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Abstract

We consider model selection for non-linear dynamic equations with more candidate variables than
observations, based on a general class of non-linear-in-the-variables functions, addressing possible
location shifts by impulse-indicator saturation. After an automatic search delivers a simplified con-
gruent terminal model, an encompassing test can be implemented against an investigator’s preferred
non-linear function. When that is non-linear in the parameters, such as a threshold model, the overall
approach can only be semi-automatic. The method is applied to re-analyze an empirical model of real
wages in the UK over 1860–2004, updated and extended to 2005–2011 for forecast evaluation.
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1 Introduction

The problems confronting the selection of empirical non-linear models are legion. First and foremost
is formulating the correct member from the infinite class of potential non-linear functions that could
describe the economic reality. For aggregate data, one can at best hope for good approximations that
capture the main non-linearities in a relatively constant way. Next, many non-linear in the variables
functions are also non-linear in the parameters, necessitating iterative estimation algorithms which are
probably too slow to implement within a model selection framework. Most aggregate economic time
series are also non-stationary in levels, both from stochastic trends and structural breaks of various kinds.
The latter can often be approximated by non-linearities, and conversely, exacerbating the difficulties of
selection. Worse, an incorrect choice can be damaging for forecasting, wrongly extrapolating a non-
existent shift, or a spurious non-linearity, into a future period. Moreover, all the usual specification and
selection issues remain, including the appropriate set of relevant variables, their correct functional forms
and lag lengths, and handling location shifts and outliers with possible concerns about the endogeneity
of contemporaneous variables and measurement accuracy. The last two can be handled in principle using
the instrumental variables equivalents of the methods we discuss, so we will not otherwise address those
issues here other than checking the exogeneity of contemporaneous conditioning variables.

Model selection commencing from a general class of non-linear-in-the-variables functions which is
then simplified to a congruent terminal model, must be semi-automatic for four reasons. First, there are
almost certainly going to be more candidate variables (N ) in total than observations (T ), necessitating
an initial automatic simplification. Secondly, the non-linearities found during this search process will
usually only be an approximation to the ‘best parsimonious’ non-linear representation for any realistic
data generating process (DGP). Thirdly, a dynamically unstable relation might be selected, which needs
to be checked by an investigator after selection. Fourthly, a post-search encompassing test is required
of the terminal model resulting from the search against an investigator’s preferred function when that
specification is non-linear in the parameters.

Correlations between relevant variables require that they all be included jointly, a seemingly impos-
sible task when N > T . However, resorting to including only a small subset is bound to lead to model
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mis-specification and inconsistent parameter estimates, as well as potential non-constancies (see Hendry,
2009). This Gordian knot has got to be cut in one swoop, rather than slowly unravelled. Like Alexander’s
supposed solution, a human is up to this task only when armed with the appropriate tool, which here
is a computer with automatic model selection software that can handle very large numbers of potential
explanatory variables. We will use Autometrics (see Doornik, 2009a, and Castle, Doornik and Hendry,
2011), though other automatic approaches that can handle more variables than observation are doubtless
applicable, such as RETINA: see Perez-Amaral, Gallo and White (2003, 2005), and Castle (2005).

The structure of the chapter is as follows. Section 2 considers using non-linear models of regime
shifts. §2.1 examines how well systematic shifts are captured by a first-order threshold autoregressive
model (denoted TAR(1)), extended in §2.2 to a logistic smooth transition autoregression (LSTAR), with
the findings summarized in §2.3, then §2.4 considers forecasting from an LSTAR. Section 2 bears di-
rectly on the empirical application in section 4, where non-linear specifications that model non-linearities,
breaks, outliers, and regime shifts are evaluated. Section 3 briefly discusses model selection when there
are more variables than observations. §3.1 discusses testing for non-linearity then §3.2 describes some
non-linear approximations based on polynomials of principal components; §3.3 addresses how multiple
breaks may be detected using impulse-indicator saturation (IIS) as a part of model selection; and §3.4
discusses approximating a smooth transition autoregression. The resulting general formulation for facil-
itating model selection is presented in §3.5. Section 4 provides an empirical application to real wages in
the UK over the past century and a half, re-analyzing Castle and Hendry (2009), updated and extended
to 2005–2011 for forecast evaluation. §4.1 describes the data and theory; §4.2 the re-estimation of the
previous non-linear model; §4.3 the approximating non-linear model, leading to a locally nesting non-
linear model in §4.4; §4.5 estimates an LSTAR model; and §4.6 considers an alternative non-linear model
suggested by Nielsen (2009) using interactive regime-shift dummies. Encompassing tests are computed
in §4.7, but no model is found to encompass all the others, so all the forms of non-linearity considered
approximate the non-linear reaction of real wages to inflation, confirming it is an important empirical phe-
nomenon. Section 5 then reselects using step-indicator saturation (SIS: see Doornik, Hendry and Pretis,
2013) on a general equation which embeds the two equations in §4.4 and §4.6. Section 6 tests the super
exogeneity of the conditioning variables in §4.4 using IIS, and in the model of §5 using SIS. Section 7
presents forecasts for both the growth rate and the level of real wages for the models in §4.4, §4.6 and
§5 on the extended data over the problematic ‘Great Recession’ sample 2005–2011. Section 8 concludes.
The Appendix records detailed data definitions.

2 Non-linear models for structural shifts

In this section we investigate the ability of non-linear models, in the form of threshold and transition
specifications, to characterize regime shifts—changes with sufficient regularities that regimes are re-
visited—as against structural breaks, which are changes in the parameters of the system (see e.g., Hendry
and Mizon, 1998). Our approach aims to detect both, by modelling regime shifts at the same times as
allowing for breaks. Non-linearities in the form of regime shifts in the DGP would appear as structural
breaks in linear-in-variables approximations. This motivates the application of IIS (discussed in §3.3) to
linear models, where breaks matter substantively, and when selecting non-linear models, where indicators
should not be needed if apparent shifts are indeed captured by the non-linearity, while at the same time
protecting against a spurious non-linear fit approximating genuine breaks.

We begin by analysing the probabilities of switching regimes jointly with the magnitudes of the
regime shifts in a threshold autoregressive model of order one (TAR(1)), to investigate detecting shifts
in a simple model of regime change. We then consider the more realistic functional form of an LSTAR
model in a small Monte Carlo. Estimation difficulties result from the inherent trade-off between the fre-
quencies of regime shifts and the magnitudes of the shifts between regimes. Estimation requires enough
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obervations in all regimes, but the regimes need to be sufficiently distinct. We then look at the forecast
performance of the LSTAR model compared to a linear first-order autoregressive process, AR(1). We
confirm that it is often difficult to beat forecasts from the AR(1) model on a root mean square forecast
error (RMSFE) criterion (see e.g., Clements and Krolzig, 1998). Unfavourable cases for LSTAR include
situations when the mean shift between regimes is small, so a linear approximation is reasonable, or when
the frequency of regime shifts is low, so a linear approximation performs well in small samples. Neverthe-
less, the empirical application in section 4 finds the non-linear model forecasts are superior. One possible
explanation is that a non-linear in the variables model that uses interaction dummies to capture the regime
shifts is more flexible and easier to estimate than the non-linear in the parameters LSTAR specification.
The empirical exercise in §4 also finds that the linear in the parameters approximation to the LSTAR
specification described in §3.4 is a feasible alternative, as it is not encompassed by the LSTAR.

2.1 Shifts captured by a threshold autoregressive model (TAR)

We first analyze estimation issues in regime-shift models by considering a TAR model of the form:

xt =
∑

1≤i≤m

(
βi,0 + βi,1xt−1 + . . .+ βi,pxt−p + σiηt

)
I (ci−1 ≤ xt−d ≤ ci) (1)

where ci are the thresholds, p is the longest lag, m is the number of regimes and d is the delay: see Tong
(1983). We consider a delay of 1 period, d = 1, m = 2 regimes and p = 1, generating two regimes
(upper and lower), in each of which we analyze the process as an autoregressive process of order 1, then
simulate the TAR(1). Such an analysis ignores the dynamics from the previous regime shift, focusing on
the properties of a stationary Gaussian AR(1) process within each regime, to ascertain the difficulties of
observing enough data in each regime to sustain accurate estimation.

Let an AR(1) process in {yt} commence in a ‘lower’ regime, defined by yt−1 ≤ c:

yt|{yt−1≤c} = µ+ ρyt−1 + εt (2)

where εt ∼ IN [0, 1]. We use parameter values of µ = 0 and ρ = 0.8, giving a realistic degree of
persistence for macroeconomic time series, which results in V [yt] = σ2y = 1

(1−ρ2) = 2.78 within that
regime. The ‘upper’ regime with µ∗ > µ is generated by:

yt|{yt−1>c} = µ∗ + ρyt−1 + εt (3)

where the error has the same distribution in both regimes. To calculate a shift in the mean of the process
of magnitude λσy, where λ = 1, ..., 5, we require E [yt] to shift from 0 in (2) to µ∗

(1−ρ) in (3). Hence, we
let µ∗ = 1

3 ,
2
3 , 1,

4
3 and 5

3 , to create shifts in mean of 1 to 5 standard deviations between regimes.
A 5% probability of a shift in the right-hand tail of the distribution of yt|{yt−1≤c} can be calculated

as P
(
yt|{yt−1≤c}−µ

σy
> 1.645

)
≈ 0.05, since

yt|{yt−1≤c}−µ
σy

∼ N [0, 1] within the regime, and hence the
threshold c = (1.645× σy) = 2.74 will deliver a 5% probability of shifting to the upper regime. Table 1
records a range of regime-shift probabilities for varying thresholds, given the parameters specified which
determine σ2y = 2.78.

The table demonstrates that there is a trade-off between the magnitude of a regime shift and the
probability of a shift. A large magnitude implies a small probability of shifting again, once in the new
regime, such that the number of observations in one of the regimes will likely be small and estimation
difficult. A smaller mean shift implies that there is more chance of switching between regimes, which
should reduce the parameter estimation uncertainty, but a smaller regime shift will be more difficult to
detect, so a linear representation may prove preferable. To investigate this, we calculate the probability of
switching back to the initial (lower) regime once in the upper regime. Commencing with (2), a threshold
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Threshold Probability of regime shift
3.877 1%
2.741 5%
2.135 10%
1.402 20%

Table 1: Thresholds for the probability of a shift in the right-hand tail of the initial lower regime to the
upper regime.

of c = 2.74 will give a 5% probability of a break in the right-hand tail. Consider a regime shift of 2σy
so the intercept shifts from µ = 0 to µ∗ = 2/3, resulting in the unconditional mean E [yt]=0 shifting to
E
[
yt|{yt−1>c}

]
= µ∗

1−ρ = 10/3. Once in the upper regime (3), the probability of returning to the lower
regime can be calculated by considering the left-hand tail:

P
(
yt|{yt−1>c} ≤ 2.74

)
(4)

This is computed by rescaling to the standard normal distribution:

P

(
yt ≤

c− E
[
yt|{yt−1>c}

]
σy

)
= P

(
yt ≤

2.74− 10/3

5/3

)
' 0.361 (5)

so the probability of switching back to the lower regime is approximately 36%.

Magnitude of mean shift to new regime
p c 1σy 2σy 3σy 4σy 5σy
1% 3.88 91% 63% 25% 4.7% 0.4%
5% 2.74 74% 36% 8.8% 0.9% 0.1%
10% 2.14 61% 24% 4.3% 0.3% 0.0%
20% 1.40 44% 12% 1.5% 0.0% 0.0%

Table 2: The probability p of a shift from the upper regime back to the lower regime, where c is the
corresponding threshold value when µ = 0, ρ = 0.8, σε = 1.

Table 2 records these probabilities for a range of mean shift magnitudes and thresholds. The results
are dependent on the magnitude of the regime shift and the threshold value (which corresponds to the
probability, p, of a regime shift from the lower to upper regime). When the mean shift is large, the
probability of crossing the threshold again to return to the initial regime is low. Likewise, when there is a
high probability of switching, the threshold will be small. There is a trade-off between having sufficiently
distinct regimes that are of a substantive magnitude to estimate the model, whilst ensuring the mean shifts
are not too large so the process ‘gets stuck’ in one regime. This is a small-sample problem as, with enough
data, estimation of the two regimes model should be feasible, assuming that the DGP is known.

2.2 Logistic smooth transition autoregression (LSTAR)

Rather than a jump at the threshold c as in §2.1, consider an LSTAR formulation:

yt = µ+ ρyt−1 + µ∗
[
1 + exp

(
−γ
(
yt−1 − c
σy

))]−1
+ εt (6)
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developed by Maddala (1977), Granger and Teräsvirta (1993), and Teräsvirta (1994).1 In (6), γ deter-
mines the rapidity of the transition from 0 to 1 as a function of the transition variable, yt−1 with standard
deviation σy, and c determines the transition point. Both γ and c must be estimated, as in Teräsvirta
(1994) and Franses and Van Dijk (2000).2 Estimation of γ is difficult, as the likelihood function is not
well behaved even with a known functional form and γ > 0 as an identifying restriction: see Granger and
Teräsvirta (1993), p.123. Let:

F (zt) = (1 + exp {−zt})−1 (7)

where:

zt = γ

(
yt−1 − c
σy

)
(8)

As F (·) is the logistic cdf, an upper bound on zt of approximately 10 can be deduced from Cheby-
shev’s inequality, Pr (zt ≥ 10) ≤ 0.00005, suggesting an upper bound on γ̂ of around 5. For γ̂ ≥ 5, the
transition function approximates a two regime-switching process, so (6) simplifies to a switching autore-
gression. If γ̂ is close to zero, the increased uncertainty regarding the regime increases the uncertainty of
other parameter estimates, but this is less likely after ensuring that the relationship is non-linear.

To illustrate, we set γ = 3 and generate T = 100 observations, after discarding an initial 100 obser-
vations. Thus, the beginning of the sample could lie in either the upper or lower regime. Table 3 records
the correlation between the LSTAR and the TAR model for varying γ for M = 10, 000 replications.
We report the correlation coefficient for 3 different shift magnitudes (1σy, 3σy and 5σy) and for various
shift probabilities (1% to 20%). Increasing γ increases the correlation between the LSTAR and TAR as
the speed of transition is increased, and by γ = 5, the smooth transition is almost equivalent to a step
shift. There is a non-linear relationship between the size of shift, probability of shift, and the correlation
between the LSTAR and TAR models. For small shifts (i.e., σy), increasing the probability of a shift
reduces their correlation, but as the magnitude of the shift increases, the correlation first falls and then in-
creases. The lowest correlation between the two models occurs when the shift is large but the probability
of switching is low, or when the shift is moderate but the probability of a shift is moderate too. In these
cases, the occurrence of shifts is likely to be higher, and the divergence between the two models increases
as the smooth transition component has a larger impact.

We next investigate the probability of detecting a shift with a Monte Carlo experiment, where a shift
in the LSTAR model is any realisation that exceeds the threshold, c. The transition function for one draw
at γ = 4 is recorded in Figure 1 (the small volatility in the LSTAR function close to 0 or 1 does not
count as a transition). Observe the divergent behaviour of the two transition functions at the beginning
of the sample (even though the initial 100 observations are discarded). It is possible to get very different
behaviour from the two transitions depending on past values, but the correlations indicate that this is rare.

We simulate 10,000 replications of the DGP (6) for a sample size of 100, using a value of γ = 3
for all replications. Table 4 records the number of observations in the upper regime, the number of
regime shifts on average, the number of shifts from the lower to the upper regime, and the average
number of observations in the upper regime before a switch. The threshold parameter takes four values,
corresponding to a regime shift probability from the lower to the upper regime of 1%, 5%, 10% and 20%.
Three mean shift sizes are also examined: 1σy, 3σy and 5σy. The LSTAR model estimates more regime
shifts on average than the TAR model. For small shifts, the number of regime switches increases as the
probability of a regime shift increases, but for moderate shifts this is not monotonic. As the probability of
a mean shift increases, the threshold falls and hence the probability of switching back is lower for larger

1Variations result in other regime-switching models including smooth-transition autoregressions (STAR), see Chan and Tong
(1986) and Luukkonen, Saikkonen and Teräsvirta (1988); TAR as above; switching regression models, see Quandt (1983); and
exponential autoregression models (EAR), see Priestley (1981).

2A set of non-linear functions could be generated for a range of values of γ, c and included in the initial general model, with
an automatic search procedure like Autometrics used to select the functions with the most appropriate values.
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c γ = 1 γ = 3 γ = 5 γ = 10 γ = 100

3.87 1σy 0.9983 0.9996 0.9998 0.9999 1.0000
3σy 0.9527 0.9796 0.9863 0.9912 0.9987
5σy 0.7026 0.8475 0.9099 0.9502 0.9932

2.74 1σy 0.9956 0.9986 0.9992 0.9996 0.9999
3σy 0.8606 0.9186 0.9415 0.9630 0.9933
5σy 0.8867 0.9333 0.9530 0.9705 0.9960

2.14 1σy 0.9922 0.9975 0.9987 0.9993 0.9999
3σy 0.8685 0.9233 0.9454 0.9661 0.9936
5σy 0.9666 0.9842 0.9878 0.9926 0.9989

1.40 1σy 0.9873 0.9963 0.9980 0.9990 0.9998
3σy 0.9349 0.9677 0.9779 0.9858 0.9969
5σy 0.9935 0.9991 0.9994 0.9996 0.9999

Table 3: Correlation between TAR(1) and LSTAR(1) for T = 100

mean shifts. When the mean shifts are large, the process tends to stay in one regime. Even for moderate
breaks, there are so few regime shifts that estimation could prove difficult.

LSTAR transition (γ=4) TAR transition 
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LSTAR transition (γ=4) TAR transition 

Figure 1: Transition functions for TAR and LSTAR models: γ = 4

Finally, we investigate the impact of the occurrence of regime switches on estimation of the LSTAR
model. Table 5 reports the equation standard error and the Schwarz information criterion SIC (see
Schwarz, 1978) for the correctly specified LSTAR model and for a mis-specified AR(1) process (which
would be correctly specified if there were no regime shifts in the in-sample period). When the process
is in the upper regime, the linear intercept is given by µ + µ∗. As the likelihood function is often flat,
convergence to extreme values can occur. Hence, we exclude any draw that either does not converge or
that results in any of the intercept or autoregressive parameters (i.e. µ, µ∗ or ρ) exceeding 10 in absolute
value. We record the number of excluded replications as errors. 1,000 replications are undertaken.

The estimates for the LSTAR model are poor, reflected in the large mean equation standard errors, and
the huge Monte Carlo standard deviations on both the equation standard error and SIC, which highlight
that some draws lead to very poor estimates. The equation standard errors of the mis-specified AR(1)
model are close to the DGP standard error of unity regardless of the shift probability or magnitude,
suggesting that few shifts are generated by this DGP. Thus, estimation issues may hinder the use of
the LSTAR model in small samples when shifts are not large and frequent. The estimates seem overly
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c 3.87 2.74 2.14 1.40
TAR LSTAR TAR LSTAR TAR LSTAR TAR LSTAR

1σy No. obs upper 1.38 1.51 7.68 8.20 16.16 16.84 33.15 33.66
No. shifts 1.25 1.50 5.05 5.96 8.36 9.81 12.32 14.26

No. shifts upper 0.63 0.75 2.53 2.98 4.18 4.91 6.16 7.13
Ave. length upper 2.13 1.96 3.01 2.73 3.84 3.41 5.41 4.73

3σy No. obs upper 5.32 5.81 37.81 38.28 67.90 67.65 91.05 90.36
No. shifts 1.26 2.23 3.55 6.26 3.40 5.89 1.76 3.13

No. shifts upper 0.63 1.12 1.78 3.14 1.71 2.95 0.88 1.57
Ave. length upper 7.66 4.99 18.12 11.97 27.36 20.42 37.30 31.40

5σy No. obs upper 42.76 55.96 92.67 97.83 99.06 99.81 99.97 99.99
No. shifts 0.49 1.24 0.21 0.23 0.05 0.05 0.01 0.01

No. shifts upper 0.33 0.70 0.16 0.13 0.04 0.02 0.00 0.00
Ave. length upper 26.70 23.28 33.57 38.02 34.45 43.68 41.86 36.10

Table 4: Probability of a shift in the TAR and LSTAR models. (γ = 3)

c 3.87 2.74 2.14 1.40
LSTAR AR LSTAR AR LSTAR AR LSTAR AR

1σy σ̂ 11.164
(105.18)

1.001
(0.07)

13.402
(171.76)

1.004
(0.07)

10.791
(82.39)

1.003
(0.07)

24.602
(260.56)

1.002
(0.07)

SIC 0.942
(2.06)

0.070
(0.14)

1.085
(2.15)

0.075
(0.14)

1.291
(2.32)

0.072
(0.14)

1.596
(2.64)

0.070
(0.14)

No. errors 23.6% 20.2% 17.3% 18.4%
3σy σ̂ 19.798

(229.32)
1.005
(0.07)

10.266
(56.77)

1.011
(0.07)

40.355
(772.92)

1.011
(0.07)

7.847
(57.62)

1.003
(0.07)

SIC 1.066
(2.27)

0.076
(0.14)

1.663
(2.50)

0.089
(0.14)

1.774
(2.71)

0.087
(0.15)

1.086
(2.15)

0.073
(0.15)

No. errors 18.7% 20.8% 19.2% 13.3%
5σy σ̂ 5.809

(38.55)
1.008
(0.08)

2.555
(11.29)

1.000
(0.07)

7.432
(112.61)

0.999
(0.07)

2.433
(23.10)

0.999
(0.07)

SIC 1.020
(1.94)

0.083
(0.15)

0.532
(1.33)

0.067
(0.14)

0.495
(1.44)

0.066
(0.14)

0.399
(1.08)

0.064
(0.14)

No. errors 14.0% 7.4% 6.5% 5.6%

Table 5: Equation standard error and SIC for the LSTAR(1) and AR(1) models, with Monte Carlo standard
deviations reported in parentheses. (γ = 3)
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dependent on the starting values for the optimisation, which here were the actual DGP values. Table 6
compares these results to initial values of 0 and 1 for all parameters for a 5% probability of a shift and
a shift magnitude of 3σy. The mean equation standard error is substantially increased by these initial
conditions, again highlighting difficulties with estimating the LSTAR model.

2.3 In-sample summary

The numbers and magnitudes of shifts are fundamental to the estimation of threshold models. In the event
that shifts are rare, threshold values will be large, implying the probability of switching regime will be
low. On the other hand, if the probability of a shift is high, the threshold will be low and if the shift
magnitude is large, the probability of switching back to the initial regime will be low. Estimation of the
LSTAR model seems difficult because the likelihood function is not always well behaved. The Monte
Carlo evidence suggests estimating the DGP is substantially harder than approximating it by an AR(1)
process, regardless of the shift probability or size. These results may be due to small sample sizes which
imply a lack of shifts.3

Initial Conditions
DGP 0 1

σ̂ 10.3
(56.77)

1397
(15927)

122.1
(1686)

SIC 1.663
(2.50)

7.212
(4.61)

2.476
(3.26)

No. errors 20.8% 4.6% 31.2%

Table 6: The impact of initial values on the estimates of the LSTAR model (for a shift probability of 5%
with a magnitude of 3σy).

2.4 Forecasting using the LSTAR model

In this section, building on Castle, Fawcett and Hendry (2011), we evaluate the forecast performance of
the LSTAR model for a simple DGP to provide guidance on interpreting the subsequent empirical results:
general discussions of forecasting with LSTAR and other non-linear models are provided in Lundbergh
and Teräsvirta (2002) and Kock and Teräsvirta (2011). The forecasting exercise considers two sample
sizes; T = 100 and T = 1000, where H = 20 1-step ahead forecasts are computed for the sample
size of 100 and H = 200 forecasts are computed when T = 1000. The DGP is given by equation (6),
with γ = 3. 1000 replications were undertaken and forecasts were computed using in-sample parameter
estimates from the initial conditions set at the DGP values. Draws in which the parameter estimates were
extreme were discarded, but a number of draws were still erratic, leading to large RMSFEs. Hence,
we report the percentage of draws in which the RMSFE of the LSTAR model was less than that of
a benchmark AR(1) forecast. If the transition function is 0 or 1 over the entire in-sample period, the
LSTAR model simplifies to an AR(1) process so when regime shifts are infrequent, many draws produce
identical forecasts from the two models. Thus, Table 7 reports the proportion of draws in which the
RMSFEs for the LSTAR model were equal to the AR(1) model, or lower than those of the AR(1) model.
We also compared peformance to a random walk, but both LSTAR and AR(1) were superior.

For small regime shifts (σy), it is difficult to beat the AR(1) model—less than 40% of draws deliver
better forecasts. Increasing the sample size does not yield greatly improved forecast performance either,
so the estimated correctly specified model remains a poor representation of the DGP. The probability

3Nevertheless, we focus on the LSTAR, rather than the TAR, model in the subsequent analysis as the more general model.
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c 3.87 2.74 2.14 1.40
T 100 1000 100 1000 100 1000 100 1000
1σy

=AR(1) 0.08 0.26 0.04 0.18 0.04 0.16 0.03 0.16
<AR(1) 0.35 0.27 0.38 0.36 0.37 0.40 0.36 0.38
3σy

=AR(1) 0.07 0.07 0.03 0.03 0.03 0.03 0.17 0.05
<AR(1) 0.40 0.70 0.47 0.81 0.50 0.83 0.39 0.80
5σy

=AR(1) 0.23 0.02 0.62 0.45 0.71 0.69 0.81 0.82
<AR(1) 0.41 0.93 0.17 0.34 0.13 0.13 0.08 0.07

Table 7: Percentages of draws in which the LSTAR model RMSFE is equal to or less than that of the
AR(1) model.

that the non-linear model is identical to the AR(1) model increases with sample size. Hence, with small
regime changes, even large sample sizes do not pick up the non-linearity.

With moderate sized regime shifts (3σy), it is easier to distinguish between the LSTAR and AR(1)
model regardless of the probability of a switch. At small samples, the LSTAR forecast performance is
poor relative to the AR(1) model, but at larger sample sizes, the correct model performs much better.

Finally, for large shifts, the LSTAR model often coincides with the AR(1) process for the given
sample, particularly as the probability of a regime shift increases: once in the upper regime, the process
is likely to remain there, so an AR(1) model is then correct. Although the LSTAR nests the AR(1), so
remains correctly specified, it is over-parameterized, and there is a lack of identification.

3 Model selection with more variables than observations

The difficulties just described are compounded when a multi-path search procedure like Autometrics is
used: iterative estimation of such non-linear-in-parameters models during multi-path search over other
variables, lags and possible breaks seems infeasible. Thus, after describing a test for non-linearity in §3.1,
we consider approximating non-linearites by polynomials (§3.2), and impulse-indicator saturation (IIS)
for tackling multiple location shifts (§3.3), then develop an approximation to an LSTAR model (§3.4).

3.1 Testing for non-linearity

An index test for non-linearity can be computed to determine whether the initial linear specification
should include non-linear functions. Castle and Hendry (2010) provide details of the test, in which
principal components of the set of possible linear regressors are computed and their non-linear functions
are jointly tested. Let xt denote the set of candidate regressors where xt ∼ Dn [µ,Ω] and Ω is their
symmetric, positive-definite variance-covariance matrix. Factorize Ω = HΛH′, where H is the matrix of
eigenvectors of Ω and Λ the corresponding eigenvalues, such that H′H = In. Since Λ1/2H′ΩHΛ1/2 =
In, let zt = Λ1/2H′ (xt − µ) ∼ Dn [0, I]. Specify u1,i,t = z2i,t; u2,i,t = z3i,t; and u3,i,t = zi,te

−|zi,t|, such
that under the null, a test of δ1 = δ2 = δ3 = 0 in:

yt = β0 + β′xt + δ′1u1,t + δ′2u2,t + δ′3u3,t + εt (9)

is an exact F-test with 3n degrees of freedom for fixed regressors (approximately F otherwise). This
compares to

{
n(n+1)

2

(
1 + (2n+1)

3

)
+ n2

}
degrees of freedom for a general test of all squares, cubics

and exponentials of the original regressors, which would often lead to more variables than observations.
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3.2 Non-linear approximations

The class of non-linear-in-variables functions that might be entertained is vast. Viewed as approximations
to an unknown non-linear relation, the key consideration is how closely a given specification might rep-
resent the unknown member from a potentially wide class of functions. Viewed from a model selection
and estimation perspective, the important issue becomes the parsimony of that approximation, so rela-
tively precise estimates can be obtained. There are many possible choices for the first stage, including
polynomial expansions, trigonometric and hypergeometric series, and squashing functions. Third-order
polynomials augmented by exponentials of the principal components (PCs) of the levels of the original
variables, as used in the above index test for non-linearity, provide a low-dimensional solution when inter-
actions between non-linear functions matter. However, absent such interactions, then non-linear functions
of the individual variables may prove more parsimonious. In the empirical example below, the cross cor-
relations between variables are relatively low (other than productivity and real wages), so we use the
latter. Either way, after selecting a parsimonious terminal model from general polynomials, seeking a fur-
ther reduction by an encompassing test against a theory-based form provides the second, non-automatic,
stage of selection. §3.4 considers a polynomial approximation to LSTAR.

3.3 Impulse-indicator saturation

Impulse-indicator saturation includes in the set of candidate variables an impulse indicator for every
observation, 1t=j∀t = 1, . . . , T , ensuring N > T . IIS is analyzed by Hendry, Johansen and Santos
(2008) and Johansen and Nielsen (2009), who show that the costs of including T indicators under the
null that none is relevant are low when α is set at 1/T , namely 1% when T = 100 despite selecting
over 100 variables. Castle, Doornik and Hendry (2012) show that IIS has good power to detect outliers,
location shifts and alleviate problems of inference from fat-tailed distributions. Conversely, not handling
outliers and shifts can distort inference and, especially in the context of non-linear model selection, can
lead to mistaken choices of functional form (see e.g., Castle and Hendry, 2011). Section 6 considers the
application of IIS to test the exogeneity of contemporaneous conditioning variables.

3.4 Approximating a smooth transition autoregression

The logistic transition function F (zt) can be approximated by a 3rd-order Taylor expansion as:

F (zt) '
(

1

2
+
zt
4
− z3t

48

)
(10)

The z2t term drops out as ∂2F (z)/∂z2cz=0 = 0. However, a quadratic component could still be included
in the model to allow for interactions like yt−1F (zt). For an LSTAR like (6), this approximation delivers:

yt = µ∗∗ + ρyt−1 + µ∗1y
2
t−1 + µ∗2y

3
t−1 + vt (11)

Although the transition variable is scaled by both γ and σ̂y, they are included in the coefficients when
estimating the polynomial approximation. In a univariate setting, the mappings from the coefficients in
(6) to (11) are known. Then (11), and generalizations thereof allowing for lags and location shifts, can be
estimated by non-iterative methods to facilitate selection, subject to vt being approximately distributed as
ID
[
0, σ2v

]
, which can be checked. After selection, a test of linearity in the autoregressive model (11) is a

special case of the test in §3.1, namely whether any of the non-linear functions are retained:

H0 : µ∗1 = µ∗2 = 0 (12)
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Then the LSTAR model can be tested by estimating the version that entailed the approximating model,
and testing the elimination of all the selected approximating terms. For the more general example consid-
ered below, let there be n relevant variables xt of which k ≤ n were retained after selection, denoted x∗t ,
and one transition variable was selected, denoted s1,t, then the test of the approximation to the LSTAR
model would be:

H0 : κ2 = κ3 = κ4 = 0 (13)

in the encompassing regression:

yt = κ′1x
∗
t + κ′2x

∗
t s1,t + κ′3x

∗
t s

2
1,t + κ′4x

∗
t s

3
1,t

+
(
θ′xt

)(
1 + exp

{
−γ
(
st − c
σ̂s

)})−1
+ ηt (14)

This approach ensures that the model is non-linear, and checks whether the LSTAR formulation captures
all of that non-linearity, which occurs only if no additional non-linearities are retained in (14).

3.5 The general formulation

Consider a local DGP of the form:

ψy(L)yt = f
(
ψz1(L)z1,t, . . . , ψzk(L)zk,t;θ

)
+ δ′dt + εt where εt ∼ IN

[
0, σ2ε

]
(15)

where zi,t denotes the set of k linear conditioning variables, ψy(L) and ψzi(L), i = 1, . . . , k are lag poly-
nomials, and dt are dummy variables for t = 1, . . . , T , with θ ∈ Θ. Model selection must address the
specification of the functional form, f (·), the identification of θ, the selection of the potentially relevant
variables, z′t = (z1,t, . . . zk,t) from the available candidates (z1,t, . . . zK,t) where K ≥ k, the lag lengths,
and all outliers and shifts. We approach this problem using an extended general-to-specific methodology,
whereby the initial general unrestricted model (GUM) is specified to nest (15). As the functional form is
unknown and a Taylor expansion of f(·) around zero would result in a very rapidly increasing number
of parameters as K grows, we use the approximating functions discussed above. Similarly, we use IIS to
model the {dt}.

Let wi,t denote either the original variables, zi,t, or their principal components, then the initial general
unrestricted specification with s lags is:

yt =

K∑
i=1

s∑
j=0

βi,jzi,t−j +

K∑
i=1

s∑
j=0

κi,jwi,t−je
−|wi,t−j | +

K∑
i=1

s∑
j=0

θi,jw
2
i,t−j

+
K∑
i=1

s∑
j=0

γi,jw
3
i,t−j +

s∑
j=1

λjyt−j +
T∑
i=1

δi1{i=t} + εt (16)

where T is the maximum available sample size. A formulation like (16) leads to N = 4K(s + 1) +
s+ T right-hand side candidate variables including lags, functional form transforms, deterministic terms
(including indicator variables), so the approach is bound to generate N > T .

As the GUM in (16) is not feasibly estimable, it is impossible to tackle all issues jointly. However,
the block sequential search discussed in Hendry and Krolzig (2005) and Doornik (2009a, 2009b) has
been shown to be effective in related settings where N > T , so we adopt that approach below. Thus
all candidate variables are included in the set to be selected over, and entered in large blocks (rather
than singly as in, say, stepwise regression methods), with a record kept of which were significant at the
chosen level of α%. Next, significant variables are combined in a further selection, where the resulting
terminal model is tested against blocks of not-yet-included candidates. Hendry and Johansen (2013)
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extend the analysis in Hendry (2000) to show that under the null that all N variables are irrelevant, αN
will be retained by chance even when N > T . Moreover, they show that when a theory-model is retained
without selection, under the null that it is a complete and correct specification, by orthogonalizing all
other variables with respect to the theory-based set, despite selecting from those, the resulting parameter
estimates will be identical to those obtained from directly fitting that theory-model to data.4 Thus, even
with N > T , theory-based model selection can be nearly costless.

4 Empirical application

Econometric models of wage inflation have a long history, see inter alia Dicks-Mireaux and Dow (1959),
Lipsey (1960), Phillips (1958), Sargan (1964, 1980), Godley and Nordhaus (1972), Nickell (1990), and
Layard, Nickell and Jackman (1991): Henry (1982) provides a historical perspective on empirical models
of wages. The specification of these models varies greatly: early models considered nominal wages,
followed by models with real-wage equilibria, and finally inflation expectations were accorded a key role,
becoming dominant in the ‘New-Keynesian’ approach to price inflation. Despite this plethora of models,
there is still uncertainty as to the preferable specification of a wage inflation model, with the literature
divided between the role of feed-forward versus feedback mechanisms: see the contrasting models of
Castle and Hendry (2009) and the New Keynesian Phillips Curve (NKPC) models proposed by Galı́ and
Gertler (1999) and Galı́, Gertler and Lopez-Salido (2001), with a critique in Castle, Doornik, Hendry and
Nymoen (2012b).

Using the example of UK real wages over the past century and a half, we demonstrate that all sub-
stantively relevant variables, dynamics, outliers and breaks, and non-linearities must be modelled jointly
for a coherent empirical economic model. The same theory model that real wages are determined by the
marginal product of labour underlies all the different specifications considered. However, both static and
dynamic linear models without IIS provided poor statistical representations, and did not adequately cap-
ture the underlying data properties, with few variables ‘significant’, albeit greatly improved if augmented
by IIS. Thus, outliers and shifts must be modelled for a valid statistical representation, and using IIS
allows political, institutional and external events to be selected without imposing any a priori assump-
tions, using the data to determine the timing of extraneous events. Testing for non-linearity in the general
linear dynamic specification pointed towards a possible non-linear relationship, so we commenced with
a general non-linear approximation, then undertook selection for several non-linear functions that were
linear in the parameters. We show below that an LSTAR specification which is non-linear in the parame-
ters is a restricted version of the more general non-linear model. Non-linear functions seem important in
explaining real wage growth, and those functions suggest a causal relationship with unemployment rates.

We use the semi-automated approach explained above, attempting to encompass the selected model
with that reported in Castle and Hendry (2009), in which a non-linear wage-price spiral term was found
to be important. The non-linear modelling also allows for regime shifts, following from Nielsen (2009).
We then examine whether reductions can be made by eliminating the non-linear functions, indicators and
dynamics. Encompassing tests do not allow for such reductions to be made, although super-exogeneity
tests confirm the viability of analyzing single-equation equilibrium-correction mechanisms. Finally, we
forecast the last 7 years of real wages on the extended data set, and find the highly parameterized non-
linear model forecasts most accurately on a MSFE criterion, so parsimony need not be preferable and
non-linear models can outperform linear in a forecasting context.

4The Hendry and Johansen (2013) method for incorporating a theory model could potentially be applied using ŷ from a
model that is non-linear in parameters, but we do not address that here.
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4.1 The data and theory

The data are annual time series for the UK over 1860–2004 based on Castle and Hendry (2009), updated
and extended to 2011, providing 7 additional observations for forecasting. The data sources are detailed
in the appendix. The main variables are nominal wages, wt, and prices, pt, in logs (shown in fig. 2a,
adjusted to match means for clarity). In our analysis, these variables are assumed to be I(1), with real
wages, (w − p)t, also I(1) (see fig. 2b), whereas wage and price inflation, (∆wt,∆pt), are I(0), although
subject to breaks and regime changes. Wage and price inflation also cobreak, as can be seen in fig. 2c.
Real-wage inflation, ∆(w − p)t, is I(0) with one large outlier in 1940 (shown in fig. 2d). This last is the
dependent variable in our models.
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Figure 2: (a) nominal wages and prices; (b) real wages; (c) wage and price inflation; (d) real wage inflation.

The underlying theoretical relationship is that the real wage is driven by the real marginal revenue
product of labour, proxied by output per worker, (y − l)t. We anticipate a positive sign on labour pro-
ductivity, and expect full adjustment in the long run, captured by using real unit labour costs adjusted
for hours, denoted (ulc − p)t, as an approximation to the equilibrium-correction mechanism (EqCM),
(w− p− y+ l)t− µ̂, where µ̂ is the sample mean over 1860–2004 (see §9). Note that (w− p− y+ l)t is
also labour’s share in national income. We include the unemployment rate, Ur,t, allowing for a ‘Phillips
curve’ relationship, lowering wages when the unemployment rate is high. We also explore the possible
role of a change in the unemployment rate in the dynamic modelling section where we find a tentative
role for it. Finally, we include price inflation both to reflect the conditional and marginal factorization
undertaken in modelling real wages, and as a ‘catch-up’ by workers when wages have been eroded due
to less than complete adjustments to past inflation. We find the price inflation term enters non-linearly,
capturing wage-price spirals.
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4.2 The previous non-linear model

The non-linearity index test in §3.1 was applied to a linear model of real wage growth, where the regres-
sors include an intercept, ∆ (w − p)t−i and (ulc− p)t−i for i = 1, 2 and ∆ (y − l)t−j , Ur,t−j and ∆pt−j
for j = 0, 1, 2. The test is significant at p = 0.006 with F(36, 91) = 1.95. Castle and Hendry (2009)
also found the index test to be significant, so we proceed to investigate non-linear models, beginning with
their non-linear formulation:

ft =
−1

1 + 1000(∆pt)2
. (17)

The non-linear mapping in (17) is U-shaped: workers become more attentive when price inflation rises,
and act to prevent further erosion of their real wages (compare the model of inattentive producers in Reis,
2006), whereas employers cut nominal wages when prices fall. Such behaviour generates wage-price
spirals. Re-estimating their model on the updated data delivers similar results to those reported earlier:

∆ (w − p)t = 0.010
(0.002)

+ 0.649
(0.126)

(ft∆pt) + 0.384
(0.045)

∆ (y − l)t + 0.159
(0.048)

∆ (y − l)t−2

− 0.063
(0.010)

(ulc− p)t−2 − 0.129
(0.044)

∆2Ur,t−1 + 0.029
(0.013)

I1918 + 0.139
(0.013)

I1940

+ 0.032
(0.006)

(I1942 + I1943 − I1944 − I1945)− 0.041
(0.009)

(I1975 + I1977) (18)

R2 = 0.733; σ̂ = 1.24%; SIC = −5.66;

χ2
nd (2) = 2.21; Far (2, 130) = 0.766; Farch (1, 140) = 0.109;

Fhet (13, 126) = 0.794;Freset (2, 130) = 0.106;Fchow (7, 132) = 1.354;T = 1864− 2004.

In (18), R2 is the squared multiple correlation, σ̂ is the residual standard deviation, coefficient standard er-
rors are shown in parentheses and SIC is the Schwarz criterion (see Schwarz, 1978). The diagnostic tests
are of the form Fj(k, T − l) which denotes an approximate F-test against the alternative hypothesis j for:
kth-order serial correlation (Far: see Godfrey, 1978), kth-order autoregressive conditional heteroskedas-
ticity (Farch: see Engle, 1982), heteroskedasticity (Fhet: see White, 1980); the RESET test (Freset: see
Ramsey, 1969); parameter constancy (FChow: see Chow, 1960) over k periods; and a chi-square test for
normality (χ2

nd(2): see Doornik and Hansen, 2008). Finally, ∗ and ∗∗ denote significant at 5% and 1%
respectively. Figure 3 records the model fit, residuals, 1-step forecasts with 95% forecast intervals, and
the residual density for this baseline model.

Overall, the update is close to the original despite data revisions, and is relatively constant over the
‘Great Recession’.

4.3 An approximating non-linear model

In fact, ft is a variant of an LSTAR in π2t , where πt = 100∆pt (annual inflation measured as a percent-
age), given by (scaling to the same mean and range as ft):

Lpt = 2
(
1 + exp(−γπ2t )

)−1 − 2 (19)

so the approximation in (10) becomes:

α1∆pt + α2 (∆pt)
3 + α3 (∆pt)

4 (20)

While investigating the polynomial approximation to such non-linearities in the wages model, we also
included the most significant non-linear function of the other regressors, U2

r,t. Selecting at 1% yields
the equivalent of (11) being estimated as (adding all the other non-linear transformations of the three
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Figure 3: Equation (18): (a) actual and fitted values; (b) scaled residuals and forecast errors; (c) 1-step forecasts
over the extended data, 2005–2011; (d) residual density.

explanatory variables, namely demeaned squares, cubics and exponentials, did not produce any significant
improvement):

∆ (w − p)t = 0.017
(0.003)

+ 0.314
(0.050)

∆ (y − l)t + 0.184
(0.055)

∆ (y − l)t−2 − 0.060
(0.013)

(ulc− p)t−2

− 0.166
(0.042)

Ur,t + 2.59
(0.80)

(Ur,t − 0.05)2 − 0.096
(0.050)

∆2Ur,t + 6.60
(1.63)

(∆pt)
3 − 17.7

(5.44)
(∆pt)

4

− 0.186
(0.045)

∆pt − 0.120
(0.03)

∆2pt−1 + 0.148
(0.013)

I1940 − 0.044
(0.013)

I1944 − 0.052
(0.013)

I1945 − 0.038
(0.013)

I1977

R2 = 0.747; σ̂ = 1.23%; SIC = −5.55; (21)

χ2
nd (2) = 0.88; Far (2, 124) = 0.63; Farch (1, 139) = 0.18;

Fhet (19, 117) = 1.12; Fchow (7, 126) = 1.61; T = 1864− 2004.

Both non-linear terms in inflation are highly significant, and the fit and mis-specification tests are similar
to (18). A comparison with the corresponding linear dynamic equation shows that three indicators have
been eliminated (I1922, I1939 and I1942), in favour of the three non-linear terms (U2

r,t, (∆pt)
3 and (∆pt)

4).
Hence, IIS does not ‘substitute’ for included non-linearities when they matter. Conversely, no non-linear
terms were significant when all indicators were eliminated, emphasizing their interactions.

We also added the second difference of the unemployment rate found in their earlier study: it was
marginally significant but did not eliminate the need for the level or the square of (Ur,t − 0.05). Since
Ur,t is intrinsically positive, the combined term, −0.42Ur,t(1 − 6.1Ur,t), is negative till the unemploy-
ment rate exceeds about 15% then becomes positive. Such an effect could represent movements along
the marginal product curve, raising real wages of those still employed as employment fell, from more
capital per worker and the unemployment of less productive workers. Eliasson (1999) finds a related
non-linearity between unemployment and inflation in Australia, where the impact of unemployment on
inflation becomes positive at higher levels of unemployment.
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The non-linear inflation terms approximate the finding in Castle and Hendry (2009) of a response of
real wages to inflation dependent on the level of inflation, such that low rates of inflation are apparently
ignored by workers and employers, but the response rises to 1-1 at high rates. We next investigate whether
an LSTAR non-linear specification eliminates the polynomial functions in (21). This illustrates our semi-
automatic approach, as an automated method first selects (21), after which we try to refine this with a
specific theory-driven non-linear real wage reaction to inflation.

4.4 A nesting non-linear model

First, however, adding the earlier non-linear reaction (ft∆pt) to (21) makes the cubic and quadratic terms
in inflation individually and jointly insignificant at 1% (but not at 5%). Equation (22) reports the estimates
of the resulting model.

∆ (w − p)t = 0.015
(0.003)

+ 0.348
(0.047)

∆ (y − l)t + 0.204
(0.053)

∆ (y − l)t−2 − 0.061
(0.011)

(ulc− p)t−2

− 0.157
(0.039)

Ur,t + 2.56
(0.79)

(Ur,t − 0.05)2 − 0.166
(0.050)

∆2Ur,t + 0.625
(0.14)

(ft∆pt)− 0.131
(0.031)

∆2pt

+ 0.138
(0.013)

I1940 − 0.042
(0.013)

I1944 − 0.045
(0.013)

I1945 − 0.046
(0.012)

I1977 (22)

R2 = 0.747; σ̂ = 1.22%; SIC = −5.61;

χ2
nd (2) = 0.54; Far (2, 126) = 0.96; Farch (1, 139) = 0.06;

Fhet (15, 121) = 1.26; Freset (2, 126) = 0.28; Fchow (7, 128) = 1.09; T = 1864− 2004.

Equation (22) suggests that the wage-price spiral term is not sufficient to model all the non-linearity, but
does explain the non-linear impact of inflation on real-wage growth. Some of the restricted dummies in
(18) are no longer significant so are excluded. The graphs of fitted and actual values, scaled residuals and
forecast errors, residual density and residual autocorrelation function are reported in Figure 4.

4.5 An LSTAR model

Replacing ft∆pt in (22) by Lpt∆pt, non-linear estimation leads to γ̂ = 0.059 as in (23). Expressed as an
LSTAR model:

∆ (w − p)t = 0.018
(0.003)

+ 0.308
(0.049)

∆ (y − l)t + 0.206
(0.053)

∆ (y − l)t−2 − 0.074
(0.013)

(ulc− p)t−2 − 0.183
(0.042)

Ur,t

+ 2.64
(0.80)

(Ur,t − 0.05)2 − 0.152
(0.049)

∆2Ur,t + 0.822
(0.23)

∆pt

(
1 + exp

(
−0.059

(0.023)
π2t

))−1
− 1.02

(0.24)
∆2pt − 0.907

(0.24)
∆pt−1 + 0.140

(0.013)
I1940 − 0.045

(0.013)
I1944 − 0.048

(0.013)
I1945 − 0.043

(0.013)
I1977

R2 = 0.752; σ̂ = 1.22%; SIC = −5.60; (23)

χ2
nd (2) = 0.31; Far (2, 124) = 1.26; Farch (1, 139) = 0.14;

Fhet (15, 121) = 1.81∗; Fchow (7, 126) = 1.31; T = 1864− 2004.

Then Lpt generates almost identical behaviour to ft, as seen in Figure 5. The two series have a correlation
of 0.96, but Lpt rises more steeply around the origin, so would generate a faster wage-price spiral as
inflation rose. However, neither model (23) and (21) encompasses the other as Table 8 shows.

Similarly, neither Lpt∆p is significant if added to (22), nor ft∆pt when added to (23), so they too
are close substitutes. Consequently, some of the considerations in section 2 may apply, although an
important difference is that the transition is exogenous here, as against the lagged dependent variable
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Figure 4: Equation (22): (a) actual and fitted values; (b) scaled residuals and forecast errors; (c) residual density;
(d) residual autocorrelation function.
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Figure 5: (a) ft against ∆pt; (b) Lpt against ∆pt; (c) ft; (d) Lpt.

earlier. Reparameterizing the model as an LSTAR yields apparently odd looking coefficients on the
inflation variables, but if (19) replaces the LSTAR term, only ∆2pt remains and is close to that in (22).
Thus, despite ∆pt ‘entering’ (∆wt −∆pt), real wages are primarily determined by forces different from
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Test Model 1 vs. Model 2 Model 2 vs. Model 1
Cox N(0,1) −4.66∗∗ −7.25∗∗

Joint Model F(2,125) = 4.08∗ F(1,125) = 10.9∗∗

Table 8: Encompassing tests of (21) against (23).

nominal prices, consistent with the ‘Classical dichotomy’: in particular, the impact of ∆pt on real wages
is zero at high inflation.

4.6 An alternative non-linear model

A further alternative non-linear specification is that reported by Nielsen (2009) (general model, column
D), reported in equation (24). Results are similar to those reported in his paper.5

∆ (w − p)t = 0.006
(0.002)

+ 0.882
(0.126)

(ft∆pt) + 0.297
(0.045)

∆ (y − l)t − 0.072
(0.013)

(ulc− p)t−2

−0.148
(0.045)

∆2Ur,t + 0.0003
(0.0001)

(
I1860−1913 ×∆U−1r

)
t

+ 0.0003
(0.00006)

(
I1860−1913 × U−1r

)
t−2 − 0.031

(0.008)
(I1947−2011 ×∆log (Ur))t

− 0.004
(0.0009)

(I1947−2011 × log (Ur))t−1 + 0.036
(0.012)

I1918 + 0.146
(0.012)

I1940

+0.039
(0.006)

(I1942 + I1943 − I1944 − I1945)− 0.037
(0.008)

(I1975 + I1977) (24)

R2 = 0.783; σ̂ = 1.13%; SIC = −5.77;

χ2
nd (2) = 0.53; Far (2, 126) = 0.089; Farch (1, 139) = 0.003;

Fhet (19, 119) = 1.093; Freset (2, 126) = 2.228; Fchow (7, 128) = 1.218;T = 1864− 2004.

The regime-shift variables matter, and indeed remain relevant over the ‘Great Recession’, as curtailing
their influence to end in 2004 leads to a marked deterioration in RMSFE.

4.7 Encompassing

To shed light on which models may be preferred, we examine a range of pairwise encompassing tests.
For comparison, we estimate the nesting model which has 24 parameters, denoted ‘Nest’ in table 9.
This model has an equation standard error of 1.01%, log-likelihood of 461.97 and SIC = −5.68. The
non-linear models reported above are then tested for encompassing and results are reported in table 9:
combined dummies are entered separately for estimation, but the encompassing tests are computed over
regressors other than dummies. The third column reports encompassing tests of the non-linear models
against the nesting model, where the additional variables in the nesting model are tested for their signifi-
cance. The following columns undertake pairwise encompassing tests; for example, the column for (23)
against row (18) tests for the additional regressors in (18) compared to (23).

The table demonstrates that no model dominates on an encompassing citerion. Hence, the non-
linearities in the form of polynomials, smooth transitions and regime shifts can all approximate the
non-linear reaction of real wages to inflation over the century and a half examined, yet none captures
all the effects.

5Data revisions to the extended dataset result in slightly different estimates.
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Figure 6: Equation (24): (a) actual and fitted values; (b) scaled residuals and forecast errors; (c) 1-step forecasts
over the extended data, 2005–2011; (d) residual density

l̂ Nest (18) (22) (23) (24)
Nest 462.0
(18) 423.8 χ2(11) = 76.4∗∗ F (1, 121) = 5.52∗ F (1, 127) = 7.83∗∗

(22) 428.0 χ2(12) = 68.0∗∗ F (3, 128) = 12.54∗∗ F (1, 117) = 8.60∗∗ F (4, 124) = 4.27∗∗

(23) 429.5 χ2(10) = 64.9∗∗ F (6, 121) = 4.22∗∗ F (2, 117) = 3.46∗ F (6, 117) = 3.63∗∗

(24) 439.1 χ2(8) = 45.7∗∗ F (4, 127) = 10.98∗∗ F (4, 124) = 6.04∗∗ F (5, 116) = 7.00∗∗

Table 9: Encompassing tests for non-linear models. l̂ is the log-likelihood.

5 A step-indicator saturation equation

Doornik et al. (2013) propose a generalization of IIS using step-indicator saturation (SIS), adding a com-
plete set of step indicators S1 =

{
1{t≤j}, j = 1, . . . , T

}
, where 1{t≤j} = 1 for observations up to j,

and zero otherwise. Step indicators are the cumulation of impulse indicators up to each next observation
illustrated as follows:

IIS: impulse-indicators SIS: step-indicators
1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


SIS has the correct null retention frequency of α in constant conditional models for a nominal test size
of α. The approximate alternative retention-frequency function has been derived analytically by Doornik
et al. (2013) for simple models, and shows much higher probabilities of retaining location shifts than
IIS, yet a similar potency for impulses by 2 successive equal-magnitude opposite-signed steps. Two
successive opposite-signed steps of different magnitudes capture both a location shift and an impulse.
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To check the robustness of the earlier models, we applied SIS (now available in Autometrics) to
a GUM which also nested both (22) (so implicitly (23) as well) and (24), and found a substantively
improved representation, in which (w − p− y + l) replaced the measure (ulc− p) that was adjusted for
changes in hours. This is reported in (25) where µ̂ is the sample mean of (w−p−y+ l), ur,t = log(Ur,t),
and (e.g.) S1939 is the step indicator that is unity till 1939 and zero thereafter.

∆ (w − p)t = 0.030
(0.003)

+ 0.354
(0.042)

∆ (y − l)t + 0.116
(0.034)

∆2 (y − l)t−1 − 0.179
(0.028)

(w − p− y + l − µ̂)t−2

− 0.178
(0.034)

Ur,t + 2.68
(0.68)

(Ur,t − 0.05)2 − 0.13
(0.045)

∆2Ur,t + 0.711
(0.012)

(ft∆pt)− 0.130
(0.029)

∆2pt−1

− 0.145
(0.011)

S1939 + 0.176
(0.015)

S1940 − 0.058
(0.011)

S1941 − 0.024
(0.008)

(S2011 − S1946)∆ur,t

− 0.036
(0.011)

I1916 + 0.027
(0.006)

(I1942 + I1943 − I1944 − I1945)− 0.044
(0.011)

I1977 (25)

R2 = 0.820; σ̂ = 1.04%; SIC = −5.85;

χ2
nd (2) = 2.26; Far (2, 123) = 0.39; Farch (1, 139) = 0.49; Freset (2, 124) = 2.28;

Fhet (20, 116) = 0.82; Fchow (7, 125) = 0.95; T = 1864− 2004.

By design, (25) encompasses the previous models, and all the mis-specification tests are insignificant.
This model reveals that most of the variables in common with (22) have similar coefficients, other
than a stronger and more rapid feedback of almost −0.18 from the previous labour share, and replac-
ing ∆ (y − l)t−2 by ∆2 (y − l)t−1, as well as switching from pure impulse dummies to a mixture of steps
and impulses. Two of the variables from (24) are also retained, so an interaction of a step shift with a
variable matters as well. However, the main role of the step indicators seems to be explaining the much
higher average growth rate of real wages post war (1.8% p.a., versus 0.7% p.a. pre-1945), even though
∆(y − l) is included and displays a similar pattern. Figure 7 reports the graphical statistics.
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Figure 7: Equation (25): (a) actual and fitted values; (b) scaled residuals and forecast errors; (c) 1-step forecasts;
(d) residual density
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6 Testing exogeneity

IIS can be used to test the exogeneity of the conditioning variables as in Hendry and Santos (2010).
Under the null of super exogeneity, the parameters in the conditional model are invariant to shifts in the
marginal models, so indicators in the latter should not enter the former. A vector autoregression (VAR)
in the system of four variables (w − p)t, (y − l)t, ∆pt and Ur,t was selected with IIS, and the additional
impulse indicators in the three marginal models were then tested for significance in (22). The same
procedure using SIS on the 3 marginal VAR equations was applied to (25). Table 10 reports the results.

Variable null distribution IIS test statistic null distribution SIS test statistic
(y − l)t F(11,117) 1.16 F(2,123) 0.77
∆pt F(11,117) 1.22 F(7,118) 1.87
Ur,t F(9,118) 1.05 F(14,111) 1.37
Joint F(16,112) 1.22 F(20,105) 1.41

Table 10: IIS super-exogeneity tests of (22) and SIS tests of (25).

While none of the tests rejects exogeneity, there are 3 impulse indicators in common between (22)
and the marginal equation for (y − l)t, namely I1940, I1944, I1945, although their values would not be
consistent with only entering ∆(w − p)t through (y − l)t. I1940 is also in common with the equation
for ∆pt, but is positive and at a much smaller value: the spike in real wages engineered at the start of
the Second World War was a ‘separate’ event. There are no step indicators in common with (25) when
selecting in each of the VAR equations at α = 0.001, although 20 separate step indicators are retained
across the three marginal models.

7 Forecasting

Ex post forecasts for ∆(w− p)t have previously been shown graphically for several of the models above.
Here, Figure 8 records the 1-step ahead forecasts from parameter estimates over 1864–2004, for the levels
of real wages, with and without intercept correction (IC) for the non-linear models reported in §4.4, §4.6,
and §5. The IC used was the average residual over 2003–2004, and the 95% forecast intervals shown by
error bars in Figure 8 allow for parameter uncertainty. All these forecasts exhibit similar patterns. Table
11 reports the RMSFEs of these three non-linear specifications for ∆(w− p)t, as well as a random-walk
model of (w−p)t (RW), and the forecasts from the VAR, both with IIS at 1%, with and without intercept
corrections for the real-wage equation (1-step RMSFEs are the same for levels’ forecasts).

The original forecasts tend to miss the downturn in 2009, though (25) comes close, but all the IC
forecasts do well and are relatively similar. Although all the non-linear models somewhat outperform the
linear, they have contemporaneous regressors, albeit exogenous. Overall, the SIS encompassing model
has the smallest RMSFEs, especially in equations without ICs, and is close to its in-sample σ̂. This
is an unusual result because (25) is a complicated non-linear specification. The forecasting literature
often finds that the forecast performance of non-linear models is not good in comparison to linear models
(see, for example, De Gooijer and Kumar, 1992, Clements and Smith, 1999, and Clements, Franses and
Swanson, 2004), and even more so when facing breaks (see Castle et al., 2011).

8 Conclusions

The empirical study confirmed the need for joint modelling of dynamics, location shifts, relevant variables
and non-linearities. Failing to include any of these features led to substantive mis-specifications, with
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Figure 8: Forecasts for real wages with and without intercept corrections. The top row records equation (22), the
second row, (24) and the bottom row (25).

Equation σ̂ No IC IC
(22) 1.22% 1.31% 1.25%
(24) 1.13% 1.23% 1.04%
(25) 1.04% 1.05% 1.00%
RW 2.23% 1.57% 1.54%
VAR 1.67% 2.37% 1.54%

Table 11: RMSFEs of forecasts of ∆(w − p)T+h with and without intercept corrections, with in-sample
equation standard error for comparison.

included variables being insignificant in restricted formulations, yet important in more general models.
Automatic model selection seems a viable approach to tackling all the complications jointly, even when
there are more candidate variables than observations.

There are three important economic implications. First, there is a wage-price spiral of increasing
reactions of real wages to inflation as inflation rises in absolute terms. That adds persistence to the wage-
price process, and may be what creates the impression of ‘sticky inflation’. Such a non-linear adjustment
can be approximated in several ways, and doubtless there are other ways than those considered above.
Second, real wages are primarily determined by forces different from nominal prices, consistent with the
‘Classical dichotomy’. Third, using a general polynomial led to an additional non-linearity in unemploy-
ment, which suggested that real wages rise with unemployment beyond about 15%, probably from rising
marginal productivity, rather than wage bargaining. That finding is consistent with the presence of invol-
untary unemployment, as no evidence of any reverse relation of high real wages causing unemployment
was found in Hendry (2001).

The Monte Carlo simulations of TAR and LSTAR models showed the difficulty of detecting and
estimating regime shifts. Despite that difficulty, the empirical evidence for non-linear adjustments of
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real wages to inflation is clear cut. Basing the reaction on an exogenous variable seems to explain that
difference. Moreover, applying either impulse-indicator saturation or step-indicator saturation did not
preclude finding non-linearites, nor did those modelled non-linearities obviate the need for including a
number of indicators. Conversely, not removing large outliers or shifts could hide the presence of other
variables, including non-linearities.

The forecasting results over the ‘Great Recession’ rebut the notion that parsimony is essential, as the
most complicated model produced the smallest 1-step RMSFEs. However, almost all methods benefitted
from intercept corrections setting their forecasts ‘back on track’ at the forecast origin.
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9 Appendix: Data definitions

Yt = real GDP, £million, 1985 prices [6], p.836, [9]a (1993), [20] code:YBHH at 2005 prices.
Pt = implicit deflator of GDP, (1985=1) [6], p.836, [9]a (1993), [20] code:ABML.
Ut = unemployment [7], [9]c (1993), [19] code: MGSC.
Wpopt = working population [7], [9]c (1993), [19] code: MGSF.
Ur,t = Ut/Wpopt (unemployment rate, fraction)
Lt = employment (= Wpopt − Ut) [4], [5]
Wt = average weekly wage earnings [17], [18], [19] code: LNMM
Wr,t = nominal wage rates [5], [12], [18]
Ht = normal hours (from 1920) [6], p.148, [9]
ULCt = unit labour costs (= LtWr,t/Yt)
∆xt = (xt − xt−1) for any variable xt
∆2xt = ∆xt −∆xt−1

Sources: [1] Friedman and Schwartz (1982); [2] Attfield, Demery and Duck (1995); [3] Ericsson, Hendry and Prest-
wich (1998); [4] Shadman-Mehta (1995) (who cites Sleeman (1981) and Thomas (1984) as sources); [5] Phillips
(1958); [6] Mitchell (1988); [7] Feinstein (1972); [8] Bank of England; [9] Bean (taken from (a) Economic Trends
Annual Supplements, (b) Annual Abstract of Statistics, (c) Department of Employment Gazette and (d) National
Income and Expenditure, as well as other sources cited here); [10] Cameron and Muellbauer; [11] UN Statistical
Yearbook; [12] Office for National Statistics, Blue Book; [13] Board of Trade (1860–1908); [14] SS Stats; [15] An-
nual Abstract of Statistics; [16] Office for National Statistics, Labour Market Trends; [17] Crafts and Mills (1994);
[18] Feinstein (1990); [19] Office for National Statistics, Labour Force Survey; [20] Office for National Statistics,
Economic Trends Annual Supplement.
Notes:
Hendry and Ericsson (1991) and Hendry (2001) provide detailed discussions about most of these series.
Average weekly wages: a measure of full-time weekly earnings for all blue collar workers, where the coverage has
been extended to include more occupations, and allows for factors such as changes in the composition of the manual
labour force by age, sex, and skill, and the effect of variations in remuneration under piece rates and other systems
of payments, but not adjusted for time lost through part-time work, short-time, unemployment etc. A reduction in
standard hours worked that was offset by a rise in hourly wage rates would not be reflected in the index. From
1855–1880, the data are from Feinstein (1990), but not revised to increase coverage. Prior to that, the data come
from a number of sources on average wage rates for blue collar workers.
Nominal wage rates: hourly wage rates prior to 1946, then weekly wage rates afterwards, so the latter were stan-
dardized by dividing by normal hours. The trend rate of decline of hours is about 0.5% p.a. (based on a drop
from 56 to 40 hours per week between 1913 and 1990, with an additional increase in paid holidays), so unit labour
costs were adjusted accordingly, and spliced to an average earnings index for the whole economy including bonuses
[ONS: LNMM] from 1991 and rebased to 2000=1. Average earnings index discontinued in 2010, and replaced with
average weekly earnings.
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