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Abstract
We introduce emotions into an equilibrium notion. In a mental equilibrium each player

‘‘selects’’ an emotional state which determines the player’s preferences over the outcomes
of the game. These preferences typically differ from the players’ material preferences. The
emotional states interact to play a Nash equilibrium and in addition each player’s emotional
state must be a best response (with respect to material preferences) to the emotional states
of the others. We first discuss the concept behind the definition of mental equilibrium and
show that this behavioral equilibrium notion organizes quite well the results of some of the
most popular experiments in the literature of experimental economics. We expose some
attractive properties of mental equilibria which are useful for deriving the set of mental
equilibria for specific games.
Keywords: Games, Equilibrium, Behavioral Economics, Emotions

1. Introduction
The tension between rational behavior as predicted by a variety of game-theoretic models
and experimental results has been the focus of attention of both game theorists and experi-
mental economists. There are two sources of rationality incompleteness that are responsible
for many of the discrepancies between experimental observations and game-theoretic pre-
dictions. The first source of discrepancy arises from the fact that many strategic interactions
are too complex for subjects in the lab (or outside the lab) to analyze. For example, sub-
jects typically fail to realize that in a second-price auction it is a dominant strategy to bid
the true valuation and choose an inferior strategy. Likewise, they typically fail to perform
backward induction in games with more than two stages. The second source of discrepancy
has little to do with complexity. While understanding the strategic considerations perfectly,
players fail to maximize their own monetary rewards simply because the way they value
the different outcomes of the game may be inconsistent with the maximization of material
rewards. Games like ultimatum bargaining, the dictator game, and the trust game are well-
known examples of this sort. Over the last decade several interesting and important models
have been developed that try to reconcile the discrepancy between experimental results and
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game-theoretic predictions, without neglecting the idea that players behave strategically.
The common idea in these papers is to reevaluate the outcomes of the game for each player,
taking into account inequality aversion, spitefulness, and envy, so that in the new set of
utility functions the equilibrium behavior is closer to the experimental observations (see
Fehr and Schmidt (1999), and Bolton and Ochenfels (2000)). The main challenge of this
strand of literature is to identify the set of parameters that best explains the experimental
results and use these parameters to understand players’ motives in the underlying games.
A somewhat different approach was proposed by Rabin (1993) with the concept of fairness
equilibrium. Here the material payoffs are also altered to incorporate fairness into the util-
ity function. The measure of fairness depends on players’ actions and beliefs, which are
determined in equilibrium.

In this paper we attempt to take a more general approach by recognizing the fact that dif-
ferent strategic environments can give rise to different types of immaterial preferences that
may represent fairness or inequality aversion but also envy, spite, and a variety of other
emotions. We will use the term mental state to represent these preferences. We will in-
troduce an equilibrium concept called mental equilibrium, which is behavioral in its nature
and and which seems to organize the experimental evidence for some of the most prominent
examples much better than the standard concepts of Nash equilibrium or subgame perfect
equilibrium. As a by-product of our analysis we will be able to derive players’ behavioral
preferences endogenously through the equilibrium conditions.

In simple words the concept of mental equilibrium can be described as follows. Each
player, whom we assume seek to maximize only with his material/monetary payoffs, is
assigned a mental state. A mental state is simply a utility function over the outcomes of
the game (i.e., the set of strategy profiles) which is typically different from the material
utility function. A strategy profile s of the game is said to be a mental equilibrium if two
conditions hold: firstly, s has to be a Nash equilibrium in the game among the players’
mental states. Secondly, no player can expect a better equilibrium outcome, with respect to
his selfish material payoffs, by unilaterally changing his mental state. There are two valid
interpretations of our equilibrium concept. The first interpretation involves the idea of the
evolution of norms and emotions. Essential to our model is the fact that the benchmark pref-
erences of a player are selfish and material. It is conceivable to assume that fairness, anger,
envy, and revenge, which play a role in many game situations, have been developed through
evolution to increase the fitness of individuals to the social environment in which they live.
Our equilibrium concept can be viewed as promoting this idea. We are not proposing any
specific evolutionary model to this effect, but conceptually one can view the emergence
of mental states as part of such an evolutionary game. Evolutionary selection reinforces
different mental states in different strategic environments, and the material payoff of the
game can be viewed as measuring fitness or the degree of replication. This interpretation
is in line with the indirect evolutionary approach proposed by Gueth and Yaari (1992).

The second interpretation of our equilibrium concept is that of rational emotions. In
strategic environments individuals may decide to be in a certain emotional state that serves
their interest. Emotional states are often induced through cognitive reasoning in full or
partial awareness and are used as a commitment device. In order for the commitment to
be credible, the emotional state has to be genuine and not feigned. To further explain this
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point we suggest two thought experiments that demonstrate how emotions are triggered by
incentives. Imagine that you are informed at the airport that your flight has been canceled
and that you should report at the airline desk the next day. Consider the following two sce-
narios: in scenario A you observe most of the passengers leaving the terminal quietly. In
scenario B you run across an acquaintance who tells you that he was rerouted to a different
flight after explaining to the airline employees, in a very assertive and determined manner,
that he has to arrive at his destination today. If you decide to go to the desk and request
a similar treatment you are most likely to find yourself in a very different emotional state
from the one you would have been in in scenario A. You are likely to exhibit signs of anger
quite quickly in scenario B; in fact, these won’t be only signs, you will actually be angry.
You have been offered incentives to be angry and as a consequence you ‘‘choose’’ to be
angry. The second example involves a real story. In 2006 the first co-author of this paper
was interviewed for the Arab TV channel Al Jazirah. In accepting the Al Jazirah request
for an interview Winter was hoping to generate sympathy for Israel and Israelis among
the Arab viewership. At some stage of the interview the interviewers moved to questions
about Winter’s family background. Winter then told the story about his father’s hardships
in escaping Nazi Germany and trying to find shelter in Palestine of the 1930s. Winter re-
members telling this story to friends and relatives already dozens of times in the past but it
was only in front of the Al Jazirah camera that he felt so emotionally affected that he could
not hold back his tears. Again Winter was offered an incentive to be emotional (in terms of
his objectives) and emotional he was. The two stories told above suggest that in certain en-
vironments mental states can be thought of as outcomes of a cognitive choice. We refer the
reader to an experimental testing of rational emotions by Winter et al. (2008). Taking this
view one can think of mental equilibrium as an equilibrium in an amended game of credible
commitments. The material payoffs here are standard payoffs in a game and not a measure
of evolutionary fitness. We will be subscribing to both interpretations and will not argue in
favor of one of them as we believe that different emotional reaction may fit different inter-
pretation. In particular, for robust emotions which are irresponsive to the specification of
strategic environment or to the extent of which players can see each other the evolutionary
approach should favored (most ’’blind’’ experiments fall under this category). For others,
which rely on mutual eye contact and strongly responsive to incentives the interpretation
of rational emotions seem more appropriate. In both cases however we view emotions as a
mechanism to promote self interests.

Our concept of mental equilibrium can also be viewed as a model of endogenous pref-
erences. Players in our model select their preferences in view of their beliefs about the
preferences of those with whom they interact. The remarkable feature of this concept is that
while the choice of preferences is done from a self-centered point of view, the equilibrium
choice of preferences may give rise to nontrivial social preferences in which the players’
behavior is very far from that of a self-centered player. Indeed, in some of our examples
we will restrict the set of mental states to have Fher and Schmidt (1999)-type preferences
representing inequality aversion and we will be able to derive endogenously conditions on
the parameters of inequality aversion that mental states must exhibit in equilibrium.

Another assumption that is rather crucial to the definition of mental equilibrium is that
players’ mental states are commonly known. This is a critical assumption when trying to
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answer the question of how a mental equilibrium emerges. It is of lesser importance if we
treat the concept of mental equilibrium as a static stability concept (as is the case with Nash
equilibrium). Nevertheless, there are two tracks by which this assumption can be justified.
In viewing emotions as a commitment device, it is clear that they cannot be effective unless
they are observable. Indeed, body movements, facial expressions, and voice intonations are
often very clear signals of emotional reactions. But even without direct eye contact players
may still form consistent beliefs about the mental states of their counterparts. Through
experiencing identical or similar strategic environments over and over again players can
learn quite a bit about the function that maps strategic environments to players’ mental
states. In terms of our airport example, it is fair to assume that even a moderately socially
intelligent employee who has dealt with hundreds or thousands of customers in similar
situations can expect that in scenario B a passenger might be angry.

It is instructive to demonstrate the operation of the concept of mental equilibrium on
the famous example of social dilemma (the n-person prisoner’s dilemma game). A group
of players face a game in which each player has two strategies: cooperate or defect. Each
player has a dominant strategy which is to defect (i.e., this is the unique Nash equilibrium),
but the maximum a player can earn is when every other player cooperates. Experimental
results typically show a substantial level of cooperation in such a game. When cooperators
are asked about their motives they often react by saying: ‘‘If I come with a selfish attitude
that favors defection, then everybody else will defect as well and we will all lose.’’ Note
that an argument of this sort speaks in favor of social preferences as a means of promoting
one’s selfish goals. Of course the argument is invalidated by the fact that the game is played
simultaneously. However, in spite the fact that players’ action in the game are unobservable,
it is often quite hard to convince a subject that his own action cannot affect that of the
other players. Let us examine now how the concept of mental equilibrium relates to this
game. We will concentrate on one equilibrium that results in the cooperation of all players.
Suppose that each player arrives at the game with a mental state such that he prefers the
outcome of total cooperation (i.e., cooperation by all players) to all other outcomes, but
whenever any of the players defect he prefers to defect as well. With this set of mental
states the profile in which all mental states cooperate is a Nash equilibrium. Furthermore,
no single player can assign a different mental state for which a new equilibrium will arise
that he prefers to total cooperation. The only relevant deviation to check here is for a mental
state that always prefers to defect (i.e., the mental state whose preferences are identical to
those of the selfish player). But given such a deviation and the set of other mental states,
the only equilibrium outcome is for all mental states to defect, which makes the player
worse off based on his selfish preferences. We will later characterize the set of all mental
equilibria of this game.

The relevance and importance of our concept can be judged by two criteria: firstly, the
extent to which the story behind the concept is appealing and makes sense and, secondly,
the extent to which the concept is capable of explaining puzzling experimental results,
particularly those at odds with standard game-theoretic concepts such as Nash equilibria
or subgame perfect equilibria. Our attempt to convince the reader of the importance of
our concept will address both criteria. In particular, we will introduce a battery of well-
known games about which considerable experimental data has been collected and we will
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compare the set of Nash equilibria to the set of mental equilibria. As we shall show, every
pure Nash equilibrium is also a mental equilibrium; however, interestingly, the outcomes
that emerge in experimental results of the games considered here very often correspond to
mental equilibria that are not Nash equilibria.

The evolutionary foundation of preferences has been discussed in the economic liter-
ature in the past. Gueth and Yaari (1992) introduce a game of cooperation between two
players and show how preferences for reciprocity (which in their model boils down to be
the value of a parameter in the utility function) can emerge through evolution (see also
Gueth and Kliemt (1999)). This approach, known as the indirect evolutionary approach,
has also been used recently by Dekel, Ely and Yilankaya (2007), who develop a more gen-
eral model than that of Gueth and Yaari (1992). They consider the class of all two-person
games and interpret their payoffs as objective measures of fitness. They then endow play-
ers with subjective preferences over outcomes according to which they assume players play
Nash equilibria. To select for the “optimal preferences,” they impose evolutionary condi-
tions (of selection and mutation).

Because the evolutionary story is only one interpretation of our model, we do not specify
evolutionary conditions for stability. Instead, our model builds on two-level games. One
level involves the mental game in which the payoffs are derived from players’ mental states
(emotions) and the other level involves rational players who select their state of mind. At
each of these levels agents are assumed to play Nash equilibria. As a consequence of the
fact that the Nash equilibrium conditions for the rational level game are less stringent3
than Dekel et al.’s (2007) evolutionary conditions, our set of mental equilibria is typically
larger than the set of stable outcomes a la Dekel et al. (2007), and our model admits a
(pure) mental equilibria for any game. Furthermore, the simplicity of our structure allows
us to analyze mental equilibria for games with an arbitrary number of players (and not just
two-person games).

Finally, our paper departs from the existing literature also in its motivation. We are not
merely interested in the theoretical properties of mental equilibria. We pay substantial at-
tention to experimental results and use them to examine the performance of our concept.
Several other papers use the indirect evolutionary approach in specific economic environ-
ments, such as Bergman and Bergman (2000) in the context of bargaining, Gueth and Ock-
enfels (2001) in the context of legal institutions, and Heifetz and Fershtman (2006) in the
context of elections and political competition.

We continue in Section 2 with the formal definition of mental equilibrium. By this de-
finition we assume that mental states play pure Nash equilibria. We then provide a useful
characterization of mental equilibria in two-person games, which we then apply to specific
examples. In Section 3 we define the “subgame perfect version” of mental equilibrium
and compare it with the standard notion of subgame perfect equilibrium in the ultimatum
bargaining game, partly by confining our attention to mental states whose preferences rep-
resent inequality aversion.

Section 3 deals with mental equilibria for more than two players. We show that for

3 The sufficient conditions for an outcome to be stable in two-person games in the model of Dekel et al. is that
the outcome be both a strict Nash equilibrium and efficent.
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games with four or more players the notion of mental equilibria loses its predictive power,
since any strategy profile in such games is a mental equilibrium. This follows from the fact
that for some choices of mental states by the players the corresponding mental game may
possess no pure Nash equilibrium. Following this result we show that the set of mental
equilibria is nonempty for any n-person game.

To tackle the fact that the notion of mental equilibria loses its predictive power when n is
at least four players, we introduce the concept of mixed mental equilibrium where we allow
mental states to use mixed strategies (the choice of mental states by players is still assumed
to be pure). We show that the awkward property of pure mental equilibria for games with at
least four players ceases to exist for the new concept, and we use this concept to demonstrate
its properties on some games. In particular, we demonstrate that mixed mental equilibrium
need not be a Nash equilibrium. The question of a general existence result for this concept
is unfortunately left unsolved4.

2. Basic Definitions
Let G = (N,S,U) be a normal form game where N is the set of players, S = S1 ×
S2, ...,×Sn is the set of strategy profiles for the players, andU = U1, ..., Un are the players’
utility functions over strategy profiles. We refer to Ui as the benchmark (selfish/material)
utility function of the players and will use ui to represent the mental states’ utility functions.
A profile of mental states is denoted by u = u1, ...., un. For a given gameG we denote by
NE(G) the set of (pure) Nash equilibria of the game G.

Definition: A mental equilibrium of the game G = (N,S,U) is a strategy profile s
such that for some profile of mental states u the following two conditions are satisfied:

(1) s ∈ NE(N,S, u).
(2) There exists no player i, a mental state u3i, and a strategy profile s3 ∈ NE(N,S,

u3i, u−i) with Ui(s3) > Ui(s).
Observation 1: Any pure strategy Nash equilibrium s of a game is also a mental equi-

librium. To see that this is the case, choose for each player a mental state whose payoff is
such that sj is a strictly dominant strategy in the game. Clearly s is an equilibrium in the
mental game. Suppose that player i assigns a different mental state. Clearly in the new
mental game all other players will stick to their dominant strategy. Since si is a best re-
sponse to s−i with respect to player i’s material preferences (since s is a Nash equilibrium),
player i cannot be any better off by assigning a different mental state.

3. Two-Person Games
4 We have devoted much time to tackling the issue of existence. We managed to prove existence under several
sets of conditions but decided that none of them is general enough to merit a result. The main stumbling block is
the fact that the mapping from games to the set of delegate equilibria is not continuous in any form of definition
that will allow us to use a fixed point theorem. We are grateful to Sergiu Hart, who has helped us on this issue.
The example showing that a mixed delegate equilibrium may not be a Nash equilibrium is due to him. Recently
Olschewski and Swiatczak (2008) proved the existence of a mental equilibrium in a 2x2 games.
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In any Nash equilibrium each player attains at least his maxmin value. Proposition 1 asserts
that this property characterizes the set of mental equilibria for every two-person game.

Proposition 1: Let G be a two-person game; then s ∈ S is a mental equilibrium if and
only if Ui(s) ≥ maxsi minsj Ui(si, sj) where i = (1, 2) and i 9= j.

We show in the Appendix that Proposition 1 does not apply to three-person games and
in fact neither of the two directions of the proposition holds true.

Proof of Proposition 1: Let v1 and v2 be the maxmin values of players 1 and 2 re-
spectively. We first show that any mental equilibrium must yield each player at least vi.
Assume by way of contradiction that there is a mental equilibrium s such that at least one
of the players, say player 1, earns less than v1. Suppose that s is supported as a mental
equilibrium with the mental states u1 and u2 respectively. If instead of u1 player 1 devi-
ates and chooses the mental state u31 under which playing s1 is a dominant strategy, then
in the resulting mental game (u31, u2) there exists a pure Nash equilibrium and all equi-
libria yield a payoff of at least v1 for player 1. This contradicts the assumption that s is
a mental equilibrium, and proves one direction. We next argue that every profile yielding
at least the maxmin value for the two players is a mental equilibrium. For this we con-
struct the following mental game: Let s = (s1, s2) be a profile that yields each of the two
players at least his/her maxmin value. For the mental state of player 1 we set u1(s) = 1,
and u1(s31, s2) = 0 for all s31 9= s1. Furthermore, for every s32 9= s2 there exists s31 such
that U2(s31, s32) ≤ U2(s). Otherwise the maxmin value of player 2 is greater than U2(s),
which contradicts the definition of s. We now set u1(s31, s32) = 1 and u1(s∗1, s32) = 0 for
all s∗1 9= s31. We now define the mental state of player 2 in a similar manner: u2(s) = 1,
and u2(s1, s32) = 0 for all s32 9= s2. Furthermore, for every s31 9= s1 there exists s32 with
U1(s

3
1, s
3
2) ≤ U1(s); otherwise the maxmin value of player 1 must be greater than U1(s),

which is impossible. We now have u2(s31, s32) = 1 and u2(s31, s∗2) = 0 for all s∗2 9= s32. We
can now show that s is a mental equilibrium of the game supported by u1and u2. Indeed,
s is clearly a Nash equilibrium under u1and u2, as the mental game never has a payoff
of more than 1 for either player. To show that condition (2) in the definition of mental
equilibrium applies, note that if, say, player 1 changes his mental state to u31, then a Nash
equilibrium of the new mental game (u31, u2) must involve a strategy profile s3 such that
u2(s

3) = 1. Otherwise the mental state of player 2 will deviate. But for such s3 we must
haveU1(s3) ≤ U1(s), which implies that player 1 cannot make himself better off by chang-
ing his mental state. The same argument applies for player 2 and we conclude that s must
be a mental equilibrium.

Proposition 2: For every two-person game G there exists a pure strategy profile that
pays each player at least his/her maxmin value.

Proof: We prove the proposition by induction on the number of strategies of players
1 and 2 in the game. The assertion is trivial if one of the players has only one strategy.
Assume now by induction that the statement is true if at least one player, say player 1, has
less than m strategies, and consider now a game with m strategies for player 1. Denote
this game by G and denote by G−m the game obtained by eliminating the last strategy of
player 1. By the induction hypothesis,G−m is a game for which Proposition 2 applies. Let
s = (s1, s2) be the strategy profile in which both players obtain their maxmin value for
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the game G−m. If s pays each player at least his maxmin value in G then we are done.
Otherwise, it must be that the maxmin value of player1 in G is greater than U1(s). This
follows from the fact that player 2’s maxmin value in G−m is at least as large as that of G
(since the gameG adds a strategy for player 1 and not for player 2). Since the maxmin value
of player1 in G is greater than U1(s) we must have U1(m, s32) > U1(s) for all s32 ∈ S2.
Let s∗2 = argmaxs2∈S2 U2(m, s2). Clearly (m, s∗2) is a profile that pays both players at
least their maxmin value in G.

Propositions 1 and 2 immediately imply an existence result for two-person games:
Corollary 1: Every two-person game possesses a mental equilibrium.
Our definition of mental equilibrium relied on the assumption that players are optimistic

when contemplating deviations as it is enough that there exists at least one equilibrium in
the new mental game (after player i deviates) that player i prefers to the original (putative)
equilibrium in order to trigger him to deviate. A more stringent condition on deviations
would require that player i deviate only if all equilibria of the new game yield player i a
higher utility. Since the conditions for deviations are stronger, this equilibrium notion is
weaker than the standard one. Formally:

Definition: A weak mental equilibrium of the gameG = (N,S,U) is a strategy profile
s such that for some profile of mental states u the following two conditions are satisfied:

(1) s ∈ NE(N,S, u).
(2) There exists no player i, and a mental state u3i such that for every equilibrium,
s3 ∈ NE(N,S, u3i, u−i) with Ui(s3) > Ui(s).
Clearly every mental equilibrium is a weak mental equilibrium but we shall argue that:
Proposition 3: In two-person games the set of mental equilibria and the set of weak

mental equilibria coincide.
Proof: We have shown that the set of mental equilibria coincides with the set of all

strategy profiles that award each player at least his/her maxmin value. It is therefore enough
to show that any strategy profile that pays some player less than his/her maxmin value
cannot be a weak mental equilibrium. Indeed, suppose by way of contradiction that for
some profile s some player, say, player 1, gets a payoff x1 which is less than his/her maxmin
value, and that s is a weak mental equilibrium supported by the mental states u = (u1, u2).
Let s1 be the maxmin strategy of player 1. Consider a mental state u31 under which s1 is
a dominant strategy for player 1. Consider now the mental game ({1, 2}, S, (u31 u2)). All
Nash equilibria of this game involve player 1 playing s1 . Hence, player 1 gets at least
his/her maxmin value (in the game G = (N,S,U)), but this contradicts the fact that s is a
weak mental equilibrium since player 1 is better off deviating under the condition imposed
by the definit ion of weak mental equilibrium.

A large body of experimental results has been obtained for two-person games. Proposi-
tion 1 serves us with a very useful tool for identifying the set of mental equilibria for such
games. We will now discuss some of the most prominent example of these games.

Example 1 The prisoner’s dilemma
We consider the game given by the matrix below. This is the prisoner’s dilemma game

with a unique Nash equilibrium using dominant strategies (D,D).
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D C
D 1, 1 5, 0
C 0, 5 4, 4

Observation 2: There are two mental equilibria in the prisoner’s dilemma game, (C,C)
and (D,D).

Proof: Players 1 and 2 can guarantee that the other player gets no more than 1 by
playing the strategy D. Using Proposition 1 this means that (1,1) is a mental equilibrium.
Since (4,4) dominates (1,1) it is also a mental equilibrium. To show that (5,0) and (0,5) are
not a mental equilibrium note that no player can guarantee a reduction of the payoff of his
opponent to zero because the dominant strategy of a player always guarantees a payoff of
1.

An example of mental states that sustain the cooperative outcome isu1(C,D) = u2(C,D) =
u1(D,C) = u2(D,C) = −1, and ui = Ui otherwise. These mental preferences represent
aversion to lack of reciprocal behavior.

It is easy to verify that a necessary and sufficient conditions for the mental states (u1, u2)
to sustain (c, c) as mental equilibrium in the prisoner’s dilemma is : u1(C,C) ≥ u1(D,C),
u1(D,D) ≥ u1(C,D) and u2(C,C) ≥ u2(C,D), u2(D,D) ≥ u2(D,C).

It is worthwhile mentioning that the mental preferences sustaining the cooperative out-
come cannot be of the form ui = αUi+βUj . Such a utility function would give rise to the
following mental game:

D C
D α+ β,α+ β α5,β5
C β5,α5 4(α+ β), 4(α+ β)

For (C,C) to be an equilibrium in this mental game we need to have 4(α + β) ≥ 5α.
But this means that player 1 by sending a different mental state with u1 = U1 will be able
to sustain (D,C) as an equilibrium since 5β ≥ α+ β.

Note the difference between the social preferences given by ui = αUi + βUj and the
one we used in Observation 2. The former represents a mental state with some degree
of altruism (if β > 0) or spitefulness (if β < 0). Indeed, other cardinal representation
of the prisoner’s dilemma may admit α and β such that cooperation is sustainable as a
mental equilibrium with players’ mental states being ui = αUi + βUj , but there are other
representations for which no such α and β exist. In contrast, the mental preferences that
we used to sustain (C,C) represent mental states with aversion to lack of reciprocity and
they sustain (C,C) regardless of the cardinal representation of the prisoner’s dilemma game.
We conclude that aversion to lack of reciprocity can explain cooperation in every prisoner’s
dilemma game but altruism or spitefulness cannot.

Example 2: The chicken game
Consider the following two-person game:

retreat fight
retreat 1, 1 −2, 2
fight 2,−2 −10,−10

Observation 3: The game has three mental equilibria: the two Nash equilibria with the
outcomes (-2,2) and (2,-2) and another one which is the outcome (1,1). This can be easily
verified by using Proposition 1 and noting that the maxmin value for both players is -2.
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Figure 1:

Rapoport, Guyer and Gordon (1976) have established experimental results for the chicken
game by varying the payoff from (fight, fight). For this particular game they observe an
87% probability of retreat and 13% probability of fight. So the mental equilibria that is not
a Nash equilibrium is played with probability 75.6% more than the frequency of the two
Nash equilibria together. Substantial proportions of retreats have also been established for
much lower disutility levels from (fight, fight).

Example 3: The trust game
Player 1 has an endowment of x Euros. He can make a transfer 0 ≤ y ≤ x to player

2. If player 1 makes the transfer y, player 2 receives 3y. Player 2 can now reward player 1
with a transfer of z ≤ 3y. Finally, the payoff for player 1 is x− y + 3z and the payoff for
player 2 is 3y − z.

Observation 4: An outcome (a1, a2) is a mental equilibrium outcome if and only if
a1 ≥ x and a2 ≥ 0.

Proof: Consider such an outcome (a1, a2). Since a1 ≥ x player 2 can guarantee that
player 1 gets no more than a1. This can be done by transferring no money back to player 1
if player 2 received any money from player 1. Furthermore, clearly player 1 can guarantee
that player 2 receives no more than zero by simply making a zero transfer to player 2.
In view of Proposition 1, (a1, a2) is an mental equilibrium outcome. Consider a mental
equilibrium outcome (a1, a2) such that either a1 < x or a2 < 0. Then either player 1 or
player 2 get less than their maxmin value, which contradicts Proposition 1.

We note that the trust game has a unique Nash equilibrium in which player 1 makes
a zero transfer to player 2. Observation 4 suggests that any level of trust displayed by
player 1 coupled with a level of trustworthiness that compensates player 2 to at least the
level of his initial endowment can be supported by mental equilibria. We point out that
experimental results support a considerable level of trust by player 1 and a considerable
reciprocity by player 2 (see for example Cox et al. (1995)). We shall return to this example
by restricting the set of mental states to include only Fehr and Schmidt (1999)-type utility
functions representing inequality aversion.

Example 4: The centipede game
Consider the extensive form game presented in Figure 1, which is an example of the

centipede game.
We recall that the centipede game has a unique Nash equilibrium that results in player
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1 choosing D in his first decision node. The set of mental equilibria is, however, larger:
Observation 5: Consider the game presented in Figure 1. All strategy profiles but the

one leading to the payoff outcome (0,2) are mental equilibria.
Proof: The maxmin value of player 1 is 1 (achieved by choosing D at the first node)

and it is zero for player 2 (player 1, by choosing D at his first node, can prevent player
2 from getting more than zero). By Proposition 1, (0,2) cannot be a mental equilibrium
outcome because player 1 is getting less than his maxmin value. All other outcomes pay
both players at least their maxmin value and are therefore mental equilibrium outcomes.

The above observation can be easily extended to a general centipede game. One might
find it intriguing that the second branch of the centipede game can never be a mental equi-
librium. The intuition is however quite straightforward. If players assign mental states for
which this outcome is an equilibrium, then player 1 can deviate by assigning a different
mental state with a utility function yielding an arbitrary large payoff for choosing D in the
first round by which he will guarantee a higher payoff of 1 (instead of zero). The fact that
mental equilibrium allows for outcomes in which players trust each other to move into the
game instead of opting out immediately is consistent with experimental results (see McK-
elvey and Palfrey (1992)). Indeed, in these experimental results the second terminal node
is also reached with some propensity; however, in a different study by Nagel and Fang
Tang (1998) where the centipede game was played in its normal form, the strategy profile
with the lowest propensity is either to exit at the second mode or to exist at the first node.
Furthermore, in one out of the five sessions the propensity of the second terminal node is
substantially lower than that of all other nodes. The second lowest is the first node, which
is almost twice as frequent as the second.

We now discuss our concept of mental equilibrium in the context of another prominent
game, the ultimatum bargaining game.

Example 5: The ultimatum game involves two players: Player 1 has an endowment 1
from which he has to make an offer to player 2. An offer is a number 0 ≤ y ≤ 1.

Player 2 can either accept the offer or reject it. If player 2 accepts the offer player 1
receives 1 − y and player 2 receives y. If player 2 rejects the offer both players receive
a payoff of zero. The subgame perfect equilibrium of the game predicts a zero offer by
player 1, which is accepted by player 2. Experimental results (see Gueth et al. (1982))
have however shown substantial offers made by player 1 with the mode of the distribution of
offers being 50:50. To discuss the concept of mental equilibrium for this game we first need
to amend the concept to the framework of subgame perfection in extensive form games. The
following is the most natural amendment:

Consider an n-person extensive form game G = (N,T,U) with perfect information,
where N is the set of players, T is the game form defined by a tree (using the standard
definition of extensive form games), and U = U1, ..., Un are payoff functions for players
1,2,...,n assigned to terminal nodes of the game. We denote by SPE(G) the set of sub-
game perfect equilibria of the game G. We define the notion of mental subgame perfect
equilibrium:
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Definition5: A mental subgame perfect equilibrium of the gameG is a strategy profile s
ofG such that for some profile of mental states u the following two conditions are satisfied:

(1) s ∈ SPE(N,T, u).
(2) There exists no player i, a mental stateu3i, and a strategy profile s3 ∈ SPE(N,T, u3i, u−i)

with Ui(s3) > Ui(s).
Unfortunately, when the set of mental states from which players can choose is not re-

stricted, mental SPE loses much of its predictive power:
Observation 6: Take any extensive form game with perfect informationG. Every Nash

equilibrium of G is a mental SPE of G.
Proof: Consider the normal form version of G, and let s be the Nash equilibrium. For

each player i choose a mental stateui for which the strategy si is a strictly dominant strategy
in the game. Clearly s is a subgame perfect equilibrium in the mental game. To see that
condition 2 is satisfied assume that some player j can assign a different mental state u3j
and generate an SPE in the new mental game in which his payoff is higher. Since the Nash
strategies are dominant for all mental states, no mental state other than j will choose any
other strategy in the new mental game. Let s3j be the strategy taken by j3s new mental
state. We have assumed that Uj(s3j , s−j) > Uj(s) but this cannot happen since s is a Nash
equilibrium.

4. Restricting the Set of Mental States
Observation 6 implies that without restricting the set of mental states all allocations of the
unit of goods between the two players are sustainable as a mental SPE of the ultimatum
game, since the set of Nash equilibrium outcomes covers the entire set of allocations. We
now wish to confine our attention to mental states that display inequality aversion as char-
acterized by Fher and Schmidt’s (1999) model. We will start with the ultimatum game
and then explore mental equilibria in this framework for other games. This analysis will
contribute to the heated debate conducted in the early nineties over the role of fairness in
ultimatum games and games in general. To recall, in a two-person game each mental state
of player i has a utility function ui(xi, xj) over the allocations (xi, xj), which is of the
following form: ui(xi, xj) = xi−αi(xj −xi)+−βi(xi−xj)+, where z+ = max(z, 0),
0 ≤ βi < 1, and αi > βi. αi represents the disutility from my opponent earning more than
me while βi stands for the disutility due to me getting more than my opponent.. We will
introduce a bound on the value of αi denoted by α∗i so that (αi,βi) belong to the trapezoid
with the vertices (0, 0), (1, 1)(α∗i , 1) and (α∗i , 0).

Observation 7: There exists a unique mental subgame perfect equilibrium outcome for
the ultimatum bargaining game which is ( 1+α

∗
2

1+2α∗2
,

α∗2
1+2α∗2

). Furthermore, as the bound α∗2
goes to infinity the unique equilibrium outcome goes to (1/2, 1/2), which is the mode of
the distribution of accepted offers in experimental results on the ultimatum game.

5 An alternative way to define a mental SPE is to require that the strategy profile yields a mental equilibrium
on each subgame of the game. It is easy to show that under this definition a strategy profile is a mental SPE if
and only if it is an SPE.
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Proof: It is clear that player 1 will be no better off if he selects a mental state different
from the one with zero inequality aversion. Suppose that the mental state of player 1 offers
the mental state of player 2 a payoff of less than 1/2, and assume α2,β2 are the parameters
of inequality aversion of player 2. Then the mental state of 2 will accept the offer if and
only if x2−α2(x1−x2) ≥ 0 or x2 ≥ α2

1+2α2
; the fact that the right-hand side is increasing

in α2 and that the mental state of 1 can be assumed to be perfectly rational (has preferences
identical to the material preferences) implies that player 2 should be assigned a mental state
with maximal α, i.e., α∗2. This in turn implies that among the mental states in the game the
equilibrium outcome is ( 1+α

∗
2

1+2α∗2
,

α∗2
1+2α∗2

) and furthermore no player by changing his mental
state can generate a better SPE from his point of view. Finally, as α∗2 approaches infinity
the allocation approaches (1/2, 1/2).

We conclude this section by revisiting the trust game in the current framework where the
set of mental states includes only Fher and Schmidt’s (1999)-type of utility functions. We
saw earlier that if we allow the set of mental states to include all utility functions, then any
outcome in which the sender makes some transfer (possibly zero) and the receiver reim-
burses the sender for at least his cost can be supported by a mental equilibrium and nothing
else. In our framework here, as we will show, there exists a unique mental equilibrium,
which yields the socially optimal outcome. In this equilibrium the sender sends his entire
bundle to the receiver and the receiver shares the amplified amount equally with the sender.

Observation 8: Assuming that the set of mental states includes all inequality averse-
type utility functions, there exists a unique mental equilibrium in the trust game. In this
equilibrium the sender sends x to the receiver and the receiver pays back 3

2x to the sender.
Proof: Clearly the sender cannot do better by having a mental state with a positive

inequality aversion because what counts is not the preferences of the sender but his action.
The receiver’s best response to the sender’s mental state is to have a mental state with an
inequality aversion parameter β large enough so that it would make sense for the sender’s
mental state (whose preferences are identical to those of the sender) to transfer a positive
amount and thus induce the mental state of player 1 to transfer the entire bundle to player
2. Note that if β < 1/2 the sender’s mental state will make no transfer. On the other hand,
if 1/2 < β < 1, the receiver’s mental state will attempt to equalize his own payoff to that
of the sender’s mental state. Hence, the sender’s mental state is better off when he sends his
entire endowment and gets back 3

2x.
Interestingly, Observation 8 shows how the level of inequality aversion is determined

endogenously. In equilibrium the receiver’s mental state must have β between 1/2 and 1.

5. Imlementing Effort with Mental Equilibrium: Example
Two individuals operate on a project. Each individual is responsible for a single task. For
the project to succeed it reqires that both tasks are successful. Playrs can choose to exert ef-
fort towards the performance of their task at a cost cwhich is identical for all agents. Effort
increases the probability that the task succeeds from α < 1 to 1. The principal cannot mon-
itor the agents for their effort nor can he observe the success of individual tasks. However,
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he is informed about the success of the entire project. An incentive mechansim is therefore
given by a vector v = (v1, v2) with agent i getting the payoff vi if the project succeeds and
zero otherwise (limited liability). Given a mechanism the two agents face a Noramal form
game G(v) with two strategies for each player : 0 for shirking and 1 for effort. The prin-
cipal wishes to implement effort by both players at a minimal expense, i.e., he is looking
for a mechanism under which there exists an equilibrium with both agents exerting effort.
In Winter (2004) it is shown that the optimal mechanism pays each player c/(1−α) when
agents’ effort decision are taken simultaneously. If agents move sequentially (assuming
that the second player observes the effort decision of the first) then the optimal incentive
mechanism is pays c

1−α2 to the first player and c
1−α to the second. Under this mechanism

player 2 will exert effort if and only if player 1 does so. This generates a implicit incentive
on part of player 1 that allows the principal to pay him less than he pays in the simultane-
ous case (and less than the payoff of player 2 in the sequential case, see Winter (2006)).
To model an environment in which the two agents can monitor each other effort we would
need to split agents’ task to many small sub-tasks and introduce a game of alternating effort
decision (i.e., player 1 decides on the effort of the first sub-task, then player 2 decides on
the first sub-task, the player 1 decide on the second sub-task etc.). It can be shown that in
this environment the optimal mechanism pays each player c

1−α2 , which is what player 1
(the player whose effort is observable) gets in the standard sequential case. We now show
that under mental equilibrium this is also the optimal mechanism in the simultaneous case:
Roughly, instead of player 1 affecting the effort decision of player 2 through his own effort
choice, in mental equilibrium players affect each other mental state through their own men-
tal state which enhances the prospect of cooperation. Our claim below is also extendable
to environments with more than 2 agents.

Claim 1: The optimal mecahnsim for effort under mental equilibrium is ( c
1−α2 ,

c
1−α2 )

.
Proof: Consider any pair of mental states (u1, u2) for the two agents such that given

the action of player i player j 9= i best response is to imitate the action of player i (i.e.,
j exerts effort iff i does so). We will show that under v = ( c

1−α2 ,
c

1−α2 ) effort by both
players in a mental equilibrium (note however that it is not a Nash equilibrium). Indeed
under the mental states specified earlier effort by both players is a Nash equilibrium. We
therefore need to check only the second equilibrium condition. Assume w.l.o.g. that player
1 changes his mental state and by doing so he generates a Nash equilibrium which he prefers
more with respect to his material preferences denote this mental state by u31 . It must be the
case that under u31 taking the same action as player 2 cannot be the best response. Hence,
either (1) u31(1, 1) < u31(0, 1) or (2) u31(0, 0) < u31(1, 0) or both. Furthermore since the
only strategy profile in which player 1 material payoff improves is the one in which player
1 shirks and player 2 exerts effort, this profile must be a Nash equilibrium under the new
mental state. This means that (1) must hold. But if (1) holds player 2 cannot exert effort
in equilibrium. Under the payoff c

1−α2 player 2 is better off exerting effort only if 1 exerts
effort. This contradiction rules out that player 1 or player 2 can be made better off by
changing their mental state and shows that (1, 1) is a Mental equilibrium. To show that v =
( c
1−α2 ,

c
1−α2 ) is the optimal mechanism under Mental equilibrium we have to establish

that if the principal pays, say, player 1 less, then the corresponding game has no mental
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equilibrium in which both agents exert effort. Indeed if, say, player 1 is paid less than
c

1−α2 , then player 1 has a dominant strategy in the game, which is shirking. If effort by
both players is sustainable by a mental equilibrium it must be that player 1 has a mental
state under which he exerts effort. But then player 1 is better off changing his mental state
to one in which shirking is a dominant strategy. This contradiction shows that effort by both
players is not implementable by mental equilibrium with smaller payoffs.

6. n-Person Games

Our definition of mental equilibria requires that no player be able unilaterally to replace
his mental state and improve his equilibrium outcome. This implies that if the mental state
with whom player i deviates give rise to a game with no pure Nash equilibrium, then this
deviation is not profitable. This turns out to expand the set of mental equilibria to the extent
that it loses its predictive power for games with four or more players. We will later fix this
drawback by introducing mixed strategies.

Proposition 4: For every normal form game G with n ≥ 4 every strategy profile is a
delegation equilibrium.

Proof: For each player i we select one strategy and denote it by 0. We denote by Ti
the set of the remaining strategies so that Si = Ti ∪ {0}. We will show that the profile
(0, 0, ..., 0) is a mental equilibrium. Since the strategy was selected arbitrarily it will show
that every profile is a mental equilibrium.

For a strategy profile s ∈ S we denote d(s) = #{j ∈ N s.t. sj ∈ Tj}, i.e., the
number of players choosing a strategy different from 0. For each integer k we denote by
p(k) the parity of k (i.e., whether k is odd or even). Consider now the following vector
of mental states (u1, ...un) where ui : S → {0, 1}: ui(0, ..., 0) = 1 for all i. For any
strategy profile s different from (0, ...., 0) we set ui(s) = 0 if and only if p(d(s)) = p(i).
Otherwise ui(s) = 1. We show that for any profile s 9= 0, half of the players can profit
by deviating 6. Indeed, each player who receives 0 can increase his payoff by changing
his strategy from playing 0 to playing in Ti or the other way around. By doing so he will
trigger a new profile s3 for which p(d(s3)) 9= p(i) and he will raise his payoff from zero to
1. To show that (0, 0, ..., 0) is a mental equilibrium first note that it is a Nash equilibrium
with respect to the chosen mental states (u1, ...un). Furthermore, if player i deviates and
sends a different mental state u3i he will not be able to sustain a better equilibrium with
respect to his basic preferences because for any other strategy profile there will be at least
one mental state j 9= i that will deviate, and hence the new mental game will have no pure
Nash equilibrium.

We have shown that every two-person game has a mental equilibrium and that every
game with at least four players admits all strategy profiles as mental equilibria. To complete
the proof of existence we need a separate argument for three-person games.

Proposition 5: Every three-person game has a mental equilibrium.
Proposition 5 implies that:

6 This holds when n is even; if the number of players is odd, then at least n−1
2

players will choose to deviate.
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Corollary 2: Every n-person game has a mental equilibrium.
Proof of Proposition 5: We denote by s∗ the strategy profile in which player 2 attains

his highest payoff. If there is more than one such profile we select one of these arbitrarily.
We will show that s∗ is a mental equilibrium. We define the mental game to be ui(s∗) = 1
for all players. We set again Si = Ti ∪ {s∗i } and d(s) = #{j ∈ N s.t. sj ∈ Tj}. For any
other strategy, ui(s) = 0 if and only if p(d(s)) = p(i). Otherwise, ui(s) = 1.We first note
that s∗ is a Nash equilibrium in the mental game. Furthermore, for any strategy profile of
the mental game either players 1 and 3 want to deviate or player 2 alone does. To show
that s∗ is a mental equilibrium we need to show that no player can assign a different mental
state and generate a new equilibrium that he prefers more. Clearly such a player cannot be
player 2 as he has already attained his highest payoff. Suppose now that player 1 is better
off assigning a different mental state and let s3 be the new equilibrium that arises in the
mental game that player i prefers to s∗. If p(d(s3)) is odd, then player 3 would deviate
from s3 in the mental game. If instead p(d(s3)) is even, then player 2 would deviate. Both
consequences contradict that s3 is an equilibrium in the mental game, which shows that s∗
is a mental equilibrium.

Note that because we can rename the player an immediate corollary of Proposition 5 is
that any strategy profile in which at least one player attains his maximal payoff is a mental
equilibrium.

7. Mixed Strategies
We have seen that when we confine ourselves to pure strategies we get a multiplicity of
equilibria, to the extent that every profile of strategies is a mental equilibrium when n ≥ 4.
To reduce the set of mental equilibria and increase the predictive power of our concept two
tracks are possible. The first is to restrict the sets from which players may choose mental
states. We used this approach in an earlier section when we restricted the set of mental
states to include only utility functions representing inequality aversion. The second track is
to introduce mixed strategies. At first this may sound puzzling: how can the introduction
of mixed strategies shrink the set of equilibria? Indeed, in our equilibrium concept with
pure strategies mental equilibria can arise simply due to the fact that players’ deviations
in choosing mental states lead to (mental) games that fail to have pure strategy equilibria.
In such a case the conditions defining a mental equilibrium vacuously apply. By allowing
mixed strategies we can guarantee that no matter what deviation a player undertakes, there
will always be a Nash equilibrium in the new mental game. This expands the prospects of
profitable deviation and can reduce the set of mental equilibria. Indeed, we will show that
if we allow for mixed strategy equilibria in the mental games, then mental equilibria have a
predictive power also for a large number of players. In our new solution concept the choice
of mental states is pure but players’ mental states can play a mixed strategy. For each player
i, we denote by ∆i the set of mixed strategies of player i. A mixed mental equilibrium is
a profile of mixed strategies7 x ∈ Πi∈N ∆i such that the following two conditions are

7 Note that the set of mixed strategies also includes all the pure strategies.
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satisfied:
(1) x is a mixed strategy equilibrium of the game (N,S, u).
(2) There exists no player i, a mental state u3i, and a mixed strategy equilibrium π3 of

the game (N,S, u3i, u−i) with Ui(π3) > Ui(π).
Unlike the pure case where every pure Nash equilibrium is a mental equilibrium in the

mixed version, we have:

Example 6: A Nash equilibrium of the game may not be a mixed mental equilibrium:
Consider the following two-person game:

1,1 0,2
0,0 1,-1

The game has a unique Nash equilibrium which is fully mixed. In this equilibrium both
players assign a probability 1/2 to each of their strategies. Suppose by way of contradiction
that this is a mental equilibrium and let the following game be the mental game supporting
it:

a1, b1 a2, b2
a3, b3 a4, b4

For the strategy profile [( 12 ,
1
2 ); (

1
2 ,

1
2)] to be an equilibrium in the mental game we must

have one of the following sets of inequalities:
b1 ≤ b2 and b4 ≤ b3 and a3 ≤ a1 and a2 ≤ a4 or
b1 ≥ b2 and b4 ≥ b3 and a3 ≥ a1 and a2 ≥ a4
In the first case player 2 is better off replacing his mental state with one in which the

left strategy is dominant, and in the other case player 1 is better off changing his mental
state to one in which his top strategy is dominant. In both cases a new equilibrium of
(top,left) arises, yielding both players a payoff of 1 (in the original game), which is higher
than the payoff of 1/2 that they both get under the putative mental equilibrium. Thus arises
a contradiction showing that the Nash equilibrium is not a mixed mental equilibrium.

We further show that the game has a mental equilibrium of (1,1). For this we take the

mental state game 1,1 0,0
0,0 1,1 , where (top,left) is an equilibrium. Clearly player 1 has no

incentive to change his mental state since 1 is the highest payoff he can get. Consider the
other player. Player 2 can be better off with a different mental state if either (top,right) can
be made an equilibrium or there is some mixed strategy equilibrium yielding more than 1 to
player 2. The former case is impossible since 1’s mental state will deviate from (top,right)
to play bottom. Concerning the latter case if there is a mixed equilibrium 2’s mental state’s
strategy must be (1/2,1/2) (to make player 1 indifferent between his two strategies), and
so the only possible deviation for player 2 is a mental state that assigns a higher payoff
for (top,right). If this payoff is greater than 1 then the new game has a unique equilibrium
which is again (top,left); if the payoff is less than 1, then player 1’s mental state must assign
a higher probability to bottom (in order to make player 2’s mental state indifferent). This
means that the mixed strategy equilibrium will yield an expected payoff of less than 1/2 in
the original game for player 2. Hence, player 2 cannot profitably deviate in choosing his
mental state.

We now go back to the famous public good game that we discussed in the Introduction
to show that the notion of mixed mental equilibrium is rather instructive for this game no
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matter how large it is.
Example 7: The social dilemma game/The public good game.
n players hold an endowment of w > 0 each. Each player has to decide whether to

contribute to the endowment (choose 1) or not (choose 0). The total endowment contributed
is multiplied by a factor 1 < k < n and divided equally among all players. Thus supposing
that r players contribute, the payoff for a player who chooses 1 is krwn −w and the payoff for
a player who chooses 0 is krw

n . Note that the unique equilibrium in the game is (0, ...., 0),
but the profile that maximizes social welfare is (1, ...., 1).

Observation 8: A strategy profile in the public good game is a mental equilibrium if
and only if either no one contributes or the number of contributors is at least nk .

Proof: We first show that any profile in which the number of contributors is positive
but with a proportion of less than 1

k cannot be a mental equilibrium. Suppose by way
of contradiction that such an equilibrium exists. Consider a player i whose mental state
contributes. Player i’s payoff in such an equilibrium is krw

n − w. Suppose that this player
assigns a different mental state than choosing 0 as a dominant strategy. The new mental
game must have an equilibrium (in pure or mixed strategies). In the worst-case scenario
(for player i) this equilibrium is (0, ..., 0), in which case player i’s payoff will be w. If the
proportion of contributors is less than 1

k , then w > krw
n and player i is better off deviating.

If the equilibrium is not (0, ..., 0), then with positive probability some players contribute
in the equilibrium of the new mental game and the expected equilibrium payoff of player i
is greater than 0, which makes deviation even more attractive. We now show that a profile
with a proportion of contributors p ≥ 1

k is a mental equilibrium. Consider such a profile
and denote by T the set of players who choose 0 and by N − T the players who choose
1. To show that this profile is a mental equilibrium we assign the following mental states
to players. For each player in N − T we assign a mental state that prefers to choose 1
if and only if the proportion of agents who choose 1 is at least p (otherwise he prefers to
choose 0). For each player in T we assign a mental state whose preferences are identical to
those of the other players (i.e., choosing 0 is a dominant strategy). Given this set of mental
states it is clear that the underlying strategy profile is an equilibrium of the mental game. It
therefore remains to show that condition (2) in the definition of mental equilibrium applies.
Clearly no player in T can be better off deviating. Assigning a different mental state will
trigger no one else to contribute in the mental game. Consider now a player i in N − T .
Suppose i nominates a different mental state and assume by way of contradiction that π3
is the new equilibrium with respect to which player i is made better off. If the mental
state of player i chooses 1 with probability 1 in π3, then player i is neither better off nor
worse off when deviating and π3 is identical to the original profile. Suppose therefore that
the mental state of player i chooses 0 with positive probability in π3. Since each mental
state whose player is in T has a dominant strategy to choose 0 the expected proportion of
mental states that choose 1 in π3 is less than p. But this means that each mental state whose
player is in N − T has a best response to π3, which is choosing zero, which contradicts
π3 being an equilibrium. To complete the proof of the proposition it remains to show that
(0, ...., 0) is a mental equilibrium. This is done by assigning to each player i a mental state
with preferences identical to those of player i. Since choosing 0 is a dominant strategy for
each player, (0, ...., 0) is a Nash equilibrium in the mental game and no player can be made
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better off by assigning a different mental state.
The attractive property of mental equilibria when applied to the public good game is

that in contrast to the concept of Nash equilibrium where the set of equilibria is invariant
to the value of k (i.e., the extent to which joint contribution is socially beneficial), the set
of mental equilibria strongly depends on k in a very intuitive way. As k grows the social
benefit from joint contribution become substantial even when the number of contributors
is low; this allows for more strategy profiles with a small number of contributors to be
sustainable as equilibria.

The observation made in the example above that (1, 0, ..., 0) cannot be a mental equi-
librium can be generalized:

LetG be an n-person game. For a mixed strategy profile x denote by fi(x) the expected
payoff for player i under the profile x. Let the payoff that player i can guarantee himself re-
gardless of what the other players are doing be denoted by ai = maxxi∈∆i minx−i∈∆i fi(x1, ..., xn).

Proposition 6: Any mixed mental equilibrium must yield each player i a payoff of at
least ai.

Proof: Suppose that x = (x1, ..., xn) is a mental equilibrium with fi(x) < ai. Suppose
thatG∗ is the mental game sustaining this equilibrium. We denote by 0i the payoff function
of player i that assigns a zero payoff for all strategy profiles. Consider player i changing his
mental state by choosing the mental state 0i (if 0i is the original mental state, then player i
will choose any other mental state which is indifferent between all the strategy profiles) and
denote by G∗0i the game obtained by replacing the mental state of player i with 0i. Define
x0i = argmaxxi∈∆i

minx−i∈∆i fi(x1, ..., xn), and let G∗
x0i

be the game defined on the set

of players N\{i} such that fx
0
i

j (xN\{i}) = fj(x
0
i , xN\{i}). Let z be a Nash equilibrium

of the game G∗
x0i

. We claim that (x0i , z) is a Nash equilibrium of the game G∗0i . Indeed
the fact that no player in N\{i} can do better by deviating follows from the fact that z is
a Nash equilibrium of G∗

x0i
. The fact that i cannot do better is a consequence of i being

indifferent between all his strategies. By the definition of x0i we have that fi(x0i , z) ≥ ai,
which contradicts the assumption that x is a mixed mental equilibrium.

Note that Example 7 implies that the converse of Proposition 6 is not true. The Nash
equilibrium of the game (which is not a mental equilibrium) yields a payoff vector of (12 ,

1
2),

which exceeds the maxmin vector (0, 0).
Corollary 3: In two-person zero-sum games there is a unique mixed mental equilib-

rium. This equilibrium yields the value of the game.
Proof: Follows directly from the proposition above.

We conclude with another useful property of mental equilibrium:
Proposition 7: LetG be an n-person game and let s and s3 be two pure strategy profiles

yielding the payoff vectors u = (u1, ..., un) and v = (v1, ..., vn) respectively and such that
v dominates u (vi ≥ ui). If s is a mixed mental equilibrium, then s3 must be a mixed mental
equilibrium as well.

Proof: Let s = (s1, ...sn) be the pure strategy profile that sustains u and let s3 =
(s31, ...s3n) be the strategy profile that sustains v. Let C = (C1, C2, ..., Cn) be the mental
game supporting u as a mental equilibrium (Ci is a payoff function of the mental state of
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player i in the mental game). By supposition s is a Nash equilibrium of C. Since both s
and s3 are pure strategy profiles we can rename strategies for each player so that the new
game C3 is isomorphic to C up to strategy names and such that s3 is an equilibrium of C3.
Suppose by way of contradiction that s3 is not a mixed mental equilibrium. Then it must be
the case that some player i can change his mental state from C3i to C∗i in such a way that in
the new mental game (C∗i , C

3
−i) there exists another equilibrium s∗ withGi(s∗) > Gi(s

3
).

But the isomorphism between C and C3 implies that there is a mental state of player i Ci
such that s∗is an equilibrium of the game (Ci, C−i)withGi(s∗) > Gi(s

3
) ≥ Gi(s), which

contradicts the fact that s is a mental equilibrium.
As a corollary of Proposition 7 we obtain that the cartel behavior in an oligopoly/Cournot

game is supported by a mental equilibrium. This follows from the fact that being a pure
Nash equilibrium, the Cournot equilibrium is a mental equilibrium. Since cartel behavior
yields a higher payoff for each player, Proposition 7 implies that it must also be a mental
equilibrium.

8. Appendix
We provide two examples showing that neither of the two sides of Proposition 1 applies to
three-person games:

Example 8: Consider the following three-person game:
L L R
U 1,1,1 0,0,0
D 1,2,3 1,3,0

R L R
U 1,1,2 2,0,0
D 2,0,0 1,1,1

The maxmin vector of this game is (1, 0, 0). Hence, (U,R,L) does not pay player 1
at least his maxmin value in this game. However, it is a mental equilibrium. To verify the
claim consider the following profile of mental states:

L L R
U 1,0,0 1,1,1
D 0,0,1 0,1,0

R L R
U 0,0,1 1,1,0
D 1,1,0 0,0,1

Notice that (U,R,L) is a Nash equilibrium of this game. Suppose now that one player
unilaterally deviates to a different mental state; then the only possible Nash equilibria dif-
ferent from (U,R,L) are (D,L,R) and (U,R,R). However, these can be Nash equilibria
only if player 3 is the deviating player. Since U3(U,R,L) = U3(D,L,R) = U3(U,R,R),
we must have that (U,R,L) is a mental equilibrium of this game.

Example 9: Consider the following three-person game:
L L R
U 0,0,0 1,1,1
D 1,1,1 1,1,1

R L R
U 1,1,1 1,0,1
D 0,1,1 1,1,0

The maxmin vector of this game is (0, 0, 0) and all strategy profiles of the game pay each
player at least his maxmin value, in particular the profile (U,L,L). However, this profile
is not a mental equilibrium. Suppose by way of contradiction that it is. Then, there must
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exist a profile of mental states satisfying the conditions of mental equilibrium. The second
condition of the definition (i.e., no player is better off changing his mental state) implies the
following: (A) for the strategy profiles (U,R,L), (D,L,L), (D,R,L), (U,L,R), at least
two players are willing to deviate, and (B) in (D,L,R) either player 1 wants to deviate or
players 2 and 3 want to deviate, and in (U,R,R) either player 2 wants to deviate or players
1 and 3 want to deviate, and in (D,R,R) either player 3 wants to deviate or players 1 and
2 want to deviate. It is easy to verify that (A) and (B) cannot be simultaneously consistent.
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