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Abstract

We introduce emotions into an equilibrium notion. In amental equilibrium each player
“selects” an emational state which determines the player’s preferences over the outcomes
of the game. These preferencestypically differ from the players’ materia preferences. The
emotional statesinteract to play aNash equilibrium and in addition each player's emotional
state must be a best response (with respect to material preferences) to the emotiona states
of the others. We first discuss the concept behind the definition of mental equilibrium and
show that this behavioral equilibrium notion organizes quite well the results of some of the
most popular experiments in the literature of experimental economics. We expose some
attractive properties of mental equilibria which are useful for deriving the set of mental
equilibriafor specific games.
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1. Introduction

The tension between rational behavior as predicted by a variety of game-theoretic models
and experimental results has been the focus of attention of both game theorists and experi-
mental economists. Therearetwo sourcesof rationality incompletenessthat areresponsible
for many of the discrepancies between experimental observations and game-theoretic pre-
dictions. Thefirst sourceof discrepancy arisesfrom thefact that many strategic interactions
are too complex for subjects in the lab (or outside the lab) to analyze. For example, sub-
jectstypicaly fail to realize that in a second-price auction it is a dominant strategy to bid
the true valuation and choose an inferior strategy. Likewise, they typically fail to perform
backward induction in games with more than two stages. The second source of discrepancy
has little to do with complexity. While understanding the strategic considerations perfectly,
players fail to maximize their own monetary rewards simply because the way they value
the different outcomes of the game may be inconsistent with the maximization of material
rewards. Games like ultimatum bargaining, the dictator game, and the trust game are well-
known examples of thissort. Over thelast decade several interesting and important models
have been devel oped that try to reconcile the discrepancy between experimental resultsand
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game-theoretic predictions, without neglecting the idea that players behave strategically.
The common ideain these papersisto reeval uate the outcomes of the gamefor each player,
taking into account inequality aversion, spitefulness, and envy, so that in the new set of
utility functions the equilibrium behavior is closer to the experimental observations (see
Fehr and Schmidt (1999), and Bolton and Ochenfels (2000)). The main challenge of this
strand of literature is to identify the set of parameters that best explains the experimental
results and use these parameters to understand players motives in the underlying games.
A somewhat different approach was proposed by Rabin (1993) with the concept of fairness
equilibrium. Here the material payoffs are also atered to incorporate fairness into the util-
ity function. The measure of fairness depends on players actions and beliefs, which are
determined in equilibrium.

In this paper we attempt to take amore general approach by recognizing the fact that dif-
ferent strategic environments can give rise to different types of immaterial preferences that
may represent fairness or inequality aversion but also envy, spite, and a variety of other
emotions. We will use the term mental state to represent these preferences. We will in-
troduce an equilibrium concept called mental equilibrium, which is behavioral inits nature
and and which seemsto organi ze the experimental evidence for some of the most prominent
examples much better than the standard concepts of Nash equilibrium or subgame perfect
equilibrium. Asaby-product of our analysis we will be able to derive players’ behaviora
preferences endogenously through the equilibrium conditions.

In simple words the concept of mental equilibrium can be described as follows. Each
player, whom we assume seek to maximize only with his material/monetary payoffs, is
assigned a mental state. A mental state is simply a utility function over the outcomes of
the game (i.e, the set of strategy profiles) which is typically different from the material
utility function. A strategy profile s of the gameis said to be a mental equilibrium if two
conditions hold: firstly, s has to be a Nash equilibrium in the game among the players
mental states. Secondly, no player can expect abetter equilibrium outcome, with respect to
his selfish material payoffs, by unilaterally changing his mental state. There are two valid
interpretations of our equilibrium concept. The first interpretation involves the idea of the
evolution of normsand emotions. Essential to our model isthefact that the benchmark pref-
erences of aplayer are selfish and material. It is conceivable to assume that fairness, anger,
envy, and revenge, which play arolein many game situations, have been devel oped through
evolution to increase the fitness of individualsto the social environment inwhich they live.
Our equilibrium concept can be viewed as promoting this idea. We are not proposing any
specific evolutionary model to this effect, but conceptually one can view the emergence
of mental states as part of such an evolutionary game. Evolutionary selection reinforces
different mental states in different strategic environments, and the material payoff of the
game can be viewed as measuring fitness or the degree of replication. This interpretation
isin line with the indirect evolutionary approach proposed by Gueth and Yaari (1992).

The second interpretation of our equilibrium concept is that of rational emotions. In
strategic environmentsindividuals may decide to bein acertain emotional state that serves
their interest. Emotional states are often induced through cognitive reasoning in full or
partial awareness and are used as a commitment device. In order for the commitment to
be credible, the emotional state has to be genuine and not feigned. To further explain this



point we suggest two thought experiments that demonstrate how emotions are triggered by
incentives. Imagine that you are informed at the airport that your flight has been canceled
and that you should report at the airline desk the next day. Consider the following two sce-
narios. in scenario A you observe most of the passengers leaving the terminal quietly. In
scenario B you run across an acquaintance who tells you that he was rerouted to a different
flight after explaining to the airline employees, in avery assertive and determined manner,
that he has to arrive at his destination today. If you decide to go to the desk and request
asimilar treatment you are most likely to find yourself in a very different emotional state
from the one you would have beenin in scenario A. You arelikely to exhibit signs of anger
quite quickly in scenario B; in fact, these won't be only signs, you will actually be angry.
You have been offered incentives to be angry and as a consegquence you “choose” to be
angry. The second example involves areal story. In 2006 the first co-author of this paper
was interviewed for the Arab TV channel Al Jazirah. In accepting the Al Jazirah request
for an interview Winter was hoping to generate sympathy for Israel and Israelis among
the Arab viewership. At some stage of the interview the interviewers moved to questions
about Winter's family background. Winter then told the story about his father's hardships
in escaping Nazi Germany and trying to find shelter in Palestine of the 1930s. Winter re-
members telling this story to friends and relatives already dozens of timesin the past but it
was only in front of the Al Jazirah camerathat he felt so emotionally affected that he could
not hold back histears. Again Winter was offered an incentive to be emotional (in terms of
his objectives) and emotiona he was. The two storiestold above suggest that in certain en-
vironments mental states can be thought of as outcomes of a cognitive choice. Werefer the
reader to an experimental testing of rational emotions by Winter et al. (2008). Taking this
view one can think of mental equilibrium asan equilibrium in an amended game of credible
commitments. The material payoffs here are standard payoffsin agame and not ameasure
of evolutionary fitness. We will be subscribing to both interpretations and will not arguein
favor of one of them as we believe that different emotional reaction may fit different inter-
pretation. In particular, for robust emotions which are irresponsive to the specification of
strategic environment or to the extent of which players can see each other the evolutionary
approach should favored (most " blind” experiments fall under this category). For others,
which rely on mutual eye contact and strongly responsive to incentives the interpretation
of rational emotions seem more appropriate. In both cases however we view emotionsas a
mechanism to promote self interests.

Our concept of mental equilibrium can also be viewed as amodel of endogenous pref-
erences. Playersin our model select their preferences in view of their beliefs about the
preferences of those with whom they interact. The remarkable feature of this concept isthat
while the choice of preferencesis done from a self-centered point of view, the equilibrium
choice of preferences may give rise to nontrivial social preferences in which the players
behavior is very far from that of a self-centered player. Indeed, in some of our examples
we will restrict the set of mental states to have Fher and Schmidt (1999)-type preferences
representing inequality aversion and we will be able to derive endogenously conditions on
the parameters of inequality aversion that mental states must exhibit in equilibrium.

Another assumption that is rather crucial to the definition of mental equilibrium is that
players menta states are commonly known. Thisis a critical assumption when trying to



answer the question of how a mental equilibrium emerges. It is of lesser importance if we
treat the concept of mental equilibrium as a static stability concept (asisthe case with Nash
equilibrium). Nevertheless, there are two tracks by which this assumption can be justified.
In viewing emations as acommitment device, it is clear that they cannot be effective unless
they are observable. Indeed, body movements, facial expressions, and voiceintonationsare
often very clear signals of emotional reactions. But even without direct eye contact players
may still form consistent beliefs about the mental states of their counterparts. Through
experiencing identical or similar strategic environments over and over again players can
learn quite a bit about the function that maps strategic environments to players mental
states. In terms of our airport example, it isfair to assume that even a moderately socially
intelligent employee who has dealt with hundreds or thousands of customers in similar
situations can expect that in scenario B a passenger might be angry.

It is instructive to demonstrate the operation of the concept of mental equilibrium on
the famous example of social dilemma (the n-person prisoner’s dilemma game). A group
of players face agame in which each player has two strategies. cooperate or defect. Each
player has adominant strategy which isto defect (i.e., thisisthe unique Nash equilibrium),
but the maximum a player can earn is when every other player cooperates. Experimental
results typically show a substantial level of cooperation in such agame. When cooperators
are asked about their motives they often react by saying: “If | come with a selfish attitude
that favors defection, then everybody else will defect as well and we will all lose.” Note
that an argument of this sort speaks in favor of social preferences as ameans of promoting
one'ssalfish goas. Of coursetheargument isinvalidated by thefact that the gameisplayed
simultaneously. However, in spitethefact that players’ actioninthegameare unobservable,
it is often quite hard to convince a subject that his own action cannot affect that of the
other players. Let us examine now how the concept of mental equilibrium relates to this
game. We will concentrate on one equilibrium that resultsin the cooperation of all players.
Suppose that each player arrives at the game with a mental state such that he prefers the
outcome of total cooperation (i.e., cooperation by al players) to al other outcomes, but
whenever any of the players defect he prefers to defect as well. With this set of mental
states the profile in which all mental states cooperate is a Nash equilibrium. Furthermore,
no single player can assign a different mental state for which a new equilibrium will arise
that he prefersto total cooperation. The only relevant deviation to check hereisfor amental
state that always prefers to defect (i.e., the mental state whose preferences are identical to
those of the selfish player). But given such a deviation and the set of other mental states,
the only equilibrium outcome is for all mental states to defect, which makes the player
worse off based on his selfish preferences. We will later characterize the set of all mental
equilibria of this game.

The relevance and importance of our concept can be judged by two criteria: firstly, the
extent to which the story behind the concept is appealing and makes sense and, secondly,
the extent to which the concept is capable of explaining puzzling experimental results,
particularly those at odds with standard game-theoretic concepts such as Nash equilibria
or subgame perfect equilibria. Our attempt to convince the reader of the importance of
our concept will address both criteria. In particular, we will introduce a battery of well-
known games about which considerable experimental data has been collected and we will



compare the set of Nash equilibriato the set of mental equilibria. Aswe shall show, every
pure Nash equilibrium is also a mental equilibrium; however, interestingly, the outcomes
that emerge in experimental results of the games considered here very often correspond to
mental equilibriathat are not Nash equilibria.

The evolutionary foundation of preferences has been discussed in the economic liter-
ature in the past. Gueth and Yaari (1992) introduce a game of cooperation between two
players and show how preferences for reciprocity (which in their model boils down to be
the value of a parameter in the utility function) can emerge through evolution (see also
Gueth and Kliemt (1999)). This approach, known as the indirect evolutionary approach,
has also been used recently by Dekel, Ely and Yilankaya (2007), who develop amore gen-
eral model than that of Gueth and Yaari (1992). They consider the class of all two-person
games and interpret their payoffs as objective measures of fitness. They then endow play-
erswith subjective preferences over outcomes according to which they assume players play
Nash equilibria. To select for the “optimal preferences,” they impose evolutionary condi-
tions (of selection and mutation).

Becausetheevolutionary story isonly oneinterpretation of our model, we do not specify
evolutionary conditions for stability. Instead, our model builds on two-level games. One
level involvesthe mental game in which the payoffs are derived from players’ mental states
(emotions) and the other level involves rational players who select their state of mind. At
each of these levels agents are assumed to play Nash equilibria. As a consequence of the
fact that the Nash equilibrium conditions for the rational level game are less stringent®
than Dekel et a.’s (2007) evolutionary conditions, our set of mental equilibriaistypically
larger than the set of stable outcomes a la Dekel et a. (2007), and our model admits a
(pure) mental equilibriafor any game. Furthermore, the simplicity of our structure allows
usto analyze mental equilibriafor gameswith an arbitrary number of players (and not just
two-person games).

Finally, our paper departs from the existing literature also in its motivation. We are not
merely interested in the theoretical properties of mental equilibria. We pay substantial at-
tention to experimental results and use them to examine the performance of our concept.
Several other papers use the indirect evolutionary approach in specific economic environ-
ments, such as Bergman and Bergman (2000) in the context of bargaining, Gueth and Ock-
enfels (2001) in the context of legal institutions, and Heifetz and Fershtman (2006) in the
context of elections and political competition.

We continue in Section 2 with the formal definition of mental equilibrium. By this de-
finition we assume that mental states play pure Nash equilibria. We then provide a useful
characterization of mental equilibriain two-person games, which we then apply to specific
examples. In Section 3 we define the “subgame perfect version” of mental equilibrium
and compare it with the standard notion of subgame perfect equilibrium in the ultimatum
bargaining game, partly by confining our attention to mental states whose preferences rep-
resent inequality aversion.

Section 3 deals with mental equilibria for more than two players. We show that for

3 Thesufficient conditions for an outcome to be stable in two-person gamesin the model of Dekel et al. isthat
the outcome be both a strict Nash equilibrium and efficent.



games with four or more players the notion of mental equilibrialoses its predictive power,
since any strategy profilein such gamesisamental equilibrium. Thisfollowsfrom the fact
that for some choices of mental states by the players the corresponding mental game may
possess no pure Nash equilibrium. Following this result we show that the set of mental
equilibriais nonempty for any n-person game.

Totacklethefact that the notion of mental equilibrialosesits predictive power whenn is
at least four players, weintroduce the concept of mixed mental equilibrium wherewe allow
mental statesto use mixed strategies (the choice of mental states by playersis still assumed
to be pure). We show that the awkward property of pure mental equilibriafor gameswith at
least four players ceasesto exist for the new concept, and we use this concept to demonstrate
its properties on some games. |n particular, we demonstrate that mixed mental equilibrium
need not be a Nash equilibrium. The question of agenera existence result for this concept
is unfortunately left unsolved®.

2. Basc Definitions

Let G = (N, S,U) beanorma form game where N is the set of players, S = 57 x
Sa, ..., xSy, istheset of strategy profilesfor theplayers,andU = Uy, ..., U, aretheplayers
utility functions over strategy profiles. We refer to U; as the benchmark (selfish/material)
utility function of the playersand will useu; to represent the mental states’ utility functions.
A profile of mental statesisdenoted by v = uy, ...., u,,. FOr agiven game GG we denote by
N E(G) the set of (pure) Nash equilibria of the game G.

Definition: A mental equilibrium of the game G = (N, S, U) is a strategy profile s
such that for some profile of mental states  the following two conditions are satisfied:

(1) s € NE(N, S, u).

(2) There exists no player i, amental state v}, and a strategy profile s’ € NE(N, S,
ul,u_g) With U; (s") > Us(s).

Observation 1. Any pure strategy Nash equilibrium s of agameis also amental equi-
librium. To see that thisis the case, choose for each player a mental state whose payoff is
such that s; isastrictly dominant strategy in the game. Clearly s isan equilibrium in the
mental game. Suppose that player ¢ assigns a different mental state. Clearly in the new
mental game all other players will stick to their dominant strategy. Since s; is a best re-
sponseto s_; with respect to player i'smaterial preferences (since s isaNash equilibrium),
player i cannot be any better off by assigning a different mental state.

3. Two-Person Games

4 We have devoted much time to tackling the issue of existence. We managed to prove existence under several
sets of conditions but decided that none of them is general enough to merit aresult. The main stumbling block is
the fact that the mapping from games to the set of delegate equilibriais not continuousin any form of definition
that will alow usto use afixed point theorem. We are grateful to Sergiu Hart, who has helped us on this issue.
The example showing that a mixed delegate equilibrium may not be a Nash equilibrium is due to him. Recently
Olschewski and Swiatczak (2008) proved the existence of amental equilibrium in a 2x2 games.



In any Nash equilibrium each player attains at least hismaxmin value. Proposition 1 asserts
that this property characterizes the set of mental equilibriafor every two-person game.

Proposition 1: Let G be atwo-person game; then s € S isamental equilibrium if and
only if U(s) > maxg, ming, Us(s;, s;) wherei = (1,2) and i # j.

We show in the Appendix that Proposition 1 does not apply to three-person games and
in fact neither of the two directions of the proposition holds true.

Proof of Proposition 1: Let v; and vo be the maxmin values of players 1 and 2 re-
spectively. We first show that any mental equilibrium must yield each player at least v;.
Assume by way of contradiction that there is amental equilibrium s such that at least one
of the players, say player 1, earns less than v;. Suppose that s is supported as a mental
equilibrium with the mental states u; and u, respectively. If instead of u; player 1 devi-
ates and chooses the mental state «; under which playing s; is a dominant strategy, then
in the resulting mental game (u}, uz) there exists a pure Nash equilibrium and all equi-
libria yield a payoff of at least v, for player 1. This contradicts the assumption that s is
amental equilibrium, and proves one direction. We next argue that every profile yielding
at least the maxmin value for the two players is a mental equilibrium. For this we con-
struct the following mental game: Let s = (s1, s2) be aprofile that yields each of the two
players at least hisher maxmin value. For the mental state of player 1 we set u,(s) = 1,
and uy(sh,s2) = 0 forall s} # s;. Furthermore, for every s, # s, there exists s} such
that Uz (s}, s5) < Usa(s). Otherwise the maxmin value of player 2 is greater than Us(s),
which contradicts the definition of s. We now set u; (s}, s5) = 1 and u1 (s, s5) = 0 for
al s3 # 5. We now define the mental state of player 2 in asimilar manner: ux(s) = 1,
and uz(s1,s5) = 0 for al s, # so. Furthermore, for every s} # s; there exists s/, with
Ui(s}, s5) < Ui(s); otherwise the maxmin value of player 1 must be greater than Uy (),
which isimpossible. We now have us(s), s5) = 1 and ua (s, s3) = 0 for al s # s5,. We
can now show that s is a mental equilibrium of the game supported by u;and u». Indeed,
s is clearly a Nash equilibrium under u;and us, as the mental game never has a payoff
of more than 1 for either player. To show that condition (2) in the definition of mental
equilibrium applies, note that if, say, player 1 changes his mental state to «}, then a Nash
equilibrium of the new mental game (v}, u2) must involve a strategy profile s’ such that
us(s") = 1. Otherwise the mental state of player 2 will deviate. But for such s’ we must
have U (s") < U;(s), whichimpliesthat player 1 cannot make himself better off by chang-
ing his mental state. The same argument applies for player 2 and we conclude that s must
be amental equilibrium.

Proposition 2: For every two-person game G there exists a pure strategy profile that
pays each player at least his’her maxmin value.

Proof: We prove the proposition by induction on the number of strategies of players
1 and 2 in the game. The assertion is trivial if one of the players has only one strategy.
Assume now by induction that the statement istrue if at least one player, say player 1, has
less than m strategies, and consider now a game with m strategies for player 1. Denote
this game by G and denote by G_,,, the game obtained by eliminating the last strategy of
player 1. By theinduction hypothesis, G_,,, isagame for which Proposition 2 applies. Let
s = (s1,s2) be the strategy profile in which both players obtain their maxmin value for



the game G_,,,. If s pays each player at least his maxmin value in G then we are done.
Otherwise, it must be that the maxmin value of playerl in G is grester than Uy (s). This
follows from the fact that player 2’s maxmin valuein G_,, isat least aslarge as that of G
(sincethe game G addsastrategy for player 1 and not for player 2). Sincethe maxminvalue
of playerlin G is greater than Uy (s) we must have Uy (m, s5) > Uy (s) for al s5 € Ss.
Let s5 = arg maxg,cs, Ua(m, s2). Clearly (m, s3) is a profile that pays both players at
least their maxmin valuein G.

Propositions 1 and 2 immediately imply an existence result for two-person games:

Coroallary 1: Every two-person game possesses a mental equilibrium.

Our definition of mental equilibriumrelied on the assumption that playersare optimistic
when contemplating deviations asit is enough that there exists at least one equilibrium in
the new mental game (after player ¢ deviates) that player ¢ prefersto the origina (putative)
equilibrium in order to trigger him to deviate. A more stringent condition on deviations
would require that player i deviate only if all equilibria of the new game yield player i a
higher utility. Since the conditions for deviations are stronger, this equilibrium notion is
weaker than the standard one. Formally:

Definition: A weak mental equilibrium of thegame G = (N, S, U) isastrategy profile
s such that for some profile of mental states « the following two conditions are satisfied:

(1) s e NE(N,S,u).

(2) There exists no player 4, and a mental state v/ such that for every equilibrium,

s’ € NE(N, S, u;,u_;) withU;(s") > U;(s).

Clearly every mental equilibrium isaweak mental equilibrium but we shall argue that:

Proposition 3: In two-person games the set of mental equilibria and the set of weak
mental equilibria coincide.

Proof: We have shown that the set of mental equilibria coincides with the set of all
strategy profilesthat award each player at least hisher maxminvalue. It istherefore enough
to show that any strategy profile that pays some player less than his’her maxmin value
cannot be a weak mental equilibrium. Indeed, suppose by way of contradiction that for
some profile s some player, say, player 1, getsapayoff x; which islessthan his/her maxmin
vaue, and that s isaweak mental equilibrium supported by the mental statesu = (uq, uz).
Let 51 be the maxmin strategy of player 1. Consider a mental state »} under which s, is
adominant strategy for player 1. Consider now the mental game ({1, 2}, S, (v} u2)). All
Nash equilibria of this game involve player 1 playing s; . Hence, player 1 gets at least
his’/her maxmin value (in the game G = (N, S, U)), but this contradicts the fact that s isa
weak mental equilibrium since player 1 is better off deviating under the condition imposed
by the definit ion of weak mental equilibrium.

A large body of experimental results has been obtained for two-person games. Proposi-
tion 1 serves us with avery useful tool for identifying the set of mental equilibriafor such
games. We will now discuss some of the most prominent example of these games.

Example 1 The prisoner's dilemma

We consider the game given by the matrix below. Thisis the prisoner’s dilemma game
with a unique Nash equilibrium using dominant strategies (D,D).



D C

D 1,1 5,0

C 0,5 4,4

Observation 2: There are two mental equilibriain the prisoner's dilemmagame, (C,C)
and (D,D).

Proof: Players 1 and 2 can guarantee that the other player gets no more than 1 by
playing the strategy D. Using Proposition 1 this means that (1,1) isamenta equilibrium.
Since (4,4) dominates (1,1) it isalso amental equilibrium. To show that (5,0) and (0,5) are
not a mental equilibrium note that no player can guarantee a reduction of the payoff of his
opponent to zero because the dominant strategy of a player aways guarantees a payoff of
1

Anexampleof mental statesthat sustain the cooperativeoutcomeisu, (C, D) = uy(C, D) =
u1 (D, C) = us(D,C) = —1, and u; = U; otherwise. These mental preferences represent
aversion to lack of reciprocal behavior.

Itiseasy toverify that anecessary and sufficient conditionsfor themental states (u, us)
to sustain (¢, ¢) asmental equilibriumin the prisoner'sdilemmais: v, (C, C) > uy (D, C),
Ul(D, D) > ul(C’, D) and UQ(C, C) > UQ(C, D), UQ(D, D) > UQ(D, C)

It is worthwhile mentioning that the mental preferences sustaining the cooperative out-
come cannot be of theform u, = aU; + BU;. Such autility function would giveriseto the
following mental game:

D C
D a+Ba+p ab, b5
C (5,05 4o+ B),4(a+p)

For (C,C) to be an equilibrium in this mental game we need to have 4(« + 5) > 5a.
But this means that player 1 by sending a different mental state with u; = Uy will be able
to sustain (D,C) as an equilibrium since 58 > a + (.

Note the difference between the social preferences given by v; = aU; + SU; and the
one we used in Observation 2. The former represents a mental state with some degree
of dtruism (if 8 > 0) or spitefulness (if 8 < 0). Indeed, other cardina representation
of the prisoner's dilemma may admit o and 3 such that cooperation is sustainable as a
mental equilibrium with players' mental states being u; = aU; + BU;, but there are other
representations for which no such o and 5 exist. In contrast, the mental preferences that
we used to sustain (C,C) represent mental states with aversion to lack of reciprocity and
they sustain (C,C) regardless of the cardinal representation of the prisoner's dilemmagame.
We conclude that aversion to lack of reciprocity can explain cooperation in every prisoner's
dilemma game but altruism or spitefulness cannot.

Example 2: The chicken game

Consider the following two-person game:

retreat  fight
retreat 1,1 —2,2
fight 2,—2 —10,—10

Observation 3: The game hasthree mental equilibria: the two Nash equilibriawith the
outcomes (-2,2) and (2,-2) and another one which is the outcome (1,1). Thiscan be easily
verified by using Proposition 1 and noting that the maxmin vaue for both playersis-2.



Figure 1:

Rapoport, Guyer and Gordon (1976) have established experimental resultsfor the chicken
game by varying the payoff from (fight, fight). For this particular game they observe an
87% probability of retreat and 13% probability of fight. So the mental equilibriathat is not
a Nash equilibrium is played with probability 75.6% more than the frequency of the two
Nash equilibria together. Substantial proportions of retreats have aso been established for
much lower disutility levels from (fight, fight).

Example 3: Thetrust game

Player 1 has an endowment of x Euros. He can make atransfer 0 < y < z to player
2. If player 1 makesthe transfer y, player 2 receives 3y. Player 2 can now reward player 1
with atransfer of z < 3y. Finally, the payoff for player 1isz — y + 3z and the payoff for
player 2is3y — z.

Observation 4: An outcome (a1, a2) isamenta equilibrium outcome if and only if
a; > randay > 0.

Proof: Consider such an outcome (ay, az2). Sincea; > x player 2 can guarantee that
player 1 gets no morethan a;. This can be done by transferring no money back to player 1
if player 2 received any money from player 1. Furthermore, clearly player 1 can guarantee
that player 2 receives no more than zero by simply making a zero transfer to player 2.
In view of Proposition 1, (a1, a2) is an mental equilibrium outcome. Consider a mental
equilibrium outcome (a1, az) such that either a; < = or az < 0. Then either player 1 or
player 2 get less than their maxmin value, which contradicts Proposition 1.

We note that the trust game has a unique Nash equilibrium in which player 1 makes
a zero transfer to player 2. Observation 4 suggests that any level of trust displayed by
player 1 coupled with alevel of trustworthiness that compensates player 2 to at least the
level of hisinitial endowment can be supported by mental equilibria. We point out that
experimental results support a considerable level of trust by player 1 and a considerable
reciprocity by player 2 (see for example Cox et al. (1995)). We shall return to this example
by restricting the set of mental states to include only Fehr and Schmidt (1999)-type utility
functions representing inequality aversion.

Example 4: The centipede game

Consider the extensive form game presented in Figure 1, which is an example of the
centipede game.

We recall that the centipede game has a unique Nash equilibrium that results in player
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1 choosing D in hisfirst decision node. The set of mental equilibriais, however, larger:

Observation 5: Consider the game presented in Figure 1. All strategy profiles but the
one leading to the payoff outcome (0,2) are mental equilibria.

Proof: The maxmin value of player 1is 1 (achieved by choosing D at the first node)
and it is zero for player 2 (player 1, by choosing D at his first node, can prevent player
2 from getting more than zero). By Proposition 1, (0,2) cannot be a mental equilibrium
outcome because player 1 is getting less than his maxmin value. All other outcomes pay
both players at least their maxmin value and are therefore mental equilibrium outcomes.

The above observation can be easily extended to a general centipede game. One might
find it intriguing that the second branch of the centipede game can never be amental equi-
librium. The intuition is however quite straightforward. If players assign mental states for
which this outcome is an equilibrium, then player 1 can deviate by assigning a different
mental state with a utility function yielding an arbitrary large payoff for choosing D in the
first round by which he will guarantee a higher payoff of 1 (instead of zero). The fact that
mental equilibrium allows for outcomes in which players trust each other to move into the
game instead of opting out immediately is consistent with experimental results (see McK-
evey and Palfrey (1992)). Indeed, in these experimental results the second terminal node
is also reached with some propensity; however, in a different study by Nagel and Fang
Tang (1998) where the centipede game was played in its normal form, the strategy profile
with the lowest propensity is either to exit at the second mode or to exist at the first node.
Furthermore, in one out of the five sessions the propensity of the second terminal node is
substantially lower than that of al other nodes. The second lowest is the first node, which
isamost twice as frequent as the second.

We now discuss our concept of mental equilibrium in the context of another prominent
game, the ultimatum bargaining game.

Example 5: The ultimatum game involves two players. Player 1 has an endowment 1
from which he hasto make an offer to player 2. An offerisanumber 0 <y < 1.

Player 2 can either accept the offer or regject it. If player 2 accepts the offer player 1
receives 1 — y and player 2 receives y. If player 2 regjects the offer both players receive
a payoff of zero. The subgame perfect equilibrium of the game predicts a zero offer by
player 1, which is accepted by player 2. Experimental results (see Gueth et al. (1982))
have however shown substantial offersmade by player 1 with the mode of the distribution of
offersbeing 50:50. To discussthe concept of mental equilibrium for thisgamewefirst need
to amend the concept to the framework of subgame perfection in extensiveform games. The
following is the most natural amendment:

Consider an n-person extensive form game G = (N, T, U) with perfect information,
where N isthe set of players, T is the game form defined by a tree (using the standard
definition of extensive form games), and U = Uy, ..., U,, are payoff functions for players
1,2,...,n assigned to terminal nodes of the game. We denote by SPE(G) the set of sub-
game perfect equilibria of the game G. We define the notion of mental subgame perfect
equilibrium:



Definition®: A mental subgame perfect equilibrium of thegame G isastrategy profile s
of G such that for some profile of mental states « thefollowing two conditions are satisfied:

(1) s € SPE(N,T,u).

(2) Thereexistsnoplayer i, amental statew;, and astrategy profiles’ € SPE(N, T, u}, u_;)
with U;(s") > U (s).

Unfortunately, when the set of mental states from which players can choose is not re-
stricted, mental SPE loses much of its predictive power:

Observation 6: Take any extensive form gamewith perfectinformation G. Every Nash
equilibrium of G isamental SPE of G.

Proof: Consider the normal form version of G, and let s be the Nash equilibrium. For
each player i chooseamental state ,; for which thestrategy s; isastrictly dominant strategy
in the game. Clearly s is a subgame perfect equilibrium in the mental game. To see that
condition 2 is satisfied assume that some player j can assign a different mental state v/}
and generate an SPE in the new mental game in which his payoff is higher. Since the Nash
strategies are dominant for all mental states, no mental state other than j will choose any
other strategy in the new mental game. Let s’ be the strategy taken by j's new mental
state. We have assumed that U; (s’;, s—;) > Uj(s) but this cannot happen since s isaNash
equilibrium.

4. Restricting the Set of Mental States

Observation 6 implies that without restricting the set of mental states all allocations of the
unit of goods between the two players are sustainable as a mental SPE of the ultimatum
game, since the set of Nash equilibrium outcomes covers the entire set of alocations. We
now wish to confine our attention to mental states that display inequality aversion as char-
acterized by Fher and Schmidt’'s (1999) moddl. We will start with the ultimatum game
and then explore mental equilibriain this framework for other games. This analysis will
contribute to the heated debate conducted in the early nineties over the role of fairnessin
ultimatum games and gamesin general. To recall, in atwo-person game each mental state
of player ¢ has a utility function u,(x;, z;) over the alocations (x;, x;), which is of the
following form: w;(z;, z;) = x; — a;(z; — x;)* — B;(x; — x;) ", where 2t = max(z,0),
0< 3, <l,ande; > B;. «; representsthe disutility from my opponent earning more than
me while 3, stands for the disutility due to me getting more than my opponent.. We will
introduce a bound on the value of «; denoted by «; so that («;, 3;) belong to the trapezoid
with the vertices (0, 0), (1, 1)(af, 1) and (a, 0).

Observation 7: There exists aunique mental subgame perfect equilibrium outcomefor
the ultimatum bargaining game which is (%é—, 1—f22a—2) Furthermore, as the bound a3
goes to infinity the unique equilibrium outcome goes to (1/2, 1/2), which is the mode of
the distribution of accepted offersin experimental results on the ultimatum game.

5 An dternative way to define amental SPE is to require that the strategy profile yields a mental equilibrium
on each subgame of the game. It is easy to show that under this definition a strategy profile is a mental SPE if
and only if itisan SPE.
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Proof: Itisclear that player 1 will be no better off if he selects amental state different
from the one with zero inequality aversion. Suppose that the mental state of player 1 offers
the mental state of player 2 a payoff of lessthan 1/2, and assume a2, 3, are the parameters
of inequality aversion of player 2. Then the mental state of 2 will accept the offer if and
only if o — (1 —z2) > 00r zg > %22042; the fact that the right-hand sideisincreasing
in a2 and that the mental state of 1 can be assumed to be perfectly rationa (has preferences
identical tothe material preferences) impliesthat player 2 should be assigned amental state

with maximal «, i.e., a5. Thisin turnimplies that among the mental statesin the gamethe

equilibrium outcomeis (%, %) and furthermore no player by changing his mental
state can generate a better SPE from his point of view. Finally, as o approaches infinity
the allocation approaches (1/2,1/2).

We concludethis section by revisiting the trust gamein the current framework wherethe
set of mental states includes only Fher and Schmidt’s (1999)-type of utility functions. We
saw earlier that if we allow the set of mental statesto include all utility functions, then any
outcome in which the sender makes some transfer (possibly zero) and the receiver reim-
bursesthe sender for at least his cost can be supported by amental equilibrium and nothing
else. In our framework here, as we will show, there exists a unique mental equilibrium,
which yields the socially optimal outcome. In this equilibrium the sender sends his entire
bundleto the receiver and the receiver sharesthe amplified amount equally with the sender.

Observation 8: Assuming that the set of mental states includes all inequality averse-
type utility functions, there exists a unique mental equilibrium in the trust game. In this
equilibrium the sender sends « to the receiver and the receiver pays back %x to the sender.

Proof: Clearly the sender cannot do better by having a mental state with a positive
inequality aversion because what countsis not the preferences of the sender but his action.
The receiver's best response to the sender’s mental state is to have a mental state with an
inequality aversion parameter 3 large enough so that it would make sense for the sender’s
mental state (whose preferences are identical to those of the sender) to transfer a positive
amount and thus induce the mental state of player 1 to transfer the entire bundle to player
2. Notethat if 5 < 1/2 the sender's mental state will make no transfer. On the other hand,
if 1/2 < 8 < 1, thereceiver's mental state will attempt to equalize his own payoff to that
of the sender's mental state. Hence, the sender’s mental state is better off when he sends his
entire endowment and gets back 3.

Interestingly, Observation 8 shows how the level of inequality aversion is determined
endogenoudly. In equilibrium the receiver's mental state must have 6 between 1/2 and 1.

5.  Imlementing Effort with Mental Equilibrium: Example

Two individuals operate on a project. Each individual is responsible for a single task. For
the project to succeed it reqiresthat both tasks are successful. Playrs can chooseto exert ef-
fort towards the performance of their task at a cost ¢ whichisidentical for all agents. Effort
increasesthe probability that the task succeedsfrom o < 1to 1. Theprincipa cannot mon-
itor the agentsfor their effort nor can he observe the success of individual tasks. However,
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heisinformed about the success of the entire project. An incentive mechansim istherefore
given by avector v = (vy, vo) with agent ¢ getting the payoff v; if the project succeeds and
zero otherwise (limited liability). Given a mechanism the two agents face aNoramal form
game G(v) with two strategies for each player : 0 for shirking and 1 for effort. The prin-
cipal wishes to implement effort by both players at a minimal expense, i.e., heislooking
for a mechanism under which there exists an equilibrium with both agents exerting effort.
In Winter (2004) it is shown that the optima mechanism pays each player ¢/(1 — «) when
agents effort decision are taken simultaneously. If agents move sequentially (assuming
that the second player observes the effort decision of the first) then the optimal incentive
mechanism is pays - to thefirst player and + to the second. Under this mechanism
player 2 will exert effort if and only if player 1 does so. This generatesaimplicit incentive
on part of player 1 that allows the principal to pay him less than he paysin the simultane-
ous case (and less than the payoff of player 2 in the sequential case, see Winter (2006)).
To model an environment in which the two agents can monitor each other effort we would
need to split agents’ task to many small sub-tasks and introduce agame of alternating effort
decision (i.e., player 1 decides on the effort of the first sub-task, then player 2 decides on
the first sub-task, the player 1 decide on the second sub-task etc.). It can be shown that in
this environment the optimal mechanism pays each player —=, which is what player 1
(the player whose effort is observable) gets in the standard sequential case. WWe now show
that under mental equilibrium thisis also the optimal mechanism in the simultaneous case:
Roughly, instead of player 1 affecting the effort decision of player 2 through his own effort
choice, in mental equilibrium players affect each other mental state through their own men-
tal state which enhances the prospect of cooperation. Our claim below is aso extendable
to environments with more than 2 agents.

Claim 1: The optima mecahnsim for effort under mental equilibriumis (%=, =57)

Proof: Consider any pair of mental states (uq,uq) for the two agents such that given
the action of player i player j # i best response is to imitate the action of player i (i.e.,
J exerts effort iff i does s0). We will show that under v = (=57, =%z ) €ffort by both
players in a mental equilibrium (note however that it is not a Nash equilibrium). Indeed
under the mental states specified earlier effort by both players is a Nash equilibrium. We
therefore need to check only the second equilibrium condition. Assumew.l.0.g. that player
1 changes hismental state and by doing so he generates aNash equilibrium which he prefers
more with respect to his material preferences denote this menta state by «} . It must bethe
case that under v} taking the same action as player 2 cannot be the best response. Hence,
either (1) w}(1,1) < «4(0,1) or (2) w}(0,0) < u}(1,0) or both. Furthermore since the
only strategy profilein which player 1 material payoff improvesisthe onein which player
1 shirks and player 2 exerts effort, this profile must be a Nash equilibrium under the new
mental state. This means that (1) must hold. But if (1) holds player 2 cannot exert effort
in equilibrium. Under the payoff — player 2 is better off exerting effort only if 1 exerts
effort. This contradiction rules out that player 1 or player 2 can be made better off by
changing their mental state and showsthat (1, 1) isaMental equilibrium. To show that v =
(=52, 75z ) is the optimal mechanism under Mental equilibrium we have to establish

that if the principal pays, say, player 1 less, then the corresponding game has no mental
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equilibrium in which both agents exert effort. Indeed if, say, player 1 is paid less than
7=, then player 1 has a dominant strategy in the game, which is shirking. If effort by
both players is sustainable by a mental equilibrium it must be that player 1 has a mental
state under which he exerts effort. But then player 1 is better off changing his mental state
to oneinwhich shirking isadominant strategy. This contradiction showsthat effort by both
playersis not implementable by mental equilibrium with smaller payoffs.

6. n-Person Games

Our definition of mental equilibria requires that no player be able unilaterally to replace
his mental state and improve his equilibrium outcome. Thisimpliesthat if the mental state
with whom player ¢ deviates give rise to a game with no pure Nash equilibrium, then this
deviation isnot profitable. Thisturnsout to expand the set of mental equilibriato the extent
that it losesits predictive power for games with four or more players. We will later fix this
drawback by introducing mixed strategies.

Proposition 4: For every norma form game G with n > 4 every strategy profileisa
delegation equilibrium.

Proof: For each player i we select one strategy and denote it by 0. We denote by T;
the set of the remaining strategies so that S; = T; U {0}. We will show that the profile
(0,0,...,0) isamental equilibrium. Since the strategy was selected arbitrarily it will show
that every profileisamental equilibrium.

For a strategy profile s € S we denote d(s) = #{j € N s.t. s; € T}, i.e, the
number of players choosing a strategy different from 0. For each integer & we denote by
p(k) the parity of k (i.e., whether k is odd or even). Consider now the following vector
of mental states (uq,...u,) wherew; : S — {0,1}: u;(0,...,0) = 1 for al <. For any
strategy profile s different from (0, ...., 0) we set u;(s) = 0if and only if p(d(s)) = p(4).
Otherwise u;(s) = 1. We show that for any profile s # 0, half of the players can profit
by deviating ©. Indeed, each player who receives 0 can increase his payoff by changing
his strategy from playing 0 to playing in T; or the other way around. By doing so he will
trigger anew profile s’ for which p(d(s’)) # p(i) and he will raise his payoff from zero to
1. To show that (0,0, ...,0) isamental equilibrium first note that it is a Nash equilibrium
with respect to the chosen mental states (us, ...u, ). Furthermore, if player ¢ deviates and
sends a different mental state v/ he will not be able to sustain a better equilibrium with
respect to his basic preferences because for any other strategy profile there will be at least
one mental state j # ¢ that will deviate, and hence the new mental game will have no pure
Nash equilibrium.

We have shown that every two-person game has a mental equilibrium and that every
gamewith at |east four playersadmitsall strategy profilesasmental equilibria. To complete
the proof of existence we need a separate argument for three-person games.

Proposition 5: Every three-person game has amental equilibrium.
Proposition 5 implies that:

6 Thisholdswhen n is even; if the number of playersis odd, then at least "7*1 playerswill choose to deviate.
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Corallary 2: Every n-person game has amental equilibrium.

Proof of Proposition 5: We denote by s* the strategy profilein which player 2 attains
his highest payoff. If there is more than one such profile we select one of these arbitrarily.
We will show that s* isamental equilibrium. We define the mental gameto be w;(s*) = 1
for al players. Weset again S; = T; U {s}} and d(s) = #{j € N s.t. s; € T;}. For any
other strategy, u;(s) = 0if and only if p(d(s)) = p(¢). Otherwise, u;(s) = 1. Wefirst note
that s* isa Nash equilibrium in the mental game. Furthermore, for any strategy profile of
the mental game either players 1 and 3 want to deviate or player 2 alone does. To show
that s* isamental equilibrium we need to show that no player can assign a different mental
state and generate anew equilibrium that he prefers more. Clearly such aplayer cannot be
player 2 as he has aready attained his highest payoff. Suppose now that player 1 is better
off assigning a different mental state and let s’ be the new equilibrium that arises in the
mental game that player ¢ prefersto s*. If p(d(s’)) is odd, then player 3 would deviate
from s’ in the mental game. If instead p(d(s’)) is even, then player 2 would deviate. Both
consequences contradict that s’ isan equilibrium in the mental game, which shows that s*
isamental equilibrium.

Note that because we can rename the player an immediate corollary of Proposition 5is
that any strategy profile in which at least one player attains his maximal payoff is amental
equilibrium.

7. Mixed Strategies

We have seen that when we confine ourselves to pure strategies we get a multiplicity of
equilibria, to the extent that every profile of strategiesisamental equilibrium whenn > 4.
To reduce the set of mental equilibriaand increase the predictive power of our concept two
tracks are possible. The first isto restrict the sets from which players may choose mental
states. We used this approach in an earlier section when we restricted the set of mental
statesto include only utility functions representing inequality aversion. The second track is
to introduce mixed strategies. At first this may sound puzzling: how can the introduction
of mixed strategies shrink the set of equilibria? Indeed, in our equilibrium concept with
pure strategies mental equilibria can arise simply due to the fact that players deviations
in choosing mental states lead to (mental) games that fail to have pure strategy equilibria.
In such a case the conditions defining a mental equilibrium vacuously apply. By alowing
mixed strategies we can guarantee that no matter what deviation a player undertakes, there
will always be a Nash equilibrium in the new mental game. This expands the prospects of
profitable deviation and can reduce the set of mental equilibria. Indeed, we will show that
if we allow for mixed strategy equilibriain the mental games, then mental equilibriahavea
predictive power also for alarge number of players. In our new solution concept the choice
of mental statesispure but players mental states can play amixed strategy. For each player
1, we denote by A; the set of mixed strategies of player i. A mixed mental equilibriumis
a profile of mixed strategies’ = € I,y A; such that the following two conditions are

7 Note that the set of mixed strategies also includes all the pure strategies.
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satisfied:

(1) = isamixed strategy equilibrium of the game (N, S, u).

(2) There exists no player i, amentd state u;, and a mixed strategy equilibrium 7’ of
thegame (N, S, u}, u_;) with U;(7") > U;(n).

Unlike the pure case where every pure Nash equilibrium is amental equilibrium in the
mixed version, we have:

Example 6: A Nash equilibrium of the game may not be a mixed mental equilibrium:
Consider the following two-person game:

11 02

00 1-1

The game has a unique Nash equilibrium which isfully mixed. In this equilibrium both
playersassign aprobability 1/2 to each of their strategies. Suppose by way of contradiction
that thisisamental equilibrium and let the following game be the mental game supporting
it:

ay, by az,bs
as, by aq,by

For the strategy profile[(3, 3); (3. 3)] to bean equilibrium in the mental game we must
have one of the following sets of inequalities:

b1 < by andb4 < b3 anda3 < a andag < ayOr

b1 > bey andb4 > bs andag > aq andaz > ay

In the first case player 2 is better off replacing his mental state with one in which the
left strategy is dominant, and in the other case player 1 is better off changing his mental
state to one in which his top strategy is dominant. In both cases a new equilibrium of
(top,l€eft) arises, yielding both players a payoff of 1 (in the original game), which is higher
than the payoff of 1/2 that they both get under the putative mental equilibrium. Thus arises
a contradiction showing that the Nash equilibrium is not a mixed mental equilibrium.

We further show that the game has a mental equilibrium of (1,1). For this we take the
1,1 00
00 11 °
incentive to change his mental state since 1 is the highest payoff he can get. Consider the
other player. Player 2 can be better off with adifferent mental stateif either (top,right) can
be made an equilibrium or there is some mixed strategy equilibrium yielding morethan 1 to
player 2. The former caseisimpossible since 1's mental state will deviate from (top,right)
to play bottom. Concerning the latter caseif thereisamixed equilibrium 2's mental state’s
strategy must be (1/2,1/2) (to make player 1 indifferent between his two strategies), and
so the only possible deviation for player 2 is a mental state that assigns a higher payoff
for (top,right). If this payoff is greater than 1 then the new game has a unique equilibrium
whichisagain (top,l€eft); if the payoff islessthan 1, then player 1's mental state must assign
a higher probability to bottom (in order to make player 2's mental state indifferent). This
means that the mixed strategy equilibrium will yield an expected payoff of lessthan /2 in
the original game for player 2. Hence, player 2 cannot profitably deviate in choosing his
mental state.

We now go back to the famous public good game that we discussed in the Introduction
to show that the notion of mixed mental equilibrium is rather instructive for this game no

mental state game where (top,left) isan equilibrium. Clearly player 1 hasno
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meatter how largeitis.

Example 7: The socia dilemma game/The public good game.

n players hold an endowment of w > 0 each. Each player has to decide whether to
contribute to the endowment (choose 1) or not (choose 0). Thetotal endowment contributed
ismultiplied by afactor 1 < k£ < n and divided equally among al players. Thussupposing
that r playerscontribute, the payoff for aplayer who chooses 1is % —w andthe payoff for
aplayer who chooses O is ’““Tw Note that the unique equilibrium in the gameis (0, ..., 0),
but the profile that maximizes social welfareis(1, ....,1).

Observation 8: A strategy profile in the public good game is a mental equilibrium if
and only if either no one contributes or the number of contributorsis at least .

Proof: We first show that any profile in which the number of contributorsis positive
but with a proportion of less than % cannot be a mental equilibrium. Suppose by way
of contradiction that such an equilibrium exists. Consider a player ¢ whose mental state
contributes. Player i's payoff in such an equilibrium is ’”T“’ — w. Suppose that this player
assigns a different mental state than choosing 0 as a dominant strategy. The new mental
game must have an equilibrium (in pure or mixed strategies). In the worst-case scenario
(for player 4) thisequilibriumis (0, ..., 0), in which case player i's payoff will be w. If the
proportion of contributorsisless than % then w > ’”T“’and player i is better off deviating.
If the equilibrium is not (0, ..., 0), then with positive probability some players contribute
in the equilibrium of the new mental game and the expected equilibrium payoff of player i
is greater than 0, which makes deviation even more attractive. We now show that a profile
with a proportion of contributors p > % isamenta equilibrium. Consider such a profile
and denote by T the set of players who choose 0 and by N — T the players who choose
1. To show that this profile is a mental equilibrium we assign the following mental states
to players. For each player in N — T we assign a mental state that prefers to choose 1
if and only if the proportion of agents who choose 1 is at least p (otherwise he prefersto
choose 0). For each player in T' we assign amental state whose preferences are identical to
those of the other players (i.e., choosing 0 isadominant strategy). Given this set of mental
statesit is clear that the underlying strategy profileisan equilibrium of the mental game. It
therefore remains to show that condition (2) in the definition of mental equilibrium applies.
Clearly no player in T' can be better off deviating. Assigning a different mental state will
trigger no one else to contribute in the mental game. Consider now aplayer i in N — T.
Suppose ¢ nominates a different mental state and assume by way of contradiction that 7’
is the new equilibrium with respect to which player i is made better off. If the mental
state of player ¢ chooses 1 with probability 1 in 7/, then player i is neither better off nor
worse off when deviating and 7’ isidentical to the original profile. Suppose therefore that
the mental state of player < chooses 0 with positive probability in /. Since each menta
state whose player isin 1" has a dominant strategy to choose O the expected proportion of
mental statesthat choose 1in 7’ islessthan p. But this meansthat each mental state whose
player isin N — T has a best response to 7/, which is choosing zero, which contradicts
7' being an equilibrium. To complete the proof of the proposition it remains to show that
(0,....,0) isamental equilibrium. Thisisdone by assigning to each player i amental state
with preferencesidentical to those of player i. Since choosing 0 is adominant strategy for
each player, (0, ....,0) isaNash equilibrium in the mental game and no player can be made
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better off by assigning a different mental state.

The attractive property of mental equilibria when applied to the public good game is
that in contrast to the concept of Nash equilibrium where the set of equilibriaisinvariant
to the value of k (i.e., the extent to which joint contribution is socially beneficial), the set
of mental equilibria strongly depends on & in avery intuitive way. As k grows the social
benefit from joint contribution become substantial even when the number of contributors
is low; this allows for more strategy profiles with a small number of contributors to be
sustainable as equilibria.

The observation made in the example above that (1,0, ..., 0) cannot be a mental equi-
librium can be generalized:

Let G bean n-person game. For amixed strategy profile x denote by f;(x) the expected
payoff for player i under the profile x. Let the payoff that player i can guarantee himself re-
gardlessof what the other playersaredoing bedenoted by a; = max,,ca, min,_,ca; fi(z1, ..., Tn).

Proposition 6: Any mixed mental equilibrium must yield each player i a payoff of at
least Q;.

Proof: Supposethat = (x4, ..., z,,) isamentd equilibriumwith f;(z) < a;. Suppose
that G* isthe mental game sustaining this equilibrium. We denote by 0, the payoff function
of player i that assignsazero payoff for all strategy profiles. Consider player i changing his
mental state by choosing the mental state 0; (if 0; isthe original mental state, then player i
will choose any other mental state which isindifferent between all the strategy profiles) and
denote by (v, the game obtained by replacing the mental state of player : with 0;. Define
1Y = argmax,,ca, ming_.ea; fi(21, ..., 7,), and let G, bethe game defined on the set

of players N\{¢} such that ffo (xa\(iy) = f(2), xn\p4y)- Let z be aNash equilibrium
of the game G*,. We claim that (x?, z) is a Nash equilibrium of the game Gj,. Indeed
the fact that no E)Iayer in N\{i} can do better by deviating follows from the fact that z is
a Nash equilibrium of Gj;g. The fact that 7+ cannot do better is a consequence of ¢ being

indifferent between all his strategies. By the definition of 20 we havethat f;(2?, 2) > a;,
which contradicts the assumption that 2 is amixed mental equilibrium.

Note that Example 7 implies that the converse of Proposition 6 is not true. The Nash
equilibrium of the game (whichisnot amental equilibrium) yieldsapayoff vector of (% , %) ,
which exceeds the maxmin vector (0, 0).

Corallary 3: In two-person zero-sum games there is a unique mixed mental equilib-
rium. This equilibrium yields the value of the game.

Proof: Follows directly from the proposition above.

We conclude with another useful property of mental equilibrium:

Proposition 7: Let G be an n-person game and let s and s’ betwo pure strategy profiles
yielding the payoff vectorsu = (uy, ..., u,) andv = (vy, ..., v, ) respectively and such that
v dominatesu (v; > w;). If sisamixed mental equilibrium, then s’ must be amixed mental
equilibrium as well.

Proof: Let s = (s1,...s,) be the pure strategy profile that sustains v and let s’ =
(s}, ...s),) bethe strategy profile that sustainsv. Let C' = (C1, Cs, ..., C,,) be the mental
game supporting v as a mental equilibrium (C; is a payoff function of the mental state of
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player i in the mental game). By supposition s is a Nash equilibrium of C. Since both s
and s’ are pure strategy profiles we can rename strategies for each player so that the new
game C’ isisomorphic to C' up to strategy names and such that s’ is an equilibrium of C".
Suppose by way of contradiction that s” isnot amixed mental equilibrium. Then it must be
the case that some player ¢ can change his mental state from C} to C;* in such away that in
the new mental game (C;, C”_;) there exists another equilibrium s* with G;(s*) > G;(s').
But the isomorphism between C and C” implies that there is a mental state of player i C;
suchthat s*isan equilibrium of thegame (C;, C_;) with G;(s*) > Gi(s') > Gi(s), which
contradicts the fact that s isamental equilibrium.

Asacorollary of Proposition 7 we obtain that the cartel behavior inan oligopoly/Cournot
game is supported by a mental equilibrium. This follows from the fact that being a pure
Nash equilibrium, the Cournot equilibrium is a mental equilibrium. Since cartel behavior
yields a higher payoff for each player, Proposition 7 implies that it must also be a mental
equilibrium.

8. Appendix

We provide two examples showing that neither of the two sides of Proposition 1 appliesto
three-person games:
Example 8: Consider the following three-person game:

L L R R L R
uli111, 000 ulil12| 200
D|123| 130 D|200|111

The maxmin vector of this gameis (1,0,0). Hence, (U, R, L) does not pay player 1
at least his maxmin value in this game. However, it isamental equilibrium. To verify the
claim consider the following profile of mental states:

L L R R L R
ul100 111 u|lo001|110
D|001| 010 D|110| 001

Noticethat (U, R, L) isaNash equilibrium of this game. Suppose now that one player
unilaterally deviates to a different mental state; then the only possible Nash equilibria dif-
ferent from (U, R, L) are (D, L, R) and (U, R, R). However, these can be Nash equilibria
only if player 3isthe deviating player. SinceUs(U, R, L) = Us(D, L, R) = Us(U, R, R),
we must havethat (U, R, L) isamental equilibrium of this game.

Example 9: Consider the following three-person game:

L L R R L R
Uuj|000| 111 u|l11|101
D111 111 D011 110

Themaxmin vector of thisgameis (0, 0, 0) and all strategy profilesof thegame pay each
player at least his maxmin value, in particular the profile (U, L, L). However, this profile
is not a mental equilibrium. Suppose by way of contradiction that it is. Then, there must
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exist aprofile of menta states satisfying the conditions of mental equilibrium. The second
condition of the definition (i.e., no player is better off changing his mental state) impliesthe
following: (A) for the strategy profiles (U, R, L), (D, L, L), (D, R, L), (U, L, R), at least
two players are willing to deviate, and (B) in (D, L, R) either player 1 wants to deviate or
players2 and 3want to deviate, andin (U, R, R) either player 2 wantsto deviate or players
1 and 3 want to deviate, and in (D, R, R) either player 3 wants to deviate or players 1 and
2 want to deviate. It iseasy to verify that (A) and (B) cannot be simultaneously consistent.
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