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Abstract

This paper studies the emergence of a cycling phenomenon as a result of information lags

in congestion games with binary choices. A population of agents chooses between two alterna-

tives, with the objective being to land on the less congested choice. However, agents cannot

obtain real-time congestion information. This paper calls attention to the role of information

lags in strategic interactions, a subject not well examined at the micro level in previous eco-

nomic literature. Lagged information fails to take into account other agents’ responses between

information-updating intervals. Responding sensitively to such information in congestion games,

i.e., choosing the reportedly less congested choice with a high probability, leads to overreaction

in the next period. This constitutes the first half of a two-period cycle of aggregate congestions

on the two choices. The oscillating phenomenon can be observed in examples such as fluctuating

traffic congestions as well as price cycles in commodity markets. In a heterogeneous population,

agents may also hold diverse attitudes and respond differently to the same information; whether

the system dynamic diverges to cycles depends on the information lags and on the average of

response sensitivities of the heterogeneous population. More interestingly, when agents can en-

dogenously choose how sensitively they respond to lagged information, this paper presents the

irreconcilability between agents’ incentive to avoid oscillation and the incentive to pick the less

congested choice, the origin of which can be traced to the amount of randomness that agents

introduce into their behavioral responses. Considering both incentives at the same time gives

rise to the observation of a meta-cycle of two-period cycles. Lastly, the possibility of a prediction

with perfect foresight is considered.

1 Introduction

This paper is motivated by the author’s experience on his regular trips to Chicago via I-90, a two-

lane highway in the state of Wisconsin. In the late afternoons, the highway traffic is usually heavy,

but not bumper-to-bumper. Interestingly, rather than both lanes moving smoothly at the same

speed, one lane is periodically more congested than the other, even on a long stretch of highway

with no entry or exit. From the driver’s seat, the author first noticed that cars in the neighboring

lane, be it the left lane or the right, were moving faster. Tempted by less congestion, he decided

to switch lanes. However, he failed to take into account that, in the meantime, other drivers in the

same lane, having been through a similar thought process, were switching lanes just as he was. As

a result, the once less-congested neighboring lane slowed down, and the author found himself stuck

in the slower lane once again. The same process then repeated itself. Developing the insight from
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the above observation, this paper studies how information lags give rise to the cycling phenomena

in a population game with two congested choices.

In congestion games, an agent’s utility is negatively related to the number of agents sharing the

same strategy. As an example, consider daily commuters choosing between two ex ante identical

routes, both of which lead to a common destination. The conventional rationalistic analysis supposes

that each morning an agent forms some expectation regarding which route will be less congested

that day. However, if everyone holds the same expectation, which may take all previous history

into consideration, such a common expectation is immediately falsified when everyone chooses the

same route.1 This interesting property of congestion games may be considered a kind of "self-

defeating prophecy", as opposed to a self-fulfilling prophecy. In a supermarket, when it is announced

that "Aisle 7 is now open," Aisle 7 often becomes the longest queue.2 Once the commonality of

expectation breaks down, making a rational decision becomes difficult from the point of view of an

agent, as he does not know what to expect of the behavior of the many other agents, and vice versa.

In this paper, an agent’s behavior is modeled with a general response function p (x), which

is a reduced form from the disutility functions and specifies the probability of switching to the

alternative if the current choice is congested with proportion x of agents. The response function

allows for a wide range of functional forms, including, but not limited to, the logit choice rule, thus

enabling it to cover significant ground in modeling agents’ behavior. For instance, an agent who is

payoff sensitive switches to the less congested option with a high probability, which is characterized

by an increasing response function with a steep slope;3 a payoff insensitive agent is described by a

response function with a flat slope. We can also accommodate agents with contrarian views, who

are less likely to switch away from a more congested option, which is represented by a decreasing

p (x).

An equilibrium in a congestion game with binary choices refers to the state in which both choices

are equally congested. There has been a number of studies in the literature of learning that show how

an equilibrium emerges from various underlying adaptive mechanisms. To cite a few representative

ones, Cominetti et al. (2008) analyze congestions games with n choices with smooth fictitious play:

agents form perceptions based on prior experiences, follow a random choice rule such as logit, and

then use the realized payoff to update the perceptions. With this learning process, the average of
1For details on this scenario, see the proof in Young (2004, p. 51).
2This example is originally found in Mitzenmacher (2000).
3The most sensitive agent is one who always perfectly best responds, characterized by a step function with the

jump from 0 to 1 at the point where the disutilities from the two options are equal.
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all agents’ mixed actions is shown to converge asymptotically towards an equilibrium. Duffy and

Hopkins (2005) study market entry games4 with reinforcement learning and predict an equilibrium

with sorting: agents play a pure strategy equilibrium, with some agents permanently in the market,

and some permanently out. However, the conclusions from the learning literature–of converging

to an equilibrium–do not explain the author’s observation of periodic oscillations of congestions

between the two lanes on I-90. Moreover, such an observation is corroborated by the laboratory

experiments in Selten et al. (2007) with a two-route choice scenario, in which fluctuations persist

until the end of the sessions (Figure 1).

Figure 1: Selten et al. (2007): fluctuations persist after 200 periods.

If the learning literature helps us to understand the emergence of an equilibrium in congestion

games, this paper explains the observed oscillating phenomenon due to information lags. To dis-

tinguish the two perspectives, both Cominetti et al. (2008) and Duffy and Hopkins (2005) utilize

techniques from Benaim and Hirsch (1999) to approximate discrete stochastic process with an as-

sociated continuous deterministic dynamic in the asymptotic limit. The role of information lag is

de-emphasized when taking the continuous limit. This paper, on the other hand, places its focus

on the effect of information lags and keeps the time structure discrete. As a matter of fact, if
4In a weak sense, market entry games can be regarded as congestion games with two asymmetric options, as the

payoff from the option of staying out is weakly decreasing, or constant in the number of users.
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the information lag takes the limit to 0, the model of this paper also concludes convergence to an

equilibrium, linking the two perspectives.

This paper highlights the consequence of information lags5 in congestion games, which is the

time between information gathering and decision-making. Information lags may stem from different

sources. To begin with, it takes time to gather and relay information to all agents. In the route

choice example, morning commuters listen to the radio traffic report, which updates congestion

information every fifteen minutes or so. Moreover, the time from a decision to its implementation

may not be immediate, which also contributes to the information lag. A commuter needs to make

the decision of which highway to take well before he gets onto the ramp of that highway. The time

between receiving the radio message and arriving at the highway becomes a significant part of the

information lag. Combining both, the congestion experienced by the commuters may have changed

considerably from that described in the radio report.

Other fields also recognize that outdated information may disrupt convergence to an equilibrium.

In transportation research, Ben-Akiva et al. (1991) point out that if a substantial fraction of agents

receive the same message and react uniformly, it only "causes congestion to transfer from one road

to another." They mention that information lags "may also generate oscillations in road usage."

Emmerink et al. (1995) demonstrate with simulations that old traffic information provided by the

Advanced Traveler Information System (ATIS) may actually increase travel time if agents overreact

to the same message. Wahle et al. (2000) employ simulations based on cellular automata to show

that information lags lead to undesirable oscillations. In computer science, constantly keeping an

eye on the levels of server loads consumes computing resource, thus for practical reasons, the load

information is broadcast periodically rather than realtime. Mitzenmacher (2000) recognizes that if

the load information is out of date, simply assigning new tasks to the shortest queue easily leads to

overloading of servers; he suggests that a strategy with randomness improves performance. Fischer

and Vöcking (2009) refer to information with lag as "stale information" and present sufficient

conditions to avoid performance oscillations. Cycling phenomena due to information lags have also

been documented in agricultural economics6 and in the labor markets of lawyers or engineers.7

5The presence of information lags in decisions has been studied in macroeconomic theory, termed as "sticky
information". Mankiw and Reis (2002, 2006, 2007) and Reis (2006) assume that in each period only a fraction of
consumers, workers, or firms obtain up-to-date information, which provides an alternative source of stickiness in place
of the "sticky price" assumption. In that literature, agents do not frequently update their information because of the
high costs of processing the information. In comparison, we are interested in the scenarios where information is not
outdated by choice, but is inherent in the time structure of events.

6Rosen et al. (1994) attribute the consistent beef cattle price cycles in the U.S. market to the information lag from
the breeding cycle of cattle.

7Both vocations demand years of training before entering the labor market, see Freeman (1975, 1976).
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Most of the above-mentioned works, however, are either observational or simulation results.

Adding to this literature, this paper builds an analytical model with parameters characterizing the

information lags and the agents’ response sensitivities. The analytical framework not only provides

a better understanding of the oscillating dynamic, but can also be used to explore more interesting

population compositions and agents’ adaptive behavior. In addition, it serves as a framework for

calibrations in future empirical studies.

In our basic model, agents decide simultaneously between two options at discrete time periods

and they want to avoid congestion. Lagged information fails to take into account other agents’

responses between information-updating intervals. Responding sensitively to such information in

congestion games, i.e., choosing the reportedly less congested choice with a high probability, leads

to overreaction in the next period. This constitutes the first half of a two-period cycle of the

aggregate congestions on the two choices. Section 2 establishes the basic model and concludes that

the dynamic converges to a rest point only if information updates frequently and agents are not

too aggressive in switching choices. Otherwise, it is shown to bifurcate to a stable two-period cycle.

The conclusion also applies to games with asymmetrically congested choices. In Section 3, agents

may also hold diverse attitudes and respond differently to the same information. In a heterogeneous

population, whether the system dynamic diverges to cycles depends on the information lag and

the average of response sensitivities of the heterogeneous population. The presence of contrarian

agents decreases the average response sensitivity of the population. In Section 4, allowing agents

to endogenously choose how sensitively they respond to lagged information, this paper presents

the irreconcilability between agents’ incentive to avoid oscillation and the incentive to pick the less

congested choice. Considering both incentives at the same time gives rise to the observation of

a meta-cycle of two-period cycles. We also discuss in details the implication of different response

functions, and trace the origin of the irreconcilability back to the amount of randomness that agents

introduce into their responses. Finally, we introduce a Rational Expectation (RE) predictor with

the ability to forecast correctly the next period of congestion with perfect foresight. If agents follow

the RE predictor with a probability greater than 1/2, the rest point at the equilibrium is stable

and irreconcilability disappears; however, a strong assumption for the RE predictor to be available

is complete knowledge of agents’ behavior. All proofs are presented in the Appendix.
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2 The Basic Model

2.1 Model Setup

The basic setting begins with a unit mass of homogeneous agents choosing between two options:

left and right, respectively. The model adopts a discrete time structure. At the beginning of period

t+ 1, a proportion θ of agents observe last period’s congestions status xt, the proportion of agents

using the left in period t8, and revise their choices. Thus, the most up-to-date information available

to agents carries a lag of one period. Parameter θ, the proportion of agents who revise their choices

during each period, also quantifies information lags: how much time in actual that one normalized

period stands for. A large θ indicates a long lag in the information, e.g., one hour, such that many

changes can take place in one period; a small θ means that the time between each period is short,

e.g., one minute, and that there are only a few revisions before the information is updated. Consider

the two limiting cases of this parameter: θ → 0 corresponds to continuous information updating;

θ = 1 represents completely out-dated information after one period, because when the information

arrives, every agent has revised his choice.

To take xt as the prediction for the next period is naive, as it does not take into account how the

other agents respond to the commonly-observed xt. This model uses response functions to describe

agents’ behavior in response to the lagged information. When proportion x of agents use the left

and proportion 1−x choose the right, let Ul = −l(x) and Ur = −r(1−x) be the disutilities from the

congestion on the left and right, respectively. The agents’ response functions take a reduced form

from the disutility functions: p(x) = p(Ul, Ur) = p(−l(x),−r(1−x)); it specifies the probability that

the agent switches to the right if the left was congested by proportion x in last period. Similarly,

q(1 − x) = q(Ur, Ul) = q(−r(1 − x),−l(x)) represents the probability of switching from right to

left given the congestion status (x, 1− x). With the reduction, changes in disutility functions or in

agents’ attitude toward the disutilities are all reflected in the corresponding changes of the response

functions. If an agent responds to more congestion by a higher probability of switching away, p (x)

is an increasing function. Alternatively, some agents may think one step further and believe that

a message of low congestion will attract many others, and therefore the option will actually be

crowded in the next period. Borrowing the term from Selten et al. (2007), we refer to them as the

contrarian agents, for whom p (x) is a decreasing function.
8Since there are only two options, the proportion of agents on the right is always 1− xt.
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One particular functional form of p (x) is the logit choice rule: 9

p (x) =
eβl(x)

eβl(x) + eβr(1−x)
.

With the logit choice rule, q (1− x) = 1− p (x).

Agents following the logit choice rule are best-responding in a perturbed manner. Parameter

β captures agents’ responsiveness to payoff differences. A payoff-sensitive agent has a high β. An

agent with β →∞ perfectly best responds, i.e., switches to the alternative even it is reported to be

slightly better than the current choice. Agents with β less than 0, thus p′ (x) < 0, are the contrarian

type.

Most of the subsequent conclusions apply to any increasing functional form of p (x). Those that

apply only with the logit form will be explicitly noted.

2.2 The Rest Point and Its Stability

In the homogeneous population, the change of usage on the left option between period t and t+ 1

is

xt+1 − xt = −θxtp (xt) + θ (1− xt) q (1− xt)

where the first term on the right represents the proportion leaving left for right in the next period,

and the second term describes the flow into the left option.

We first discuss the case in which the two options are symmetric: if both options are occupied by

the the same amount of agents, the resulting disutilities are also the same on both, i.e., l(x) = r(x)

and p(x) = q(x). With symmetry, the disutilities of congestion from two options are equal at x = 1
2 ,

which is a rest point of the above dynamic equation. Normalize around 1
2 with z = x− 1

2 , and we

have the one period dynamic equation zt+1 = f (zt), which maps zt of period t to the next period

realization of zt+1:

zt+1 = f (zt) = zt − θ
(

1
2 + zt

)
p
(

1
2 + zt

)
+ θ

(
1
2 − zt

)
p
(

1
2 − zt

)
. (1)

To ensure that the rest point z = 0 is locally stable, the slope of f (z) must be less than 1 in

absolute value. Proposition 10 identifies the following two attributes as the determinants in the
9See Anderson et al. (1992) and Hofbauer and Sandholm (2002) for the dual representations of the logit choice rule:

It can be derived from additive random utilities with the perturbation terms extreme-value distributed. Alternatively,
suppose that the decision to switch with probability p involves a control cost that is the entropy function of p, the
maximization with the deterministic perturbation also yields the logit choice rule.
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local stability condition at z = 0: information lag and agent’s response sensitivity.

Proposition 1 In a homogeneous population of agents with an increasing response function p (x),

the rest point z = 0 is locally stable if and only if 2
θ > 2p

(
1
2

)
+ p′

(
1
2

)
.

Corollary 2 In a homogeneous population of agents following the logit choice rule with sensitivity

β, the rest point z = 0 is locally stable if and only if 2
θ >

1
2βl
′ (1

2

)
+ 1.

Corollary 2 states that both θ and β need to be small to ensure convergence to the rest point.10

In other words, fixing a particular value of β, there is a threshold θ0(β) of θ, above which the rest

point becomes unstable because the information lag is too long. Similarly, fixing a particular value

of θ, there is a threshold β0(θ) of β, above which the agents’ responses are so sensitive that they

render the rest point unstable. Corollary 2 also implies that if agents want to avoid oscillation,

the reasonable level of response sensitivity β is inversely related to the information lag θ. This

implication will be brought up again in Section 4, where we further discuss the response functions.

2.3 Two-Period Cycle

When the rest point z = 0 is not stable, there can potentially be a wide range of possibilities for

dynamic patterns. In particular, Brock and Hommes (1997) present a model of supply-demand in

which producers choose between two predictors: with the naive predictor, the price forecast is the

old price from the last period (the information lag is one period); the rational expectation predictor

has perfect foresight and forecasts the price accurately with a cost. Brock and Hommes (1997)

show that a high sensitivity to payoff difference of the two predictors will not only make the price

dynamics unstable, but will also lead to "a rational route to randomness", showing chaotic price

fluctuations. Nonetheless, we are going to show that the dynamic in our model will not go as far

on the route to chaos.

The Period Doubling Bifurcation Theorem in Robinson (1995) considers a general map with

one parameter xt+1 = f (xt, θ), where x ∈ R and θ ∈ R. The theorem shows that, with a set

of nondegenerate conditions, the period doubling bifurcation or flip bifurcation occurs as θ passes

through θ0, where the slope of f (xt, θ0) is equal to −1; the original rest point becomes repelling

and a two-period cycle branches off from the rest point. Moreover, the stability of the two-period

cycle depends on the second-iterate map f2
θ0
. Applied to our model as described in Equation (1), it

10Fischer and Vöcking (2009) reach the same conclusion for the convergence condition.
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can be verified that with any logit response function, the nondegenerate conditions are met at rest

point z0 = 0 with θ0 = 2
2p( 1

2)+p′( 1
2) , and that the two-period cycle after bifurcation is attracting.

Notice that the Period Doubling Bifurcation Theorem deals with any general map of one variable

with one parameter, both of which have domains in R. With the specific form of f (zt) in Equation

(1), we can also show the occurrence of period doubling bifurcation and that the two-period cycle

after bifurcation is attracting for any non-Logit response function that is increasing.

Proposition 3 In a homogeneous population of agents with any increasing response function p (x),

if θ > θ0, the rest point at 0 is unstable and bifurcates to an attracting two-period cycle, the unique-

ness of which depends on the functional form of p (x). In the case of logit choice rule, the two-period

cycle is unique and globally stable.

The proof of Proposition 3 first establishes that f (zt) is bounded between −1
2 and 1

2 and that

the slope f (zt) does not exceed 1 for all z ∈ [−1
2 ,

1
2 ]. The former bound gives us the existence of

a two-period cycle, while the latter condition on the slope ensures that if the point-symmetric map

of f (zt) takes a tent-shape, the tent roof is not too steep, which guarantees that the dynamic goes

through period doubling bifurcation once and only once, and that the two-period cycle is attracting.

We thus are able to exclude other dynamic possibilities than the attracting two-period cycle. Figure

2 illustrates the mappings.

With the logit choice rule, f (z) crosses the negative 45◦ line only once between 0 and 1
2 . When

we allow for a more general functional form of p (x), it is, in theory, possible that f (z) intersects

the negative 45◦ line more than once in the positive open half-plane. When this happens, since the

bounded condition of f (z) requires that f
(

1
2

)
> −1

2 , the addition of intersections must come in

pairs, in which one of the two intersections corresponds to a stable two-period cycle; the other one

is unstable and separates the basins of attractions from the neighboring two-period cycle.

We can also derive the relation between information lag θ and the magnitude of the cycle.

Proposition 4 In a homogeneous population of agents with an increasing response function p (x),

the magnitude of the two-period cycle increases with information lag θ.

Proposition 4 states that a greater information lag leads to a larger magnitude of oscillation.

Proposition 4, together with Proposition 1, depicts how the dynamic changes continuously with

information lag θ: when θ is small enough with respect to agents’ response sensitivity, the symmetric

equilibrium is stable; as θ passes the threshold θ0, the rest point z = 0 becomes unstable and
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Figure 2: An unstable rest point bifurcates to a stable two-period cycle

bifurcates to a two-period cycle. The magnitude of the cycle increases continuously with θ from 0

to a positive value.

2.4 Asymmetrically Congested Options

When the symmetry in the two choices is relaxed, the model can extend more generally to any games

in which an agent’s payoff is negatively related to the number of agents sharing the same strategy.

Such scenarios may arise as commuters choose between a highway or a local road leading to a same

destination, or when a number of competing firms decide on supplying one of two markets, with

profit decreasing with the number of suppliers, or when a population of farmers choose to grow corn

or beans, or even among shoppers choosing between two styles, retro or avant garde. Suppose the

two available options, conveniently referred to as the left and the right, now represent any pair of

binary choices in a game with congestion effects. In the asymmetric case, the disutilities Ul = −l(x)

and Ur = −r(1− x) take different functional forms, l′(x) > 0 and r′(x) > 0. The agents’ response

functions in reduced forms are generally different: p(x) = p(Ul, Ur) = p(−l(x),−r(1 − x)), and
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q(1− x) = q(Ur, Ul) = q(−r(1− x),−l(x)). The dynamic equation takes the form:

xt+1 = f(xt) = xt − θxtp (xt) + θ (1− xt) q (1− xt) . (2)

Following the same vein of thought as in the previous section, a direct application of Robinson

(1995) Period Doubling Bifurcation Theorem on Equation (2) concludes that for logit response

functions, when the rest point is unstable, it bifurcates to an attracting two-period cycle. The

conclusion also extends to all non-logit response functions with a proof in the spirit of that for

Proposition 3.

In summary, with a population of homogeneous agents facing two possibly asymmetric options

in a congestion game, if the agents’ switch aggressively to the less congested option in response to

information with information lag, two-period cycle results, and it is shown to be attracting. That

all agents respond to a message in exactly the same way is a strong assumption. An alternative

interpretation may be that the switching probability p (x) describes a population’s aggregate behav-

ior, instead of identical individual responses. In Section 3, we introduce heterogeneity to individual

behavior rules and show that most of the conclusions in this section extend to a heterogeneous

population.

3 Heterogeneous Populations

3.1 Model with Two Types of Agents

There are a number of motivations for us to explore a heterogeneous population. First of all, we

want to make sure that conclusions in the previous section are not dependent on the homogeneity

assumption, and that they are robust when extended to agents’ heterogeneous responses. With this

extension, agents may also hold diverse attitudes and respond differently to the same information;

the framework is able to model much more complex and interesting population compositions, in-

cluding the possibility of contrarian agents. More importantly, not like in the learning literature,

the different responses do not automatically smooth themselves out and converge to an equilibrium

as the diversity increases; rather, whether the system dynamic diverges to cycles depends on the

information lags and on the average of response sensitivities of the heterogeneous population.

The agents still face two choices, but there are now two types of agents, A and B. They are

differentiated by their behavior rules, respectively pA (x) and pB (x). The proportions of type A
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and type B agents in the total population are fixed at α and 1− α. Let xit, i = A,B represents the

proportion of type i agents who use the left option in period t. The total usage of the left option

in period t becomes xt = αxAt + (1− α)xBt . As in the basic setting, θ represents the proportion of

agents who revise their choices during each period and provides as a measure of information lag.

3.2 The Rest Point and Its Stability

With two types of agents,
(

1
2 ,

1
2

)
is a rest point if the two options are symmetric. At a rest point,

the inflow balances the outflow for both types. The rest point
(

1
2 ,

1
2

)
is also shown to be unique.

Proposition 5 In a heterogeneous population of two types of agents with increasing pA (x) and

pB (x),
(

1
2 ,

1
2

)
is the unique rest point.

After Proposition 5, we normalize zit = xit − 1
2 , i = A,B to bring the rest point to the origin

(0, 0), and the system of dynamic equations becomes:

zAt+1 = fA
(
zAt , z

B
t

)
= zAt − θ

(
1
2

+ zAt

)
pA
(

1
2

+ zt

)
+ θ

(
1
2
− zAt

)
pA
(

1
2
− zt

)
zBt+1 = fB

(
zBt , z

A
t

)
= zBt − θ

(
1
2

+ zBt

)
pB
(

1
2

+ zt

)
+ θ

(
1
2
− zBt

)
pB
(

1
2
− zt

)
.

The interaction between the two types takes place through zt = αzAt +(1− α) zBt , which both types

experience and contribute to.

In a heterogeneous population, the stability condition of the rest point depends on the informa-

tion lag and the average response sensitivity in very much the same way as that in a homogeneous

population.

Proposition 6 In a heterogeneous population of two types of agents with pi
(

1
2

)
= 1

2 , i = A,B, the

rest point (0, 0) is locally stable if and only if 2
θ > 1 + αpA′

(
1
2

)
+ (1− α) pB′

(
1
2

)
.

Corollary 7 In a heterogeneous population of two types of agents following logit choice rules with

sensitivities βA and βB, the rest point (0, 0) is locally stable if and only if 2
θ > 1 + 1

2αβ
Al′
(

1
2

)
+

1
2 (1− α)βBl′

(
1
2

)
.

The rest point (0, 0) loses stability when one of the eigenvalues of its Jacobian matrix D (f)(0,0)

exceeds 1 in absolute values. As θ crosses the threshold θ0 = 2
1+αpA′( 1

2)+(1−α)pB′( 1
2) , the eigenvalue

drops below −1, where a period doubling bifurcation occurs. The assumption pi
(

1
2

)
= 1

2 , i = A,B
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is useful to obtain tractable eigenvalues. It means that when the two options are reported to be

equally congested, agents of both types will be indifferent between the two and choose either with

equal probability, which is the case with any logit choice rule.

We can also relate the stability condition of a heterogeneous population to the stability conditions

of the constituent types’ homogeneous populations.

Corollary 8 Assume pi
(

1
2

)
= 1

2 , i = A,B. If zA = 0 is locally stable in a homogeneous population

with only type A agents, and zB = 0 is likewise locally stable in a population with only type B agents,

then for a mixed population with type A and type B agents, the rest point (0, 0) is also locally stable.

The local stability condition for a mixed population in Proposition 6 can be derived from the

stability conditions for type A and type B homogeneous populations by way of a weighted sum of the

two inequalities from Proposition 1. However, Corollary 8 is not an if-and-only-if statement because

the reverse may not be true: one can easily construct a population that consists of a majority of

insensitive agents mixed with a tiny proportion of highly sensitive agents, in which (0, 0) is still

locally stable. Nonetheless, those sensitive agents, when left alone in a homogeneous population of

their own, may well diverge from the rest point z = 0.

3.3 Two-Period Cycle

Having established the stability condition of the rest point, we next present the key proposition

that, when the rest point (0, 0) becomes unstable, the system dynamic diverges to a two-period

cycle that is stable.

Proposition 9 In a heterogeneous population of two types of agents with increasing pA (x) and

pB (x), when the rest point (0, 0) is unstable, it bifurcates to a two-period cycle characterized by(
zA+, zB+

)
and

(
zA−, zB−

)
from any initial point except those on the straight line zB0 = − α

1−αz
A
0 ,

which approach the rest point along that line in an unstable way.

Points on the straight line zB0 = − α
1−αz

A
0 are on a saddle line:they approach the rest point along

that line as long as there is no perturbation. With a small deviation, the dynamic will no longer

head to the unstable rest point (0, 0), but will be attracted to the two-period cycle characterized by(
zA+, zB+

)
and

(
zA−, zB−

)
.

A number of additional difficulties are brought about by the heterogeneity: First, the dynamic

equation zAt+1 = f
(
zAt , z

B
t

)
is no longer an odd function in zAt , i.e., f

(
−zAt , zBt

)
6= −f

(
zAt , z

B
t

)
,

13



which prevents us from using symmetry to identify potential two-period cycles. Secondly, the

interaction between the two types means that it is difficult to draw conclusions regarding the

system dynamic by studying either type’s dynamic equation separately. Since both zAt and zBt

are changing during each period, for the study of two-period cycles it is more convenient to work

with the second-iterate dynamic equations, which map from zAt and zBt to zAt+2 and zBt+2:

zAt+2 = f̃A
(
zAt , z

B
t

)
= fA

(
fA
(
zAt , z

B
t

)
, fB

(
zAt , z

B
t

))
(3)

zBt+2 = f̃B
(
zAt , z

B
t

)
= fB

(
fA
(
zAt , z

B
t

)
, fB

(
zAt , z

B
t

))
. (4)

At first sight, it is not straightforward how to analyze the dynamic picture in the four-dimensional

space
(
zAt , z

B
t

)
×
(
zAt+2, z

B
t+2

)
. Our solution is to first disassemble the high-dimensional space into

cross sections of lower dimensions, examine the cross sections, and finally map and summarize the

results from the cross sections in a single two-dimensional plane, on which we get the conclusion of

the two-period cycle.

With the details of the proof in the Appendix, here are the steps in our plan:

1. Consider Equation (3) as a three-dimensional space of
(
zAt , z

B
t

)
×zAt+2, and cut a cross section

at a given zB ∈
[
−1

2 ,
1
2

]
, which has the dimension zAt × zAt+2.

2. Show that, in the cross section of zB, when the rest point is not stable, after two periods

zAt+2 = f̃
(
zAt , z

B
)
moves toward either zA+, if zAt is more than the unstable rest point zA∗, or

zA−, if zAt is less than zA∗.

3. After executing step 2 for every cross section of zB between −1
2 and 1

2 , collect all such points

zA+, zA∗, zA− to form continuous curves zA+
(
zB
)
, zA∗

(
zB
)
, zA−

(
zB
)
in the zAt × zBt plane

(Figure 3). Notice that after two periods, zAt+2 is attracted toward either zA+
(
zB
)
or zA−

(
zB
)
,

with zA∗
(
zB
)
separating the two basins of attraction.

4. As with type A agents, perform Step 1 to 3 with type B agents. Replace zAt+2 with zBt+2 on the

z-axis to obtain the three-dimensional space
(
zAt , z

B
t

)
× zBt+2. The same argument shows that,

in any cross-section plane of a given zA, when the rest point is not stable, after two periods

zBt+2 moves toward either zB+
(
zA
)
or zB−

(
zA
)
, depending on whether zBt lies to the right or

the left of zB∗
(
zA
)
.

5. Altogether, we have curves zA+
(
zB
)
, zA∗

(
zB
)
, zA−

(
zB
)
and zB+

(
zA
)
, zB∗

(
zA
)
, zB−

(
zA
)

14



in the same plane of zAt × zBt (Figure 3). We show that the straight line zB = − α
1−αz

A

always stands in between zB∗
(
zA
)
and zA∗

(
zB
)
, except at (0, 0) where the two intersect.

Since zA+
(
zB
)
≥ zA∗

(
zB
)
≥ zA−

(
zB
)
and zB+

(
zA
)
≥ zB∗

(
zA
)
≥ zB−

(
zA
)
, we con-

clude that there can be only two more intersections of those curves other than the origin: at(
zA+, zB+

)
from zA+

(
zB
)
crossing with zB+

(
zA
)
, and at

(
zA−, zB−

)
from zA−

(
zB
)
cross-

ing with zB−
(
zA
)
. The point (0, 0) is the unstable rest point, and the other two intersection

points,
(
zA+, zB+

)
and

(
zA−, zB−

)
, form a two-period cycle that is attracting.

Figure 3 illustrates the assembly of results as in Step 511.

-0.5 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5

-0.5

-0.4

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

Figure 3: Illustration of Step 5.

11In the example illustrated, the population is comprised of 60% type A agents following the Logit rule with β = 16,
and 40% type B agents following the Logit rule with β = 10. The information lag θ is set to be 0.8.
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3.4 Multiple Heterogeneous Types and the Contrarians

Suppose the population consists of n types, each with a different response function pi (x) , i = 1 . . . n.

The proportion of types i agents in the whole population is exogenous and fixed at ai. The dynamic

equation of type i is

xit+1 = xit − θxitpi
 n∑
j=1

ajxjt

+ θ
(
1− xit

)
pi

1−
n∑
j=1

ajxjt

 , i = 1 . . . n.

The local stability condition requires that the eigenvalues of the Jacobian matrix at the rest

point be less than 1 in absolute values. Without contrarian agents, the stability, similar as before,

depends on the information lag and the weighted average of response sensitivities of all n types.

Proposition 10 Assume pi
(

1
2

)
= 1

2 and pi′ (x) > 0 for all i = 1 . . . n. The rest point
(

1
2 , . . . ,

1
2

)
is

locally stable if and only if 2
θ > 1 +

∑n
i=1 a

ipi′
(

1
2

)
.

The eigenvalues of the Jacobian matrix are found to be

λ1 = 1− θ − θ
n∑
i=1

aipi′
(

1
2

)
λ2 = 1− θ.

It is straightforward that λ2 is always between (0, 1). For non-contrarian agents, pi′ (x) > 0, i =

1 . . . n implies that λ1 < 1, and the inequality in Proposition 10 ensures that λ1 > −1. If the agents

follow the the logit choice rule, the stability condition becomes

2
θ
> 1 +

1
2
l′
(

1
2

) n∑
i=1

aiβi. (5)

The stability condition for a population of contrarian agents is quite different.

Proposition 11 Assume pi
(

1
2

)
= 1

2 and pi′ (x) < 0 for all i = 1 . . . n. The rest point
(

1
2 , . . . ,

1
2

)
is

locally stable if and only if 1 > −
∑n

i=1 a
ipi′
(

1
2

)
.

If a population consists of all contrarian agents, pi′ (x) < 0, i = 1 . . . n implies that λ1 > 0. The

inequality in Proposition 11 is necessary and sufficient for λ1 < 1. If the contrarian agents also
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follow the Logit choice rule, the stability condition becomes

1 > −1
2
l′
(

1
2

) n∑
i=1

aiβi. (6)

When comparing Equation (5) with Equation (6), we notice that, with the contrarians, the

stability condition does not involve the information lag θ. The intuition is as follows: with a

population of non-contrarian agents, the cycle occurs as a result of overreaction, which necessarily

requires the information lag to be long enough to occur. With a population that consists of all

contrarian agents, any deviation from the rest point is met with the agents’ responses choosing the

more congested option, augmenting the deviation. This happens even with a very small value of θ,

as long as the absolute values of the βi’s are high. Since both the inflows to and the outflows from

an option are proportional with θ, this parameter only affects how fast the augmentation is and

plays no role in the stability condition.

When the population includes both non-contrarian and contrarian agents, if the weighted average

of response sensitivities β̄ =
∑n

i=1 a
iβi > 0, the population is non-contrarian in general and its

dynamic can be described in a similar way as that of a non-contrarian population. The presence

of those contrarian agents lowers the population’s average response sensitivity β̄, and mitigates or

completely eliminates the oscillation that may otherwise occur. On the other hand, a population is

contrarian in general if the weighted average of the responsiveness is less than 0, in which case the

dynamic behaves just like the contrarian population described above, and its stability condition is

independent of the information lag.

Nonetheless, the fact that the weighted average of response sensitivities determines the stability

of the rest point yields the following implication: provided that proportion of agents with low β

is small, they will be forced into a two-period cycle by a majority of high β agents. Injecting a

small proportion of very patient drivers into an aggressive traffic scene may not stop the oscillating

pattern of route use. However, this is not bad news for the less aggressive drivers, as they fair better

in terms of avoiding congestion: if the route is currently more congested, a low β agent is more

likely to wait until the congestion drops in the next period; while a high β agent hastily switches

to the alternative, only to find it has become the more congested route. Agents would prefer a low

β in an oscillating scenario, which will be further discussed in Section 4.
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4 Endogenous Type Choice and Discussion on Response Functions

If the choice of an agent’s response sensitivity becomes endogenous, we recognize that he may

have incentives that steer his choice in opposite directions: an agent prefers low sensitivity of the

perturbed best response so as to avoid oscillation. However, a high sensitivity is advantageous in

choosing the less congested option, if the two options are asymmetric.

In the subsequent discussion, we use an asymmetric example in which the left option is four

times less prone to congestion than the right: l (x) = d(x/4) and r (x) = d(x). If agents follow the

logit rule with β = 32, the rest point is x = 0.69 using the left option. What is interesting about

this rest point is that at x = 0.69 the congestion experienced on the left is not equal to that on the

right. The disutilities from these two asymmetric options are the same if proportion 0.8 of agents

used the left and 0.2 used the right, which is referred to as a user equilibrium. The distance between

the the rest point and user equilibrium is a consequence of agents’ perturbed best-responses. The

higher the β in the logit choice rule, the closer the rest point is to the user equilibrium 0.8.

4.1 Endogenous Agent Types

If an agent can choose a "better performing" type as he wishes, what sort of criteria does he have

in mind when evaluating his type choice β? We examine the following as agents’ incentives:

1. An agent may feel "regret" from his previous decision, after seeing the realization. Specifically,

if the realization of congestion in period t+ 1 turns out to be worse than that in the previous

period, he wishes he had chosen a higher switching probability than pβ (xt).

2. An agent always wants to be on the less congested of the two options; we call this the "envy"

factor. If the congestion experienced on the left route is more than that on the right, the

agent wants to switch away from the left with as high a probability as possible.

The above two utility measures have very different implications on the motion of type distri-

bution. The "regret" factor effectively prompts an agent to decrease β when the dynamic is in

oscillation. A high β type switches more often, yet is more likely to experience regret than a low β

type when in cycles. As the type distribution shifts lower, the magnitude of the cycle diminishes or

the cycle vanishes completely, after which the "regret" factor has no impact.

In contrast, the "envy" factor may point an agent in different directions. If the dynamic is

convergent to a stable rest point, or oscillates not as far-reaching as to 0.8, the "envy" factor pushes
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up the β to incite more oscillation towards 0.8. Otherwise, if currently the dynamic oscillates beyond

0.8, the "envy" factor drives down the β and shrinks the cycle magnitude towards 0.8. The "envy"

factor always contributes to oscillation as long as the rest point differs from the user equilibrium

with asymmetric options.

The dynamic becomes more interesting when agents consider both the regret and envy factors.

For clarity, we include only two types in the following simulation, a low β1 = 2, and a high β2 = 32,

as an illustrative example. With agents following a monotonic dynamic that considers a weighted

sum of the above two incentive measures for their type choice, Figure 4 shows the resulting time

path of xt, the usage of option left, as well as the associated changes of the proportion of agents with

more sensitive responses. The time paths may be described as a meta-cycle of two-period cycles.

Periods Periods

Proportion of 
agents with the 
sensitive type 

Propportion of 
agents using left 

Figure 4: Time path of the proportion using option left, and that of the proportion of agents with
more sensitive responses.

4.2 The Response Functions

The previous section presents a dilemma of choosing between stability and being close to the user

equilibrium. This is also visible in Figure 5, which plots the rest points and the cycle magnitudes

as the average type β̄ increases. The "regret" factor is dormant until β̄ = 17, after which the rest

point becomes unstable. Trying to approach the user equilibrium, the "envy" factor pushes up β̄

and reaches for the cycle that involves 0.8, marked with diamonds in Figure 5. As the two-period

cycle is initiated, the "regret" factor begins to take effect and brings the dynamic back to where

the rest point is stable, which completes a full cycle of the meta-cycle.
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Figure 5: The rest point increases with β̄ and approaches 0.8. It becomes unstable and bifurcates
to two-period cycle as β̄ passes the threshold β̄ = 17.

Rather than answering the question of which β is preferable, we examine the response functions,

where the irreconcilability originates. Recall Equation (2) for the dynamic with binary asymmetric

options:

xt+1 = f(xt) = xt − θxtp (xt) + θ (1− xt) q (1− xt) .

With the condition p (x) + q (1− x) = 1, the rest point is found at

p(x∗) = 1− x∗.

The condition p (x) + q (1− x) = 1 is a consistency requirement on the response functions: in

response to congestion status (x, 1− x), the probability that an agent on the left switches to right

is equal to the probability that a same agent, if he were put on the right, remains on the right,

p (x) = 1 − q (1− x). In other words, faced with (x, 1 − x), an agent is going to choose left

with probability q (1− x) and choose right with probability p (x) regardless of whether his current

position is on the left or the right.

An intuitive interpretation of the equality p(x∗) = 1− x∗ is: as an agent revises his options, the

probability of switching to the right is always equal to the proportion of agents on the right at the
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rest point. Graphically, the rest point x∗ lies at the intersection of the response function with the

straight line 1−x, which does not always coincide with the user equilibrium in the asymmetric case.

Figures (6a) - (6c) show how the rest point approaches the user equilibrium 0.8 as β̄ increases. As

β̄ climbs and the rest point gets closer and closer to 0.8, the slope at x∗ also increases, which makes

the dynamic prone to two-period cycle. On the other hand, as β̄ descends and the rest point turns

stable, x∗ also departs the user equilibrium, and there rises the irreconcilability.
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(a) β̄ = 2, x∗ = 0.55
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(b) β̄ = 32, x∗ = 0.69
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(c) β̄ = 92, x∗ = 0.74

Figure 6: The intersections approach the user equilibrium 0.8 as β̄ increases.

Nonetheless, there are response functions that do not suffer from the issue of irreconcilability,

e.g., p(x) = x/4 or p(x) = 0.2. Both find the rest point at the user equilibrium 0.8 and the slope

is moderate or flat, which keeps the rest point stable (Figure 7). The second response function,

in particular, deserves special attention: if agents disregard (or do not receive) any information

from the previous period, choosing the left with probability 0.8 and the right with probability 0.2

is a Nash equilibrium play for the whole population of agents in a congestion game with delays

l(x) = d(x/4) and r(x) = d(x).

A completely flat response function like p(x) = 0.2 leads to a stable rest point that coincides

with the user equilibrium, even with asymmetrically congested options. But do agents behave as

this Nash equilibrium play instructs? Observations in various scenarios suggest otherwise: agents’

responses are positively sensitive to even an outdated message. Farmers decide to increase the field

area of one crop if its price last season was high (while the relevant price is determined by the supply

and demand this season); on a crowded highway one is tempted to switch lanes if the flow in the

neighboring lane has been moving faster for the last minute (while the fast flow of traffic that has

passed matters less than how many drivers attempt to switch along the way); commuters listen to
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(a) p(x) = x/4
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Figure 7: Two proposed response functions with stable rest points at the user equilibrium 0.8.

the radio traffic report half an hour before reaching the chosen route (while the experienced delay

depends on fellow commuters’ choices in the half hour after the radio report).

Before delving further into the discussion of agents’ response functions, let us first look at a

familiar situation in daily life. In a supermarket, there are two check-out aisles. The left aisle has

four cash registers, and the right has only one. Suppose currently there are eight customers waiting

on the left aisle and two customers on the right. For simplicity, assume that the processing time for

each customer is a constant. Which aisle should the next customer choose? Since the waiting time

for both aisles is the same, being indifferent, he may pick either or follow any probabilistic rule,

e.g., 50% chance of both. If there are four customers on the left and four on the right, he should,

of course, go for the left aisle with probability 1. In short, the next agent should best respond to

what he observes. However, if instead of a single customer, he arrives in a group of 100 customers,

all of whom observe that there are eight on the left and two on the right and decide simultaneously,

how would his strategy be different? As a rational agent, he would realize that his strategy depends

more on the choices of the remaining 99 in his group than the 12 already in the lines, and presume

that something close to (0.8, 0.2) may be a good choice, provided that the other 99 agents think

alike.

In our model, parameter θ captures the (ir)relevance of the outdated information. Requiring

all agents to stick to a flat response function is like asking the agents to discard the information

after receiving it. A response function that is insensitive to the information may be sensible only

when θ = 1, i.e., the information arrives after the whole population has revised its choices. With
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θ < 1, the flat response function would not be a good fit as a description of agents’ behavior. As

seen in the previous supermarket example, if the customer arrives alone and finds that there are

nine customers in the left aisle with four cash registers and only one in the right aisle with one cash

register, he is not expected to choose left with probability 0.8; instead, his probability of choosing

left is probably much lower.

Generally speaking, as θ gets closer to 0, the information is more relevant, and agents’ responses

should be more sensitive to it. However, there are also scenarios in which agents are not even clearly

aware of the value of θ, in which case it is justifiable that their behavior is somewhat responsive to

the message. For examples, farmers may not know precisely the proportion of fellow farmers who

also change their crop area; a driver has little idea how many aggressive lane switchers there are

ahead of him (usually he confidently assumes that his move precedes others’); commuters cannot

perceive how many others are listening to the same radio traffic report. This is less of a problem

with the group of consumers at the check-out aisles: their group size is obvious.12

4.3 The Rational Expectation Predictor

One of the observations in the last section implies that information lag may undermine the effective-

ness of traffic information from ATIS devices: as the proportion of agents who respond to the ATIS

traffic message (the market penetration rate of ATIS) approaches 1, a driver is supposed to disregard

the ATIS information altogether. Partly for this reason, ATIS engineering literature differentiates

instantaneous travel times (descriptive information) from actual travel times (prescriptive informa-

tion, on the basis of ATIS-estimated travel times).13 This section introduces a Rational Expectation

(RE) predictor, as in Brock and Hommes (1997), which has perfect foresight and forecasts correctly

the change in the coming period. If agents follow the RE predictor with probability α, the RE

predictor is a solution to xt+1 in the equation:

xt+1 = xt− θ (1− α)xtp (xt) + θ (1− α) (1− xt) q (1− xt)− θαxtp (xt+1) + θα (1− xt) q (1− xt+1) .

Proposition 12 With the consistency condition p(x)+q(1−x) = 1, α > 1
2 is a sufficient condition

for the rest point to be locally stable.
12Some smart individuals in the group may move ahead of the rest, or switch aisles if the other aisle turns out to

be shorter, but this changes the game then, and essentially makes θ → 0.
13See Bifulco et al. (2009).
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When such a RE predictor is freely available through ATIS, it serves as a converging force toward

the rest point. As long as the prediction is followed with a probability higher than 1
2 , the rest point

is guaranteed to be stable, regardless of the response functions. On the other hand, a correct RE

prediction requires the knowledge of the parameter θ as well as the response functions, which calls

for empirical work to calibrate the responses of ATIS users.

5 Ongoing and Future Research

The ongoing research involves an empirical study of the fluctuations in road use and measuring its

welfare implications. In the past decade, the use of loop detectors has collected lane-specific data

on freeway traffic flows that make this study possible.

There are several potential directions that future research can go for. The model can be made

more specific and be applied to scenarios of interest. As examples, the model can be made applicable

to the choice between free lanes and toll lanes on High Occupancy Toll (HOT) lane facilities with

dynamic toll pricing.14 Other interesting congestion games in which the study of information lags

is promising include market entry games in industrial organization, and how the lags in price

information cause fluctuations in financial market of speculations.

I also intend to employ perspectives from behavioral and experimental economics to further

our understanding of how a population of agents play in congestion games. This directly links to

the discussion taking place in Section 4.2 on the response functions that describe agents’ behavior

facing information with lags. This model serves as a good framework in which we can calibrate the

parameters of interests such as agents’ response sensitivities.

A Appendix

Proof of Proposition 1.

df

dz
= 1− θ

(
p

(
1
2

+ z

)
+
(

1
2

+ z

)
p′
(

1
2

+ z

)
+ p

(
1
2
− z
)

+
(

1
2
− z
)
p′
(

1
2
− z
))

df

dz

∣∣∣∣
z=0

= 1− 2θp
(

1
2

)
− θp′

(
1
2

)
< 1.

14On I-15 north of San Diego and I-394 in Minneapolis, tolls are updated every few minutes.
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For z = 0 to be locally stable, we need

df

dz

∣∣∣∣
z=0

> −1

⇔ 1− 2θp
(

1
2

)
− θp′

(
1
2

)
> −1

⇔ 2 > 2θp
(

1
2

)
+ θp′

(
1
2

)
⇔ 2

θ
> 2p

(
1
2

)
+ p′

(
1
2

)
.

Before proving Proposition 3, let us first establish the following useful Lemmas:

Lemma 13 f (−z) = −f (z) .

Lemma 14 −1
2 < f (z) < 1

2 for all z ∈
[
−1

2 ,
1
2

]
.

Proof of Lemma 14. For all z ∈
[
−1

2 ,
1
2

]
,

f (z) = z − θ
(

1
2

+ z

)
p

(
1
2

+ z

)
+ θ

(
1
2
− z
)
p

(
1
2
− z
)

< z + θ

(
1
2
− z
)
p

(
1
2
− z
)

≤ z +
(

1
2
− z
)

=
1
2

f (z) = z − θ
(

1
2

+ z

)
p

(
1
2

+ z

)
+ θ

(
1
2
− z
)
p

(
1
2
− z
)

> z − θ
(

1
2

+ z

)
p

(
1
2

+ z

)
≥ z −

(
1
2

+ z

)
= −1

2

Thus, −1
2 < f (z) < 1

2 for all z ∈ [−1
2 ,

1
2 ].

Lemma 15
df

dz
< 1 for all z ∈

[
−1

2 ,
1
2

]
.

Proof of Lemma 15. For all z ∈
[
−1

2 ,
1
2

]
,

df

dz
= 1− θ

(
p

(
1
2

+ z

)
+ p

(
1
2
− z
)

+
(

1
2

+ z

)
p′
(

1
2

+ z

)
+
(

1
2
− z
)
p′
(

1
2
− z
))
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since 1
2 ± z ≥ 0, p

(
1
2 ± z

)
> 0 and p′

(
1
2 ± z

)
> 0,

df

dz
< 1.

Proof of Proposition 3. Lemma 14 shows that f (z) is bounded between −1
2 and 1

2 , in particular,

f
(

1
2

)
> −1

2 and f
(
−1

2

)
< 1

2 . If the rest point z = 0 is not stable,
df

dz

∣∣∣∣
z=0

< −1, the curve f (z)

must cross the negative 45◦ line again at a pair of intersections, z∗ and −z∗:

f (z∗) = z∗ − θ
(

1
2

+ z∗
)
p
(

1
2 + z∗

)
+ θ

(
1
2
− z∗

)
p
(

1
2 − z

∗) = −z∗

θ

(
1
2

+ z∗
)
p
(

1
2 + z∗

)
− θ

(
1
2
− z∗

)
p
(

1
2 − z

∗) = 2z∗.

in the logit case, z∗ is also unique and can be written out explicitly

z∗ + θ

(
eβl(

1
2
−z∗)

eβl(
1
2

+z∗) + eβl(
1
2
−z∗)

− 1
2
− z∗

)
= −z∗

z∗ =
1

4
θ − 2

eβl(
1
2

+z∗) − eβl(
1
2
−z∗)

eβl(
1
2

+z∗) + eβl(
1
2
−z∗)

= 1
4
θ
−2

tanh
(
β
2

(
l
(

1
2 + z∗

)
− l
(

1
2 − z

∗)))
With Lemma 13, f (z∗) = −z∗ implies that f (−z∗) = z∗. This constitutes a symmetric two-period

cycle that oscillates between z∗ and −z∗. We will next show that this two-period cycle is also

attracting and stable.

Due to symmetry, the proof only needs to focus on z ∈
[
0, 1

2

]
and refer to absolute values.

1. If for all z ∈
[
0, 1

2

]
,
df

dz
< 0. In this case, for all z ∈ [0, z∗), f (z) is below the negative

45◦ line with a negative slope. Any z ∈ [0, z∗) after one iteration becomes f (z), whose

absolute value is higher than the original z and approaches z∗ monotonically from below. Any

z ∈ [0, z∗) initiates a dynamic of oscillating cycles with monotonically increasing magnitude

until it reaches z∗ and stays on the period 2 limit cycle z∗,−z∗, z∗,−z∗, ... Similarly, for all

z ∈ (z∗, 1
2 ], f (z) is above the negative 45◦ line with a negative slope. Any z ∈ (z∗, 1

2 ] is

mapped to a lower absolute value of f (z) and approaches z∗ monotonically from above. The

oscillating cycles with monotonically decreasing magnitude also end at the period 2 limit cycle

z∗,−z∗, z∗,−z∗, ..., which shows that the limit cycle is attracting and stable.

2. If for some z ∈ (0, 1
2 ],

df

dz
> 0. By continuity of f (z), there must exist a turning point
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z′ such that
df

dz

∣∣∣∣
z=z′

= 0 and ∀z ∈ [0, z̄),
df

dz
< 0. In [0, z̄), as in the first part of the

proof, the oscillating cycles’ magnitude increases monotonically and approaches z∗ from below,

until it either reaches z∗ or steps into the region (z′, z′′) (with z′′ being the next point with

zero slope for some possible functional forms of p (x), if there is one, otherwise z′′ = 1
2).

For all z ∈ (z′, z′′),
df

dz
> 0,. In addition, by Lemma 15, 0 <

df

dz
< 1. What happens in

(z′, z′′) looks just like a cobweb model with mappings between f (z) and the negative 45◦ line.

Lemma 15 guarantees that this is an attracting cobweb, and it will bring the dynamics to the

intersection of f (z) with the negative 45◦ line, which is just z∗. This time, however, instead

of monotonically approaching from one direction, the magnitude is shrinking towards z∗ from

both directions. Again, the attracting limit is the period cycle z∗,−z∗, z∗,−z∗, ...

Proof of Proposition 4. We get dz
dθ from total differentiation:

2z − θ
(

1
2

+ z

)
p

(
1
2

+ z

)
+ θ

(
1
2
− z
)
p

(
1
2
− z
)

= 0

dz

dθ
=

(
1
2 + z

)
p
(

1
2 + z

)
−
(

1
2 − z

)
p
(

1
2 − z

)
2− θp

(
1
2 + z

)
− θ

(
1
2 + z

)
p′
(

1
2 + z

)
− θp

(
1
2 − z

)
− θ

(
1
2 − z

)
p′
(

1
2 − z

)
=

1
2

(
p
(

1
2 + z

)
− p

(
1
2 − z

))
+ z

(
p
(

1
2 + z

)
+ p

(
1
2 − z

))
2− θ

(
p
(

1
2 + z

)
+
(

1
2 + z

)
p′
(

1
2 + z

)
+ p

(
1
2 − z

)
+
(

1
2 − z

)
p′
(

1
2 − z

))
1
2

(
p
(

1
2 + z

)
− p

(
1
2 − z

))
+ z

(
p
(

1
2 + z

)
+ p

(
1
2 − z

))
> 0 by monotonicity of p (.). We get the sign

of the denominator from the condition
df

dz

∣∣∣∣
z

> −1:

df

dz

∣∣∣∣
z

= 1− θ
(
p

(
1
2

+ z

)
+
(

1
2

+ z

)
p′
(

1
2

+ z

)
+ p

(
1
2
− z
)

+
(

1
2
− z
)
p′
(

1
2
− z
))

> −1

⇒ 2− θ
(
p

(
1
2

+ z

)
+
(

1
2

+ z

)
p′
(

1
2

+ z

)
+ p

(
1
2
− z
)

+
(

1
2
− z
)
p′
(

1
2
− z
))

> 0

The above shows that the sign of the denominator is also positive. We thus are able to conclude

that
∂z

∂θ
> 0.
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Proof of Proposition 5. The stationary conditions for type i agents (i = A,B) is:

xit+1 − xit = 0

⇔ θxitp
i (xt) = θ

(
1− xit

)
pi (1− xt)

⇔ xit =
pi (1− xt)

pi (xt) + pi (1− xt)

The rest point
(
xA∗, xB∗

)
lies at the intersection of the implicit functions xA

(
xB
)
and xB

(
xA
)
.

(x = αxA + (1− α)xB):

xA
(
xB
)

=
pA (1− x)

pA (x) + pA (1− x)

xB
(
xA
)

=
pB (1− x)

pB (x) + pB (1− x)
.

We next show that

∣∣∣∣∣∂xB
(
xA
)

∂xA

∣∣∣∣∣ < 1∣∣∣∣∣∂xA
(
xB
)

∂xB

∣∣∣∣∣
, i.e. the slope of xB

(
xA
)
is always less than that

of xA
(
xB
)
, which implies that xB

(
xA
)
and xA

(
xB
)
cross with each other once and only once at

the unique rest point
(

1
2 ,

1
2

)
:

dxA = (−α)
pA′ (1− x) pA (x) + pA (1− x) pA′ (x)

(pA (x) + pA (1− x))2 dxA

− (1− α)
pA′ (1− x) pA (x) + pA (1− x) pA′ (x)

(pA (x) + pA (1− x))2 dxB

For shorthand, let qA (x) = pA′(1−x)pA(x)+pA(1−x)pA′(x)

(pA(x)+pA(1−x))2
, we have:

dxA = (−α) qA (x) dxA − (1− α) qA (x) dxB

∂xA

∂xB
= −(1− α) qA (x)

1 + αqA (x)

dxB = − (1− α)
pB′ (1− x) pB (x) + pB (1− x) pB′ (x)

(pB (x) + pB (1− x))2 dxB

+ (−α)
pB′ (1− x) pB (x) + pB (1− x) pB′ (x)

(pB (x) + pB (1− x))2 dxA
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Also, let qB (x) = pB′(1−x)pB(x)+pB(1−x)pB′(x)

(pB(x)+pB(1−x))2
, we get:

dxB = − (1− α) qB (x) dxB + (−α) qB (x) dxA

∂xB

∂xA
= − αqB (x)

1 + (1− α) qB (x)
.

Finally, if we compare the two slopes, we find that

∣∣∣∣∂xB∂xA

∣∣∣∣ < 1∣∣∣ ∂xA∂xB

∣∣∣
⇔ αqB (x)

1 + (1− α) qB (x)
<

1 + αqA (x)
(1− α) qA (x)

⇔ α (1− α) qA (x) qB (x) < 1 + αqA (x) + (1− α) qB (x) + α (1− α) qB (x) qA (x)

⇔ 0 < 1 + αqA (x) + (1− α) qB (x)

The last inequality always holds because qA (x) > 0 and qB (x) > 0.∣∣∣∂xB∂xA

∣∣∣ < 1∣∣∣ ∂xA
∂xB

∣∣∣ implies that the slope of xB
(
xA
)
is always flatter than that of xA

(
xB
)
, so that

once xB
(
xA
)
intersects with xA

(
xB
)
at
(
xA∗, xB∗

)
=
(

1
2 ,

1
2

)
, the two curves never cross again. This

makes
(

1
2 ,

1
2

)
the unique rest point of the dynamic.

Proof of Proposition 6. For the stability condition at (0, 0), we check if the eigenvalues of the

Jacobian matrix are less than 1 in absolute value.

∂zAt+1

∂zAt
= 1− θpA

(
1
2 + zt

)
− αθ

(
1
2

+ zAt

)
pA′
(

1
2 + zt

)
− θpA

(
1
2 − zt

)
− αθ

(
1
2
− zAt

)
pA′
(

1
2 − zt

)
∂zBt+1

∂zBt
= 1− θpB

(
1
2 + zt

)
− (1− α) θ

(
1
2

+ zBt

)
pB′
(

1
2 + zt

)
−θpB

(
1
2 − zt

)
− (1− α) θ

(
1
2
− zBt

)
pB′
(

1
2 − zt

)
∂zAt+1

∂zBt
= − (1− α) θ

((
1
2

+ zAt

)
pA′
(

1
2 + zt

)
+
(

1
2
− zAt

)
pA′
(

1
2 − zt

))
∂zBt+1

∂zAt
= −αθ

((
1
2

+ zBt

)
pB′
(

1
2 + zt

)
+
(

1
2
− zBt

)
pB′
(

1
2 − zt

))
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The Jacobian matrix at the rest point (0, 0) is:


∂zAt+1

∂zAt

∂zAt+1

∂zBt
∂zBt+1

∂zAt

∂zBt+1

∂zBt


(zAt ,zBt )=(0,0)

=

 1− 2θpA
(

1
2

)
− αθpA′

(
1
2

)
− (1− α) θpA′

(
1
2

)
−αθpB′

(
1
2

)
1− 2θpB

(
1
2

)
− (1− α) θpB′

(
1
2

)


=

 1− θ − αθpA′
(

1
2

)
− (1− α) θpA′

(
1
2

)
−αθpB′

(
1
2

)
1− θ − (1− α) θpB′

(
1
2

)


The two eigenvalues of this matrix are λ1 = 1−pB′
(

1
2

)
θ (1− α)−pA′

(
1
2

)
θα−θ and λ2 = 1−θ.

Since θ ≤ 1, the eigenvalue 1− θ is within (−1, 1). Next we check the other eigenvalue. Because

pA′
(

1
2

)
> 0 and pB′

(
1
2

)
> 0, λ1 < 1, for local stability, we need only one more condition, that

λ1 > −1. The rest point (0, 0) is locally stable if and only if

1− pB′
(

1
2

)
θ (1− α)− pA′

(
1
2

)
θα− θ > −1

⇔ 2
θ
> (1− α) pB′

(
1
2

)
+ αpA′

(
1
2

)
+ 1

Proof of Propostision 9. The proof follows the steps from our plan in Section 3.

As in Step 1, we take on

zAt+2 = f̃A
(
zAt , z

B
t

)
= fA

(
fA
(
zAt , z

B
t

)
, fB

(
zAt , z

B
t

))
as a 3-dimensional space of

(
zAt , z

B
t

)
× zAt+2 (Figure ??):

Cut a cross section with some zBt = zB ∈
[
−1

2 ,
1
2

]
(Figure ??)to get a plane with dimension

zAt × zAt+2.

Proving Step 2, we first show that the dynamic equations are bounded between −1
2 and 1

2 :

fA
(
zAt , z

B
t

)
= zAt − θ

(
1
2

+ zAt

)
pA
(

1
2 + αzAt + (1− α) zBt

)
+ θ

(
1
2
− zAt

)
pA
(

1
2 − αz

A
t − (1− α) zBt

)
< zAt + θ

(
1
2
− zAt

)
pA
(

1
2 − αz

A
t − (1− α) zBt

)
< zAt +

(
1
2
− zAt

)
=

1
2
.
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Figure 8: zAt+2 = f̃A
(
zAt , z

B
t

)
.

Figure 9: Cross section of zBt = zB ∈
[
−1

2 ,
1
2

]
from f̃A

(
zAt , z

B
t

)
.

fA
(
zAt , z

B
t

)
= zAt − θ

(
1
2

+ zAt

)
pA
(

1
2 + αzAt + (1− α) zBt

)
+ θ

(
1
2
− zAt

)
pA
(

1
2 − αz

A
t − (1− α) zBt

)
> zAt − θ

(
1
2

+ zAt

)
pA
(

1
2 + αzAt + (1− α) zBt

)
> zAt −

(
1
2

+ zAt

)
= −1

2
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The same can be said about fB
(
zAt , z

B
t

)
. Summing the above, we have:

−1
2
< fA

(
zAt , z

B
t

)
<

1
2
and − 1

2
< fB

(
zAt , z

B
t

)
<

1
2
, ∀zAt , zBt ∈

[
−1

2
,
1
2

]
.

Since f̃A
(
zAt , z

B
t

)
and f̃B

(
zAt , z

B
t

)
are both derived from the one-step dynamic equations, it is

implied that f̃A
(
zAt , z

B
t

)
and f̃B

(
zAt , z

B
t

)
are bounded between −1

2 and 1
2 .

We are now ready to begin the proof for Step 2:

Proof for Step 2. In the cross-section plane of a given zB, f̃A
(
zAt , z

B
)
intersects the 45◦ line at

point zA∗. If the dynamic is not stable at zA∗, df̃A(zAt ,zB)
dzAt

∣∣∣∣
zAt =zA∗

> 1, i.e., the slope of f̃A
(
zAt , z

B
)

at zA∗ is greater than 1. By the boundedness of the dynamic equations, f̃A
(

1
2 , z

B
)
< 1

2 and

f̃A
(
−1

2 , z
B
)
> −1

2 This implies that the curve of f̃A
(
zAt , z

B
)
must cross the 45◦ line at least once

in
(
zA∗, 1

2

)
and once in

(
−1

2 , z
A∗). Refer to the other two intersections as zA+ ∈

(
zA∗, 1

2

)
and zA− ∈(

−1
2 , z

A∗), respectively. By the construction of the 2-period dynamic, zA+, zA−, zA+, zA−, . . . consti-

tute a two-period cycle within the cross section of zBt = zB. Furthermore, the fact that f̃A
(
zAt , z

B
)

intersects the 45◦ line at zA+ (or zA−) from above (or below) implies that df̃(zAt ,zB)
dzAt

∣∣∣∣
zAt =zA+

< 1

(or df̃(zAt ,zB)
dzAt

∣∣∣∣
zAt =zA−

< 1), so the two-period cycle is also stable. For all zAt ∈ (zA∗, 1
2 ], zAt+2 =

f̃A
(
zAt , z

B
)
moves toward the point zA+; for all zAt ∈ [−1

2 , z
A∗), zAt+2 moves toward zA−.

Although we will no longer be in the cross-section plane of zB after just one period, the above

proof is useful in the sense that it indicates the direction of movement from zAt to zAt+2 after two peri-

ods, when we start with zBt = zB. In Step 3, we apply Step 2 for every cross section of zB from −1
2 to

1
2 , and collect all such points zA+, zA∗, zA− to form continuous curves zA+

(
zB
)
, zA∗

(
zB
)
, zA−

(
zB
)

in the zAt × zBt plane. We now know that zAt+2 moves toward zA+
(
zB
)
or zA−

(
zB
)
, with zA∗

(
zB
)

separating the two basins of attraction.

In Step 4, The same argument follows with type B agents: Starting with any given zA, zBt+2

moves toward either zB+
(
zA
)
or zB−

(
zA
)
after two periods, depending on whether zBt lies to the

right or left of zB∗
(
zA
)
.

In the final step (Step 5) of assembly, we put all the curves, zA+
(
zB
)
, zA∗

(
zB
)
, zA−

(
zB
)
and

zB+
(
zA
)
,zB∗

(
zA
)
, zB−

(
zA
)
, together in the zAt × zBt plane. We then show that the straight line

through the origin with slope − α
1−α always stands in-between zB∗

(
zA
)
and zA∗

(
zB
)
except at (0, 0)

where the two meet. The formal statement of that proposition is:
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Provided that pA
(

1
2

)
= 1

2 , and p
B
(

1
2

)
= 1

2 ,

zB∗
(
zA
)

< − α

1− α
zA,∀zA > 0, and zB∗

(
zA
)
> − α

1− α
zA,∀zA < 0.

Similarly, zA∗
(
zB
)

< −1− α
α

zB,∀zB > 0, and zA∗
(
zB
)
< −1− α

α
zB, ∀zB < 0.

Proof for Step 5. Without loss of generality, we prove the proposition in a cross section of zB

from f̃A
(
zAt , z

B
)
, and let zB > 0. Define z̄A = −1−α

α zB, which is on the straight line through the

origin with slope − α
1−α , and we are interested to see how the dynamic moves after two periods from

the point
(
z̄A, zB

)
.

After one period,

fA
(
z̄A, zB

)
= z̄A − θ

(
1
2

+ z̄A
)
pA
(

1
2 + αz̄A + (1− α) zB

)
+ θ

(
1
2
− z̄A

)
pA
(

1
2 − αz̄

A − (1− α) zB
)

= z̄A − θ
(

1
2

+ z̄A
)
pA
(

1
2

)
+ θ

(
1
2
− z̄A

)
pA
(

1
2

)
= z̄A − z̄Aθ

= z̄A (1− θ)

fB
(
z̄A, zB

)
= zB − θ

(
1
2

+ zB
)
pB
(

1
2 + αz̄A + (1− α) zB

)
+ θ

(
1
2
− zB

)
pB
(

1
2 − αz̄

A − (1− α) zB
)

= zB − θ
(

1
2

+ zB
)
pB
(

1
2

)
+ θ

(
1
2
− zB

)
pB
(

1
2

)
= zB (1− θ) .

This shows that fA
(
z̄A, zB

)
= −1−α

α fB
(
z̄A, zB

)
if z̄A = −1−α

α zB, and the point
(
z̄A (1− θ) , zB (1− θ)

)
is still on the same line with slope − α

1−α after one period.

After two periods,

zAt+2 = f̃A
(
zAt , z

B
)

= fA
(
fA
(
z̄A, zB

)
, fB

(
z̄A, zB

))
= fA

(
z̄A (1− θ) , zB (1− θ)

)
= z̄A (1− θ)2

> z̄A.

Notice that both z̄A and z̄A (1− θ)2 are less than zero. The fact that z̄A (1− θ)2 > z̄A means that
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(
z̄A, z̄A (1− θ)2

)
, a point on the f̃A

(
zAt , z

B
)
curve, is above the 45◦ line in the lower left quadrant

of zAt × zAt+2 plane. Our point of interest is zA∗, which is the intersection of the f̃A
(
zAt , z

B
)
curve

with the 45◦ line. To show that zA∗ < z̄A = −1−α
α zB, we simply need to prove that the slope of

f̃A
(
zAt , z

B
)
is positive from z̄A to zA∗.

We already have df̃A(zAt ,zB)
dzAt

∣∣∣∣
zAt =zA∗

> 1 because the dynamic is assumed to be unstable; it

remains for us to show that df̃A(zAt ,zB)
dzAt

∣∣∣∣
zAt =z̄A

> 0:

df̃A
(
zAt , z

B
)

dzAt

∣∣∣∣∣
zAt =z̄A

= fA1
(
z̄A (1− θ) , zB (1− θ)

)
∗ fA1

(
z̄A, zB

)
+ fA2

(
z̄A (1− θ) , zB (1− θ)

)
∗ fB1

(
z̄A, zB

)
=

(
1− θ − αθpA′

(
1
2

))2
+
(
− (1− α) θpA′

(
1
2

))(
−αθpB′

(
1
2

))
=

(
1− θ − αθpA′

(
1
2

))2
+ α (1− α) θ2pA′

(
1
2

)
pB′
(

1
2

)
> 0

This completes the Proof for Step 5.

With the above proof, we learn that the straight line through the origin with slope − α
1−α sepa-

rates zB∗
(
zA
)
and zA∗

(
zB
)
. Since zA+

(
zB
)
≥ zA∗

(
zB
)
≥ zA−

(
zB
)
and zB+

(
zA
)
≥ zB∗

(
zA
)
≥

zB−
(
zA
)
, we conclude that there can be only two other intersections:

(
zA+, zB+

)
from zA+

(
zB
)

crossing with zB+
(
zA
)
, and

(
zA−, zB−

)
from zA−

(
zB
)
crossing with zB−

(
zA
)
. The point (0, 0) is

the unstable rest point, and the two other intersection points,
(
zA+, zB+

)
and

(
zA−, zB−

)
, form a

two-period cycle that is attracting, which finalizes the Proof of Proposition 9.

Proof of Proposition 10. Similar to the Proof of Proposition 6 for local stability conditions

with two heterogenous types, we check if the eigenvalues of our Jacobian matrix with n types are

less than 1 in absolute value.

∂zit+1

∂zit

∣∣∣∣
(z1t ,...,znt )=(0,...,0)

= 1− θ − aiθpi′
(

1
2

)
∂zit+1

∂zjt

∣∣∣∣∣
(z1t ,...,znt )=(0,...,0)

= −ajθpi′
(

1
2

)
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The Jacobian matrix is:

∂z1
t+1

∂z1
t

∂z1
t+1

∂z2
t

. . .
∂z1

t+1

∂znt
∂z2

t+1

∂z1
t

∂z2
t+1

∂z2
t

. . .
∂z2

t+1

∂znt
...

...
. . .

...
∂znt+1

∂z1
t

∂znt+1

∂z2
t

. . .
∂znt+1

∂znt


(z1t ,...,znt )=(0,...,0)

=


1− θ − a1θp1′ (1

2

)
−a2θp1′ (1

2

)
. . . −anθp1′ (1

2

)
−a1θp2′ (1

2

)
1− θ − a2θp2′ (1

2

)
. . . −anθp2′ (1

2

)
...

...
. . .

...

−a1θpn′
(

1
2

)
−a2θpn′

(
1
2

)
. . . 1− θ − anθpn′

(
1
2

)

 .

There are two eigenvalues. One is

λ1 = 1− θ − θ
n∑
i=1

aipi′
(

1
2

)
.

which is associated with the eigenvector



p1′

pn′

p2′

pn′

...
pn′

pn′


.

And the other eigenvalue is

λ2 = 1− θ

which is associated with n− 1 eigenvectors:



−a2

a1

1

0
...

0


,



−a3

a1

0

1
...

0


, . . . ,



−an

a1

0

0
...

1


.

Since θ ≤ 1, we have −1 < λ2 = 1− θ < 1.

Considering the fact that 1 − θ − θ
∑n

i=1 a
ipi′
(

1
2

)
< 1, the rest point (0, 0) is locally stable if
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and only if

1− θ − θ
n∑
i=1

aipi′
(

1
2

)
> −1

⇔ 2
θ
> 1 +

n∑
i=1

aipi′
(

1
2

)
.

Proof of Proposition 12.

xt+1 = xt − θ (1− α)xtp (xt) + θ (1− α) (1− xt) q (1− xt)− θαxtp (xt+1) + θα (1− xt) q (1− xt+1)

xt+1 = xt − θ (1− α)xtp (xt) + θ (1− α) (1− xt) (1− p (xt))− θαxtp (xt+1) + θα (1− xt) (1− p (xt+1))

dxt+1 = dxt − θ (1− α) dxt
(
1 + p′ (xt)

)
− θαdxt − θαxtp′ (xt+1) dxt+1 − θαdxt+1 (1− xt) p′ (xt+1)

dxt+1

dxt
=

1− θ (1− α) (1 + p′ (xt))− θα
1 + θαp′ (xt+1)

dxt+1

dxt

∣∣∣∣
xt=x∗

=
1− θ − θp′ (xt) + αθp′ (x∗)

1 + θαp′ (x∗)

It is straightforward that dxt+1

dxt

∣∣∣
xt=x∗

< 1. For local stability at x∗, we also need

1− θ − θp′ (xt) + αθp′ (x∗)
1 + θαp′ (x∗)

> −1

⇔ 2 + (2α− 1) θp′ (x∗) > θ.

That α > 1
2 implies the last inequality proves that it is also a sufficient condition to guarantee the

rest point x∗ to be locally stable.
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