (A1) and (A3) gives skgij(s) = sjgik(s). Summing
across all j’s and using (A2) gives gik(s) = sisk/

∑n
j=1 sj .

Proof of Lemma 2: The equilibrium analysis is clear. The stability result is established in
Proposition 10 below.

Proof of Theorem 1: It follows from the following Lemmata 3, 4, 5 and 6. The stability
analysis is in Proposition 10.

Consider an m−replica game involving n = mt players, where m ≥ 1 is fixed for the time being.
Let G(s) = [gij(s)]i,j∈N be the n−symmetric adjacency matrix for the network with link inten-

sities in (1).
For all α ≥ 0 and for all x ∈ Rt

+, define x =
∑t

τ=1 xτ/t, x2 =
∑t

τ=1 x2
τ/t, and:

λα(x) =
αx

x− αx2
.

We extend this definition to any non-negative vector in an Euclidean space of arbitrary finite size.

Lemma 3 Let s∈ Rn
+, s 6= 0 and α ≥ 0 such that 1 > α s2/s. Then, M(s)= [I−αG(s)]−1 is a

well-defined and non-negative n−square matrix, equal to M(s)= I + λα(s)G(s).

Proof. When M(s) ∈ Rn2
is well-defined, we have M(s) =

∑+∞
p=0 apG(s)p. We compute G(s)p.

First, note that (we omit s when there is no confusion):

g
[2]
ij =

n∑
l=1

gilglj =
sisj

ns

n∑
h=1

s2
h

ns
=

s2

s
gij , for all i, j = 1, ..., n

By a trivial induction on p = 1, 2, ..., we deduce that g
[p]
ij = (s2/s)

p
gij , for all i, j and all p ≥ 1.

Therefore:

M(s) = I+
+∞∑
p=1

(
a
s2

s

)p

G = I + λ(s)G(s).

We know from Debreu and Herstein (1953) that M(s) is well-defined and non-negative if and
only if 1 > aρ(G(s)), where ρ(G(s)) is the modulus of the largest eigenvalue of G(s) (see also
Theorem 1 in Ballester, Calvó-Armengol and Zenou 2006). Let us show that ρ(G(s)) = s2/s.

First, note that s2/s is an eigenvalue of G for the eigenvector s. Indeed, G · s= (s2/s) s.
Second, let x such that ‖x‖ = 1. We have:

G · x =
s · x
ns

s,

where s · x =
∑n

i=1 sixi is the scalar product, with |s · x| ≤ ‖s‖ × ‖x‖ ≤ ‖s‖. Therefore, ‖G · x‖ ≤
‖s‖2 /ns = s2/s. Note that, by definition, ρ(G) = sup {‖G · x‖ / ‖x‖ : ‖x‖ = 1}. Altogether, we
can conclude that ρ(G) = s2/s.
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Let now m1,m2,m3, ... be an increasing sequence of integers such that mh → +∞ as h → +∞.
Each h ∈ N defines a mh−replica game involving nh = mht players. In the mh−replica game,
there are mh players of each type (b1, ..., bt). In each such game, a profile of strategies is

(
kh, sh

)
∈

Rnh

+ × Rnh

+ . Given a player i = 1, ..., nh, recall that bτ(i) denotes his type, where τ (i) ∈ T .

Lemma 4 Let
{(

sh,kh
) }

h∈N be a sequence of Nash equilibria of the mh−replica games such that
c > ash2/sh, for all h ∈ N. Suppose that the system of equations:{

[c− a(b)s] k = 1
s = a(b)k2

(21)

has a solution (s, k) ∈ R2
+ such that c > a(b)s. Then, for all ε > 0, there exists some hε ∈ N such

that, for all h ≥ hε, we have max{
∣∣kh

i − bτ(i)k
∣∣ , ∣∣sh

i − bτ(i)s
∣∣} < ε, for all i = 1, ..., nh, where (s, k)

is a solution to (21).

Proof. Let
{(

kh, sh
) }

h∈N be a sequence of Nash equilibria such that c > a(sh), for all h. Let
diag

(
G
(
sh
))

be the diagonal matrix with diagonal terms gii

(
sh
)

and zero off-diagonal terms. For
each h, the first-order necessary equilibrium conditions for kh are:

[cI−aG(sh)] · kh + adiag
(
G
(
sh
))
·kh = bh.

Using the expression for [I − αG(sh)]−1 ∈ Rnh2

in Lemma 3 and letting α = a/c, we rewrite this
first-order necessary equilibrium conditions for kh as:

ckh + a
[
I + λa/c(s

h)G
(
sh
)]
·diag

(
G
(
sh
))
·kh =

[
I + λa/c(s

h)G
(
sh
)]
·bh, (22)

where bh ∈ Rnh

+ is defined by bh
i = bτ(i), for all i = 1, ..., nh. In words, the ith coordinate of bh

corresponds to the private returns of player i’s type. Note that the nh coordinates of bh take t

different possible values, b1, ..., bt, each repeated mh times.
We also compute the first-order necessary equilibrium conditions for sh

i , which are:

sh
i = akh

i

sh·kh

nhsh
− ash

i kh
i

sh·kh

(nhsh)2
− a

sh
i kh2

i

nhsh
+ a

sh2
i kh2

i

(nhsh)2
, i = 1, ..., nh. (23)

Given that c > ash2/sh, for all h and that nh → +∞ as h → +∞, necessarily, sh
i ∈ O (1), for

all i = 1, ..., nh and for all h. Indeed, suppose that sh
i ∈ O

(
nhp)

, p > 0, for some j. Let then q > 0
such that sh

i ∈ O
(
nhq)

, q > 0, for all i. Then, ash2/sh ∈ O(nhq
), and the inequality c > ash2/sh is

violated for large enough h.
Given that sh

i ∈ O (1), we have gij

(
sh
)

= sh
i sh

j /
(∑nh

l=1 sh
l

)
∈ o (1) when h → +∞, for all

i, j = 1, ..., nh

The first-order conditions (22) imply that kh
i ∈ O (1), for all i = 1, ..., nh and for all h.
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Then, using (23), we deduce that for h high enough, we have

sh
i = akh

i

sh·kh

nhsh
+ o (1) , for all i = 1, ..., nh and for all h.

By (22), kh
i is a continuous function of sh. Therefore, sh

i = σh
i + o (1) and kh

i = κh
i + o (1), for

all i = 1, ..., nh and for all h, where
(
σh, κh

)
are such that:

cκh =
[
I + λa/c(σ

h)G
(
σh
)]
·bh, (24)

and

σh
i = aκh

i

σh·κh

nhσh
, i = 1, ..., nh. (25)

We solve (24) and (25).
Note, first, that (25) implies that σh

i /κh
i = σh

j /κh
j , for all i, j. Without any loss of generality,

we can thus write σh
i = θh

i s and κh
i = θh

i k, for all i = 1, ..., nh and for some k, s. Then, (25) can be
rewritten as:

s = ak2 θh2

θh
, (26)

Note also that gij

(
σh
)

= θh
i θh

j s/nhθh and that λa/c(σh) = aθh/
(
cθh − asθh2

)
. We thus rewrite

(24) as:

cθh
i k = bh

i +
as

nh

θh
i

cθh − asθh2

nh∑
j=1

θh
j bh

j , i = 1, ..., nh. (27)

Let θh
i = bh

i . Then, (27) becomes:

ck = 1 +
asb2

cb− asb2
=

c

c− a(b)s
,

equivalent to:

k =
1

c− a(b)s

while (26) becomes s = a(b)k2.
Finally, note that the condition c > ash2/sh is then equivalent to c > a(b)s.

Lemma 5 If 2 (c/3)3/2 > a(b), then the system of equations (21) has exactly two solutions (s, k) ∈
R2

+ such that c > a(b)s.

Proof. Plugging the expression for k into the expression for s in (21), one concludes that every
solution (s∗, k∗) of (21) is such that g (s∗) = s∗ where:

g(s) =
a(b)

(c− a(b)s)2
. (28)
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We establish conditions such that the graph of g(s) crosses (twice) the 45 degree line for some
s such that c > a(b)s. Note that g (0) = a(b)/c2 and lims↑c/a(b) g (s) = +∞, so that the function
g (·) maps [0, c/a(b)) into [a(b)/c2,+∞). We have:

g′(s) =
2a(b)2

(c− a(b)s)3
.

Therefore, g′ (0) = 2a(b)2/c3 and lims↑c/a(b) g′ (s) = +∞. If there exists a tangent to the graph
of g (·) on [0, c/a(b)) which is parallel to the 45 degree line, and if this tangent is strictly below
(resp. tangent to) the 45 degree line, the system (21) has exactly two solutions (resp. one solution)
on [0, c/a(b)). Such a tangent exists if 2a(b)2 ≤ c3, equivalent to a(b) ≤ 2−1/2c3/2.

Next, we solve:
g′(x∗) = 1 ⇔ a(b)x∗ = c− 21/3a(b)2/3 (29)

Thus, (21) has two solutions (resp. one solution) if and only if a(b) ≤ 2−1/2c3/2 and g(x∗) < x∗

(resp. g(x∗) = x∗), where x∗ is defined by (29). We have:

g(x∗) =
a(b)

(2a(b)2)2/3
=

a(b)−1/3

22/3
.

Therefore,
g(x∗) < x∗ ⇔ a(b) < 2c3/2/3

√
3.

The overall condition is thus a(b) < c3/2 min{2/3
√

3, 2−1/2}. However, it is readily checked that
2/3

√
3 < 2−1/2 (indeed, this is equivalent to 2

√
2 < 3

√
3). When a(b) < 2 (c/3)3/2 (resp. a(b) =

2 (c/3)3/2), the graph of g (·) thus crosses the 45 degree line twice (resp. once) on [0, c/a(b)).

Lemma 6 Let
{(

sh∗,kh∗) }
h∈N be such that sh∗

i = sbτ(i) and kh∗
i = kbτ(i), for all i = 1, ..., nh,

where (s, k) is some given solution to (21). If 2 (c/3)3/2 > a(b), then there exists some h ∈ N such
that, for all h ≥ h, the second-order equilibrium conditions for u = (u1, ..., unh) hold at

(
s∗h,k∗h

)
.

Proof. First note that Lemma 5 implies that (21) has a solution such that c > a(b)k. Consider
this solution. We also know from Lemma 4 that both kh

i , sh
i ∈ O (1), for all i = 1, ..., nh. We now

compute the cross partial derivatives of u at
(
sh∗,kh∗).

First, we have:

∂ui

∂si

(
sh∗,kh∗

)
=

nh∑
j=1,j 6=i

(
ash∗

j kh∗
i kh∗

j

nhsh∗
−

agij

(
sh∗) kh∗

i kh∗
j

nhsh∗

)
− sh∗

i (30)

∂ui

∂ki

(
sh∗,kh∗

)
= bτ(i) + a

nh∑
j=1,j 6=i

gij

(
sh∗
)

kh∗
j − ckh∗

i (31)
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Thus

∂2ui

∂s2
i

(
sh∗,kh∗

)
=

nh∑
j=1,j 6=i

−ash∗
j kh∗

i kh∗
j(

nhsh∗
)2 −

ash∗
j kh∗

i kh∗
j(

nhsh∗
)2 +

2agij

(
sh∗) kh∗

i kh∗
j(

nhsh∗
)2

− 1

∂2ui

∂si∂ki

(
sh∗,kh∗

)
=

nh∑
j=1,j 6=i

(
ash∗

j kh∗
j

nhsh∗
−

agij

(
sh∗) kh∗

j

nhsh∗

)
∂2ui

∂k2
i

(
sh∗,kh∗

)
= −c

So, for h large enough, we get:

∂2ui

∂s2
i

(
sh∗,kh∗

)
= o (1)− 1 (32)

∂2ui

∂si∂ki

(
sh∗,kh∗

)
= o (1) + ak

b2

b
= o (1) + a(b)k (33)

∂2ui

∂k2
i

(
sh∗,kh∗

)
= −c (34)

The second-order conditions amount to checking that the principal minors of the Hessian matrix ∂2ui

∂s2
i

∂2ui
∂si∂ki

∂2ui
∂si∂ki

∂2ui

∂k2
i

 =

[
o (1)− 1 o (1) + a(b)k

o (1) + a(b)k −c

]

have alternating signs.
But the determinant of a matrix is a continuous (polynomial) function of the matrix entries.

Given that (32) and (34), are negative, when h → +∞, we are thus left to check that the sign of
the determinant is positive, that is, c − a(b)2k2 > 0, which is equivalent to c − a(b)s > 0, which
Lemma 5 shows is true when 2 (c/3)3/2 > a(b).

Proposition 10 For m sufficiently large, the two interior equilibria are stable while the equilibrium
with (s∗i , k

∗
i ) =

(
0, bτ(i)/c

)
for all i = 1, ...,mt is not stable.

Proof: Let ε > 0. Take h large enough such that Theorem 1 holds for this ε. We check stability
by looking at the behavior of the gradient system

∂ki(t)
∂t

=
∂ui(s(t),k(t))

∂ki(t)
(35)

∂si(t)
∂t

=
∂ui(s(t),k(t))

∂si(t)
(36)
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around the equilibrium points.
Let us first look at the partially corner equilibrium. By (30) we have that the first derivative

with respect to ki when h is large is

o (1) +
nh∑

j=1,j 6=i

ash∗
j kh∗

i kh∗
j

nhsh∗
− sh∗

i

Consider a perturbation around the equilibrium sε = (ε1, ..., εn), with b = min{b1, ..., bn}. Then,
the first derivative with respect to si is approximately

abi

∑n
j=1 εjbj∑n
j=1 εj

− εi > abib− εi > 0,

for εi small enough. For any small enough perturbation, si would tend to increase for all i, thus
negating stability.

If we linearize the dynamic system (35, 36) around the equilibria we get, for all i = 1, ..., nh:

∂ki(t)
∂t

=
nh∑
j=1

∂2ui

∂ki∂kj

(
sh∗,kh∗

) (
kj(t)− k∗j

)
+

nh∑
j=1

∂2ui

∂ki∂sj

(
sh∗,kh∗

) (
sj(t)− s∗j

)
(37)

∂si(t)
∂t

=
nh∑
j=1

∂2ui

∂si∂sj

(
sh∗,kh∗

) (
sj(t)− s∗j

)
+

nh∑
j=1

∂2ui

∂si∂kj

(
sh∗,kh∗

) (
kj(t)− k∗j

)
For i 6= j, we have:

∂2ui

∂si∂sj

(
sh∗,kh∗

)
=

akh∗
i kh∗

j

nhsh∗
−

ash∗
i kh∗

i kh∗
j

nhsh∗
+

nh∑
l=1,l 6=i

agil

(
sh∗) kh∗

l kh∗
l

nhsh∗

∂2ui

∂si∂kj

(
sh∗,kh∗

)
=

ash∗
j kh∗

i

nhsh∗
−

nh∑
l=1,l 6=j

agjl

(
sh∗) kh∗

l

nhsh∗

∂2ui

∂ki∂sj

(
sh∗,kh∗

)
= 0

∂2ui

∂ki∂kj

(
sh∗,kh∗

)
= agij

(
sh∗
)

Thus, we have when h gets large and for i 6= j:

∂2ui

∂si∂sj

(
sh∗,kh∗

)
= o (1) (38)

∂2ui

∂si∂kj

(
sh∗,kh∗

)
= o (1) (39)

∂2ui

∂ki∂sj

(
sh∗,kh∗

)
= 0 (40)

∂2ui

∂ki∂kj

(
sh∗,kh∗

)
= o (1) (41)
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The coefficients of the linearized gradient system (37) correspond to the cells of a 2nh × 2nh

matrix Πh
((

sh∗,kh∗)) which, when h is large enough, gets arbitrarily close to the following matrix
Πh:

Πh =

[
A,B
B, cA

]
where A,B are the following nh × nh matrices

A =

[
−1, ..., 0
0, ...,−1

]
,B =

[
a(b)k, ..., 0
0, ..., a(b)k

]
,

Let λ be an eigenvalue of Πh for some eigenvector νᵀ
λ = [xhᵀ

λ ,yhᵀ
λ ], i = 1, ..., nh where xh

λ and yh
λ

are nh × 1 vectors with coordinates xh
i,λ and yh

i,λ, i = 1, ..., nh. The eigenvalue and the eigenvalue
satisfy the following identity: Πhνλ = λνλ, that is:

(λ + 1) xh
i,λ − a(b)kyh

i,λ = 0, i = 1, ..., nh

−a(b)kxh
i,λ + (λ + c) yh

i,λ = 0, i = 1, ..., nh

These systems have a non-trivial solution if and only if (λ + 1) (λ + c) − (a(b)k)2 = 0. This
second-order equation has a discriminant equal to (c− 1)2 + 4 (a(b)k)2 ≥ 0. It thus always admits
two real solutions, denoted λ1 and λ2. Besides:

λ1 + λ2 = − (1 + c) < 0,

implying that at least one such solution is negative. Then, both are negative if and only if λ1λ2 =
c− (a(b)k)2 > 0, equivalent to c− a(b)s > 0, which is true when 2 (c/3)3/2 > a(b).

Summing up, when 2 (c/3)3/2 > a(b) > 0, the matrix Πh has two different negative eigenvalues
λ1, λ2 < 0. Each eigenvalue λr, r = 1, 2 has an associated eigenspace of dimension nh with gener-
ating eigenvectors [a(b)kihᵀ, (λr + 1) ihᵀ], i = 1, ..., nh where ih is an nh × 1 vector containing a 1
in position i = 1, ..., nh and 0’s in the other nh − 1 positions.

Proof of Proposition 1: Let ε > 0. Take h large enough such that Theorem 1 holds for this
ε, and let

(
sh∗,kh∗) and

(
sh∗∗,kh∗∗) be the two approximate equilibria, where sh∗

i = s∗bτ(i), k
h∗
i =

k∗bτ(i), and sh∗∗
i = s∗∗bτ(i), k

h∗∗
i = k∗∗bτ(i), for all i = 1, ..., nh, and (s∗, k∗) , (s∗∗, k∗∗) are the two

different solutions to (6). Suppose that sh∗
i ≥ sh∗∗

i , for some i. Then, necessarily, s∗ ≥ s∗∗. By (6),
we deduce that k∗ ≥ k∗∗. Therefore, both sh∗

i ≥ sh∗∗
i and kh∗

i ≥ kh∗∗
i , for all i = 1, ..., nh.

To establish the welfare ranking, we first use the expression for payoffs in (4) and the first-order
conditions for kh

i , to obtain the following expression for approximate equilibrium payoffs:

uh∗
i =

b2
τ(i)

2
(
ck∗2 − s∗2

)
+ o (1) , for all i = 1, ..., nh.
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Next, using the fact that (s∗, k∗) are solutions to (6), we write:

ck∗2 − s∗2 = c
s∗

a(b)
− s∗2 =

s∗

a(b)
(c− a(b)s∗) =

1
a(b)

s∗

k∗
= k∗, (42)

and thus:

uh∗
i =

b2
τ(i)

2
k∗ + o (1) , for all i = 1, ..., nh, (43)

and similarly for the approximate equilibrium payoffs uh∗∗
i that correspond to

(
sh∗∗,kh∗∗). Since,

by definition k∗ ≥ k∗∗, the welfare at the equilibrium
(
sh∗,kh∗) is higher than at the equilibrium(

sh∗∗,kh∗∗).
To establish the position of the efficient outcome, the planners’ problem is:

n∑
i=1

bτ(i) ki + a
n∑

j=1,j 6=i

gij (s) kjki −
1
2
ck2

i −
1
2
s2
i


for which FOC’s are given by:

ckh + 2a
[
I + λa/c(s

h)G
(
sh
)]
·diag

(
G
(
sh
))
·kh =

[
I + λa/c(s

h)G
(
sh
)]
·bh, (44)

sh
i = 2akh

i

sh·kh

nhsh
− 2ash

i kh
i

sh·kh

(nhsh)2
− 2a

sh
i kh2

i

nhsh
+ 2a

sh2
i kh2

i

(nhsh)2
, i = 1, ..., nh. (45)

Notice that conditions (44) and (45) are like (23) and (22) except with 2a rather than a, and
therefore its approximate version is: {

s = 2a(b)k2

k [c− 2a(b)s] = 1
. (46)

We can thus use the results of proposition elasticity to establish that the (two) solutions of (46) will
lie between the two solution of 6. Since the second order conditions will be satisfied (by a reason
analogous to the one in lemma (6), one of those solutions will be the optimal point. Indeed, by
the reasoning in this same proposition the componentwise higher solution is the optimal one. The
result now follows.

Proof of Propositions 2: Let ε > 0. Take h large enough such that Theorem 1 holds for this
ε. We denote by

(
sh∗,kh∗) and

(
sh∗∗,kh∗∗) the corresponding ε−equilibria, where

(
sh∗,kh∗) ≥(

sh∗∗,kh∗∗) are computed with two different solutions (s∗, k∗) ≥ (s∗∗.k∗∗) of (21). On the (s, k)
plane, an increase in a(b) results in an upward shift of the graph of:

k =
1

c− a(b)s
, (47)
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and a downward shift of the graph of:
s = a(b)k2. (48)

Therefore, the equilibrium actions of the Pareto-inferior equilibrium
(
sh∗∗,kh∗∗) all increase,

while those of the Pareto-superior equilibrium
(
sh∗,kh∗) all decrease. The elasticity η that keeps

track of the relative changes on s and k when a(b) varies is:

η =
s

k

∂k
∂a(b)

∂s
∂a(b)

.

Differentiating (47) and (48) with respect to a(b) gives:

∂k

∂a(b)
= sk2 + a(b)k2 ∂s

∂a(b)
∂s

∂a(b)
= k2 + 2

s

k

∂k

∂a(b)

Solving for the two partial derivatives gives:

∂k

∂a(b)
=

2sk2

1− 2a(b)sk
(49)

∂s

∂a(b)
=

k2

1− 2a(b)sk

(
2
s2

k
+ 1
)

(50)

and thus:

η =
s

k

∂k
∂a(b)

∂s
∂a(b)

=
2s2

k + 2s2
< 1.

Proof of Proposition 4: It is readily checked that ∂a (b) /∂bτ > 0 if and only if b2
τ +

2bτ
∑

τ ′ 6=τ bτ ′ ≥ 2
∑

τ ′ 6=τ b2
τ ′ , for all τ ∈ T , a sufficient condition for which is 2b1 ≥ bt.

Proof of Proposition 5: Let ε > 0. Take h large enough such that Theorem 1 holds for this
ε. We denote by

(
sh∗,kh∗) and

(
sh∗∗,kh∗∗) the corresponding ε−equilibria, where

(
sh∗,kh∗) ≥(

sh∗∗,kh∗∗) are computed with two different solutions (s∗, k∗) ≥ (s∗∗, k∗∗) of (6).
Using (43) and (6), and summing across all players gives the following expression for the pop-

ulation average equilibrium payoffs:

nh∑
i=1

uh∗
i =

1
nh

nh∑
i=1

b2
τ(i)

2a(b)
s∗

k∗
+ o (1) =

1
at

s∗

k∗

t∑
τ=1

bτ + o (1) .

Following a mean preserving spread in individual traits, a(b) increases and we can conclude.
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Proof of Proposition 6: We first prove that top-down sorting yields to an unambiguous
ranking of the compound index across any two communities.

Take two communities ` > `′. Denote by b`,b`′ the type profiles at these locations under a
top-down sorting assignment, and by T `, T `′ ⊂ T the subset of types present at these communities.
We have:

a
(
b`
)

= a

∑
τ∈T ` mτ b

2
τ∑

τ∈T ` mτ bτ
,

where mτ is the number of players of type τ in community `. The compound index a
(
b`′
)

for
community `′ is defined similarly.

Then, a
(
b`
)
≥ a

(
b`′
)

is equivalent to:∑
τ∈T `,τ ′∈T `′

mτmτ ′b
2
τ bτ ′ ≥

∑
τ∈T `,τ ′∈T `′

mτmτ ′bτ b
2
τ ′ .

Recall that ` > `′. Under top-down sorting, τ ∈ T `, τ ′ ∈ T `′ implies that bτ ≥ bτ ′ , with a strict
inequality for at least one pair τ, τ ′ if m > n` + n`+1 for all ` = 1, ..., L− 1, that is, two successive
communities cannot be fully occupied by players of the same type.

The argument is symmetric for bottom-up sorting, where ` > `′ implies a
(
b`
)

< a
(
b`′
)
.

Equilibrium sorting prices are then simply obtained by writing down moving incentives.

Proof of Proposition 7: We first show that the baseline productive investment is strictly
convex (resp. strictly concave) in a (b) at the low (resp. high) equilibrium. Combining the
two equations in (6), we obtain the following third-order polynomial in the baseline productive
investment: a(b)2k3 − kc + 1 = 0.

Differentiating twice gives:
∂k

∂a(b)

[
c− 3a(b)2k2

]
= 2a(b)k3

∂2k
∂a(b)2

[
c− 3a(b)2k2

]
= 2k3 + 12a(b)k2

(
∂k

∂a(b)

)
+ 6a(b)2k

(
∂k

∂a(b)

)2 .

We know from Proposition 2 that the the baseline productive investment is increasing (resp.
decreasing) in a(b) at the low (resp. high) equilibrium. Therefore, c − 3a(b)2k2 takes a positive
(resp. negative) sign at the low (resp. high) equilibrium. The expression for ∂2k/∂a(b)2 then
implies that this second-order derivative is positive at the low equilibrium.

We focus on the low equilibrium.
Consider two communities under top-down sorting, ` > `′. We denote by ̂̀ the community

obtained by mixing communities ` and `′. Straight algebra shows that:

a
(
b

b̀) = (1− λ) a
(
b`′
)

+ λa
(
b`
)

,
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where34

λ =
a
(
bb̀)− a

(
b`′
)

a (b`)− a (b`′)
∈ [0, 1] .

Given the strict convexity of baseline production at the low equilibrium, we deduce that:

k∗
(
a
(
b

b̀))
< (1− λ) k∗

(
a
(
b`′
))

+ λk∗
(
a
(
b`
))

(51)

Total welfare for the top-down segregated communities `, `′ is higher than total welfare for the
mixed community ̂̀ if and only if:

k∗
(
a
(
b

b̀)) ∑
i∈`,`′

b2
τ(i) < k∗

(
a
(
b`′
))∑

i∈`′

b2
τ(i) + k∗

(
a
(
b`
))∑

i∈`

b2
τ(i), (52)

where, abusing slightly notation, we write i ∈ ̂̀ to signify that player i belongs to community ̂̀.
Define:

β =

∑
i∈` b2

τ(i)∑
i∈`,`′ b

2
τ(i)

∈ [0, 1] .

Then, we rewrite (52) as:

k∗
(
a
(
b

b̀))
< (1− β) k∗

(
a
(
b`′
))

+ βk∗
(
a
(
b`
))

(53)

We know from the proof of Proposition 6 that a
(
b`
)

> a
(
b`′
)
. Also, the baseline productive

investment increases with the compound index a (b) at the low equilibrium. Therefore, given (51),
a sufficient condition for (53) to hold is that β > λ, that is:∑

i∈` b2
τ(i)∑

i∈`,`′ b
2
τ(i)

>
a
(
bb̀)− a

(
b`′
)

a (b`)− a (b`′)
,

which is equivalent to:(∑
i∈` b2

τ(i)∑
i∈` bτ(i)

−
∑

i∈`′ b
2
τ(i)∑

i∈`′ bτ(i)

) ∑
i∈` b2

τ(i)∑
i∈`,`′ b

2
τ(i)

>

∑
i∈`,`′ b

2
τ(i)∑

i∈`,`′ bτ(i)
−
∑

i∈`′ b
2
τ(i)∑

i∈`′ bτ(i)
.

Multiplying both sides by
∑

i∈` bτ(i)

∑
i∈`′ bτ(i)

∑
i∈`,`′ bτ(i)

∑
i∈`,`′ b

2
τ(i) leads to, after some algebra:(∑

i∈`′

bτ(i)

∑
i∈`

b2
τ(i) −

∑
i∈`

bτ(i)

∑
i∈`′

b2
τ(i)

)2

> 0,

which is true.
34Notice that straight algebra establishes that a

`
b`

´
≥ a

“
b

b̀”
≥ a

“
b`′

”
, where a

`
b`

´
> a

“
b`′

”
under top-down

sorting if community sizes are such that at least two different types are present in two contiguous communities, which

we assume throughout.
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Therefore, (53) holds true. Successive comparisons of social welfare for two segregated commu-
nities versus the merged community leads to the result on social welfare ranking.

Proof of Theorem 2: The proof follows ceteris paribus from that of Theorem 1.
First, we rewrite Lemma 4 by simply taking to the power of d the left-hand side terms in the

first-order conditions (22) and (23), and the approximated first-order conditions (24) and (25).
Then, (26) and (27) yields (16).

Second, rewriting equation (28) in Lemma 5 we get:

gd (s) =
a

1
d b

2
d2

1− as
2

d2

,

so that the solution to (29) is such that (1− ax∗)
2

d2 +1 = 2
d2 a1+ 1

d b
2

d2 , that is, ax∗ = 1−
(

2
d2 a1+ 1

d b
2

d2

) d2

2+d2
.

The equilibrium conditions gd (x∗) < x∗ then boils down to a1+ 1
d b

2
d2 ≤ d2

2+d2

(
2

2+d2

) 2
d2

after some
simple algebra.

Proof of Proposition 8: Let’s multiply both a and b by a common factor δ ≥ 1. Equations
(16) become: {

sd = δak2

kd (1− δas) = δb
.

Differentiating with respect to δ and letting δ = 1 gives:

dsd−1 ∂s

∂δ

∣∣∣∣
δ=1

= ak2 + 2ak
∂k

∂δ

∣∣∣∣
δ=1

dkd−1 ∂k

∂δ

∣∣∣∣
δ=1

(1− as) = b + kd

[
as + a

∂s

∂δ

∣∣∣∣
δ=1

]
Straight algebra gives:

d
∂s

∂δ

∣∣∣∣
δ=1

− 2
s

k

∂k

∂δ

∣∣∣∣
δ=1

= s

−ak
∂s

∂δ

∣∣∣∣
δ=1

+ d (1− as)
∂k

∂δ

∣∣∣∣
δ=1

= k

Finally, solving for the two partial derivatives yields to

∂s

∂δ

∣∣∣∣
δ=1

=
2 + d

d2 (1− as)− 2as
s (54)

∂k

∂δ

∣∣∣∣
δ=1

=
as + d (1− as)

d2 (1− as)− 2as
s

Therefore, both partial derivatives are of the same sign, which is positive if and only if as <

d2/
(
2 + d2

)
. In the same spirit of the proof of Proposition 5, one can check graphically that the
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equilibrium actions of the low equilibrium increase with δ while the equilibrium actions of the high
equilibrium decrease with δ. Then, noting from proposition (2) that the elasticity is smaller than
one whenever the slope s/k increases, k and s either all increase or all decrease, the result follows.

Proof of Proposition 9: At an interior equilibrium, the strategies (s, k) solve:{
sd = ak2

kd (1− as) = b
,

The first equation is:
s = f (k) = a1/dk2/d.

It is readily checked that f (·) is increasing, strictly concave (resp. convex) when d < 2 (resp.
d > 2) and a straight line when d = 2 on [0,+∞). Also, f (0) = 0 and limx↑+∞ f (x) = +∞.
Finally, note that:

k = f−1 (s) =
( s

a1/d

)d/2
.

The second equation is:
k = g (s) = b1/d (1− as)−1/d .

It is readily checked that g (·) is increasing and strictly convex on [0, 1/a), with g (0) = b1/d and
limx↑1/ab g (x) = +∞.

Suppose that the equilibrium existence conditions hold. Let (s, k) and
(
s, k
)

be the two different
equilibria, where k > k (and, thus, s > s). The two corresponding equilibrium networks are such
that only one has a giant component if and only if s > 1 > s.

Suppose first that a ≥ 1. Then, 1 ≥ 1/a, so that the threshold value 1 is to the right of the
asymptote for g (·), implying that 1 > s > s, that is, no equilibrium network has a giant component.

Suppose now that a < 1.
Note that the graph of g (·) lies below the graph of f−1 (·) only when s ∈ [s, s]. Therefore,

s > 1 > s is equivalent to g (1) < f−1 (1). After some algebra, this is equivalent to:

ab2/d < (1− a)2/d . (55)

Notice that the right-hand side of this inequality is well-defined given our assumption that
a < 1.

When (55) holds, we can conclude that the two equilibrium networks display two different
topological characteristics: the densely connected network has a giant component whereas the
sparsely connected network doesn’t.

Reciprocally, when (55) does not hold, we can conclude that either both equilibrium networks
have a giant component, or none does. We now provide an additional sufficient condition such that
both have giant component when both a < 1 and ab2/d > (1− a)2/d.
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Consider the line tangent to the graph of g (·) at the point (0, g (0)) with equation:

h (s) = g′ (0) s + g (0) = b1/d
[a
d
s + 1

]
.

The graph of g (·) lies above that of h (·) on [0, 1/a) (recall that g (·) is strictly convex on
that half-segment). Consider the region on the (s, k) space delimitated to the left by the vertical
axis, from above by the graph of g (·), from below by the graph of f−1 (·) and to the right by the
point (s, k) at the intersection of these two graphs. If the point (1, h (1)) lies in this region, then
necessarily 1 < s. Analytically, (1, h (1)) lies in this region if and only if h (1) > f−1 (1). After
some algebra, this is equivalent to:

ab2/d > (
d

a + d
)2.

When a < 1, we can thus conclude that both networks have a giant component when:

ab2/d > max{(1− a)2/d , (
d

a + d
)2}.

We now compare the two terms on the right-hand side of the inequality. Let:

ξ (x) =
1

1 + ax
and ζ (x) = (1− a)x , where x ∈ [0, 1].

Then,
(

d
a+d

)2
> (1− a)2/d for some d ≥ 1 if and only if ξ (1/d) > ζ (1/d).

Note that ξ (0) = ζ (0) = 1, ξ (1) = 1/ (1 + a) ≥ ζ (1) = 1 − a (with a strict inequality when
a 6= 0), and ξ′ (0) = −a > ζ ′ (0) = log (1− a). Given the strict convexity of both functions on [0, 1],
we can conclude that ξ (x) > ζ (x) on 0 < x < 1.
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