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Abstract

I study the long-run behavior of an economy with two types of agents who differ

in their beliefs and are endowed with homothetic recursive preferences of the Duffie-

Epstein-Zin type. Contrary to models with separable preferences in which the wealth of

agents with incorrect beliefs vanishes in the long run, recursive preference specifications

also lead to equilibria where both agents survive, or more incorrect agents dominate.

In this respect, the market selection hypothesis is not robust to deviations from sep-

arability. I derive analytical conditions for the existence of nondegenerate long-run

equilibria in which agents with differently accurate beliefs coexist in the long run, and

show that these equilibria exist for broad ranges of plausible parameterizations when

risk aversion is larger than the inverse of the intertemporal elasticity of substitution.

These results provide a justification for models that combine belief heterogeneity and

recursive preferences.
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1 Introduction

The market selection hypothesis first articulated by Alchian (1950) and Friedman (1953)

is one of the supporting arguments for the plausibility of the rational expectations theory.

The hypothesis states that agents who systematically evaluate the distributions of future

quantities incorrectly (and are therefore called ‘irrational’) lose wealth on average, and will

ultimately be driven out of the market. Thus, in a long-run equilibrium, the dynamics of

the economy are only determined by the behavior of the rational agents whose beliefs about

the future are in line with the true probability distributions.

Survival of agents with incorrect beliefs has been studied extensively in complete market

models populated by agents endowed with separable preferences, and the literature has

indeed found widespread support for the market selection hypothesis. If agents have identical

preferences and relative risk aversion is bounded, then only agents with the most accurate

beliefs survive in the long run in the sense that their wealth share does not converge to zero,

regardless of the specification of the aggregate endowment process.

While these results look appealing, separable preferences are inconsistent even with many

features of the asset pricing data, a fact reflected in different asset pricing ‘puzzles’. Since

the market selection hypothesis focuses on wealth dynamics of agents who trade in financial

markets, it is sensible to study the survival problem for preferences which provide a better

fit of the constructed models to empirically observed patterns in asset returns.

This paper shows that the above survival results are overturned when the assumption

of separability of preferences is relaxed. I study a class of homothetic recursive preferences

axiomatized by Kreps and Porteus (1978), and developed by Epstein and Zin (1989) and

Weil (1990) in discrete time, and by Duffie and Epstein (1992b) in continuous time. These

preferences allow one to disentangle the risk aversion with respect to intratemporal gambles

from the intertemporal elasticity of substitution (IES), and include the separable, constant

relative risk aversion (CRRA) utility as a special case. Thanks to the additional degree of

flexibility, this class of preferences became the workhorse model used in the macroeconomics

and asset pricing literature.

In addition, the decoupling of risk aversion and IES effectively separates two essential

mechanisms for wealth accumulation that play an important role in the analysis of long-run

wealth dynamics. Agents in an economy can accumulate wealth, and thus avoid extinction, in

two ways — by holding portfolios with high expected (logarithmic) returns, and by choosing

a high saving rate. The risk aversion parameter governs the portfolio allocation decision of

the agents and equilibrium risk premia associated with risky assets. These two quantities

jointly determine the difference in expected returns on agents’ portfolios. The IES parameter

then drives the difference in saving rates as a function of the difference in perceived expected

returns on individual portfolios.
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From the perspective of an agent who maximizes the present discounted value of future

utility flow, rationality itself does not guarantee survival, nor do deviations from rational

preferences imply extinction. Rationality may facilitate survival only insofar it prevents

overconsumption and leads the agent to take appropriate bets. On the other hand, spe-

cific forms of deviations from rational beliefs may, at least in theory, provide even stronger

incentives for survival in the long run, despite not being optimal in the rational sense.

I show that in the class of recursive preferences, there exist broad ranges of empirically

plausible values for preference parameters under which agents with less accurate beliefs can

survive or even dominate the economy. Perhaps most interestingly, agents with arbitrarily

large belief distortions can coexist with rational agents in the long-run equilibrium under

preference parameterizations adopted by a substantial share of the asset pricing literature.

From the perspective of market selection, belief heterogeneity should thus be viewed as a

natural long-run outcome.

While the literature has to a large extent focused on the characterization of optimal con-

sumption allocations using a planner’s problem, I also study the associated decentralization.

This allows me to explain the crucial role of the equilibrium price mechanism in the long-

run wealth dynamics. If an agent is to survive in the long run, then equilibrium prices in

situations when her wealth share becomes small have to move in a direction that encourages

her to accumulate wealth at a faster rate than the growth rate of aggregate wealth. Thanks

to the analytical nature of the results, I am able to completely characterize the survival

outcomes on the whole parameter space of the model.

I study an endowment economy populated by two classes of competitive agents (called,

for simplicity, two agents) who differ in their beliefs about the growth rate of the stochastic

aggregate endowment that follows a geometric Brownian motion. Agents are endowed with

identical recursive preferences and trade in complete markets which, in the Brownian infor-

mation setup, corresponds to dynamic trading in an infinitesimal risk-free bond and a risky

claim to the aggregate endowment.

To shed more light on the mechanism that generates the long-run coexistence of agents

with heterogeneous beliefs, it is illustrative to analyze the situation when the wealth of one

of the agents becomes negligible. We want to study the incentives of this negligible agent

for wealth accumulation that would prevent her wealth share from vanishing to zero. First

notice that the wealth accumulation of the agent with the large wealth share is disciplined by

market clearing — in the limit as the wealth share of the negligible agent converges to zero,

the large agent has to hold the market portfolio and consume the aggregate endowment.

Her wealth then grows at the same rate as the aggregate endowment and market prices can

be inferred from the dynamics of her stochastic discount factor. The negligible agent then

chooses an investment portfolio that overweighs positions in assets that are, according to her
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own beliefs, cheap and earn high expected level returns relative to their risk.

The first insight draws the distinction between expected level and logarithmic returns.

While the optimal portfolio choice is determined by the tradeoff between the expected level

return and the underlying volatility, survival chances depend on the expected logarithmic

growth rate of wealth, and thus on the expected logarithmic return on the agent’s portfolio.

Volatile portfolios are therefore detrimental to survival, and the negligible agent will be more

willing to choose a volatile portfolio if the risk aversion in the economy is low.

More precisely, holding other parameters fixed, there is always a level of risk aversion

sufficiently low such that only one agent survives in the long run but it can be either of

the two agents with a strictly positive probability, regardless of the relative accuracy of

their beliefs. The reason is that as one of the agents observes a series of shock realizations

that significantly decreases her wealth share, she starts choosing portfolios with very volatile

returns which make the probability of further large wealth losses even more likely.

The second insight concerns the role of the IES parameter for the consumption-saving

decision. The negligible agent chooses a portfolio that generates a high subjective expected

level return, relative to its risk. While this portfolio can perform poorly under the true

probability measure if the beliefs of the agent are distorted, it is the subjective expected

level return that determines the agent’s willingness to save.

When IES is higher than one, then the saving rate is an increasing function of the

subjective expected level return on the agent’s portfolio. As long as the negligible agent

chooses a portfolio with a higher subjective expected level return than her large counterpart,

then a high IES is conducive to the survival of the negligible agent who, by choosing a high

saving rate, can compensate for the potentially inferior choice of her portfolio, and ‘outsave’

her extinction.

Observe that this consumption-saving mechanism under a high IES operates for the

negligible agent, regardless of her identity. When the relative wealth shares of the agents

switch, then it is again the negligible agent that can outsave her extinction by choosing

a high saving rate vis-à-vis her high subjective expected level return. If this mechanism,

which operates through endogenously determined equilibrium prices, is sufficiently strong,

both agents can survive in the long run.

Finally, the third insight captures the role of risk premia and the associated advantage

of optimistic agents who overweigh investment into risky assets with high expected returns.

An increase in risk aversion reduces the amount of betting and the portfolios of the two

agents become more alike, so that differences in beliefs that make the more incorrect agents

choose portfolios with a suboptimal risk-return tradeoff diminish in importance. At the same

time, the increase in risk aversion increases risk premia, so that the difference in expected

returns on the portfolios of the two agents does not vanish. This benefits the relatively more
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optimistic agent who holds a larger share of her wealth invested in the risky asset. The

consumption-saving mechanism is not sufficiently strong for high levels of risk aversion to

make the less optimistic agent outsave her more optimistic counterpart.

As a consequence, holding other parameters fixed, there is always a level of risk aversion

above which the relatively more optimistic agent dominates, even if her beliefs are relatively

more incorrect.

These results indicate under which preference parameterizations can two agents with

heterogeneous beliefs coexist in the long run. We are looking for parameterizations under

which either of the agents chooses a high logarithmic rate of wealth accumulation whenever

she becomes negligible and faces the risk of extinction. The results imply that risk aversion

has to be sufficiently high to prevent excessive risk taking by the negligible agent but not

excessive so as to motivate the relatively more pessimistic agent to choose a portfolio with

a high subjective expected return when she becomes negligible. A sufficiently high IES then

makes the negligible agent choose a high saving rate vis-à-vis the high subjective expected

return on her portfolio, thus outsaving her extinction.

The encouraging observation is that this region of the parameter space is also considered

by the macroeconomics and asset pricing literatures as empirically relevant. Moreover, the

described mechanism does not hinge on belief distortions being small. On the contrary, when

belief differences are large, the negligible agent can more easily construct portfolios with high

perceived expected returns because asset prices determined by the wealth dynamics of the

large agent are viewed as more incorrect by the negligible agent. Under a high IES, the

high perceived expected return on her portfolio will make the negligible agent choose a high

saving rate. I find that there is a broad region of the parameter space in which an arbitrarily

incorrect agent coexists in the long run with an agent with perfectly accurate beliefs.

These results are also independent of the growth rate of the economy and are not driven

by the particular nature of the stochastic process for the aggregate endowment. In fact,

the results also hold for an economy with a deterministic aggregate endowment, as long as

there is an observable shock (without any material impact on aggregate endowment) with a

probability distribution about which the agents disagree that can be used by the two agents

as a betting device.

The portfolio choice and consumption-saving decision mechanism eluded the attention of

the survival literature because the long-run wealth dynamics in a complete-market economy

when agents have separable utility can be solved for using a planner’s problem without the

need for a decentralization. Under CRRA preferences, risk aversion and IES are inversely

related, and the two mechanisms described above offset each other. Increasing the risk

aversion disciplines the portfolio choice of the negligible agent but the associated decrease

in IES makes her decrease her saving rate, undermining her survival chances.
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The description of the survival mechanism also highlights the critical role of the en-

dogenously determined equilibrium price dynamics. In order for the two agents to coexist,

equilibrium prices always have to be conducive to the survival of the negligible agent, and

thus have to adjust when the roles of the two agents switch. I show that the behavior of the

large agent is always disciplined by market clearing while the choices of the negligible agent

can be inferred from a decision problem with prices determined by the wealth dynamics of

the large agent.

The central message of this analysis is that the market selection hypothesis is not ro-

bust to departures from separable preferences. Recursive preferences provide an additional

degree of freedom compared to the separable case that allows one to separate the portfolio

allocation and the consumption-saving decision, two crucial aspects determining the rate of

wealth accumulation. Contrary to the case of CRRA preferences, belief heterogeneity under

plausibly parameterized recursive preferences is a pervasive long-run outcome.

1.1 Methodology and literature overview

The modern approach in the market survival literature originates from the work of De Long,

Shleifer, Summers, and Waldmann (1991), who study wealth accumulation in a partial equi-

librium setup with exogenously specified returns and find that irrational noise traders can

outgrow their rational counterparts and dominate the market. Similarly, Blume and Easley

(1992) look at the survival problem from the vantage point of exogenously specified saving

rules, albeit in a general equilibrium setting.1

Subsequent research has shown that taking into account general equilibrium effects and

intertemporal optimization of agents endowed with separable preferences eliminates much

of the support for survival of agents with incorrect beliefs that models with ad hoc price

dynamics produce. Sandroni (2000) and Blume and Easley (2006) base their survival results

on the evolution of relative entropy as a measure of disparity between subjective beliefs

and the true probability distribution. In their models, aggregate endowment is bounded

from above and away from zero. As a result, the local properties of the utility function are

1Modeling of economies populated by agents endowed with heterogeneous beliefs constitutes a quickly
growing branch of literature, and a thorough overview of the literature is beyond the scope of this paper.
Here, I primarily focus on the intersection of this literature with the analysis of recursive nonseparable
preferences. Bhamra and Uppal (2013) provide a more general survey that also focuses on asset pricing
implications of belief and preference heterogeneity. See also the discussion of price impact by Kogan, Ross,
Wang, and Westerfield (2011) and portfolio impact by Cvitanić and Malamud (2011).
I also omit the discussion of evolutionary literature which predominantly focuses on the analysis of the

interaction between agents with exogenously specified portfolio rules and price dynamics. The survival
mechanism in this paper critically hinges on the interaction the of endogenous consumption-saving decision
and portfolio allocation vis-à-vis general equilibrium prices driven by the dynamics of the wealth shares, and
is thus only loosely related. See Hommes (2006) for a survey of the evolutionary literature, and Evstigneev,
Hens, and Schenk-Hoppé (2006) for an analysis of portfolio rule selection.
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immaterial for survival. Controlling for pure time preference, the long-run fate of economic

agents is determined solely by belief characteristics, and only agents whose beliefs are in a

specific sense asymptotically ‘closest’ to the truth can survive.

With unbounded aggregate endowment, local properties of the utility function become an

additional survival factor. Even if preferences are identical across agents, the local curvature

of the utility function at low and high levels of consumption can be sufficiently different

to outweigh the divergence in beliefs, and lead to the survival of agents with relatively

more incorrect beliefs. Kogan, Ross, Wang, and Westerfield (2011) show that a sufficient

condition to prevent this outcome is the boundedness of the relative risk aversion function,

i.e., a condition on the preferences being uniformly ‘close’ to the homothetic CRRA case.

On the other hand, in this paper, preferences are homothetic, which assures that the survival

results are not driven by exogenous differences in the local properties of the utility functions.2

Importantly, survival analysis under separable preferences corresponds to analyzing a se-

quence of time- and state-indexed static problems that are only interlinked through the initial

marginal utility of wealth, which is largely innocuous for the long-run characterization of the

economy. The survival literature frequently exploits martingale methods to characterize the

long-run divergence of subjective beliefs and marginal utilities of consumption.

Nonseparability of preferences breaks this straightforward link, and I therefore develop

a different method that is more suitable for this environment. I analyze the survival mech-

anism in a two-agent, continuous-time endowment economy with complete markets and an

aggregate endowment process modeled as a geometric Brownian motion. The continuous-

time, Brownian information framework is not critical for the qualitative results but offers

analytical tractability which allows sharp closed-form characterization of the results.

I utilize the planner’s problem derived in Dumas, Uppal, and Wang (2000) and extend it

to include heterogeneity in beliefs. The solution of the planner’s problem involves endoge-

nously determined processes that can be interpreted as stochastic Pareto weights. The anal-

ysis under separable preferences reflects the purely intratemporal tradeoff in the allocation of

consumption vis-à-vis changes in the local curvature of the period utility function. The non-

separable nature of recursive preferences introduces an additional intertemporal component

captured in the dynamics of the Pareto weights.

The analysis of market survival then corresponds to investigating the long-run behavior

of scaled Pareto weights. I present tight sufficient conditions for the existence of nondegen-

2The survival literature also focuses on other forms of heterogeneity. Yan (2008) and Muraviev (2013)
construct ‘survival indices’ that combine the contribution of belief distortions and preference parameters and
show that only agents with the lowest survival index can survive.
Market incompleteness or asymmetric information may be other ways how to counteract the extinction

of agents with incorrect beliefs, as long they are judiciously chosen to prevent agents to place incorrect
bets, see, e.g., Mailath and Sandroni (2003), Coury and Sciubba (2012), Cao (2010) or Cogley, Sargent, and
Tsyrennikov (2013).
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erate long-run equilibria and for dominance and extinction. While the full model requires a

numerical solution, I show that the behavior at the boundaries, which is essential for survival

analysis, can be established analytically. I thus provide closed-form solutions for the regions

of the parameter space in which the survival conditions are satisfied.

The method utilizes asymptotic properties of a differential equation for the planner’s

problem to characterize the asset price dynamics at the boundaries in the decentralized

equilibrium. The resulting conditions from the planner’s problem translate naturally into

conditions on the relative logarithmic growth rates in agents’ wealth.

The applicability of the derived solution method is not limited to fixed distortions. I

discuss how to extend the procedure to include learning and robust preferences of Anderson,

Hansen, and Sargent (2003). Explicit solutions of these problems are left for future work.

The approach based on the characterization of the behavior of the endogenously deter-

mined Pareto weights is closely linked to the literature on endogenous discounting, initiated

by Koopmans (1960) and Uzawa (1968), and to models of heterogeneous agent economies

under recursive preferences, studied by Lucas and Stokey (1984) and Epstein (1987) under

certainty and by Kan (1995) under uncertainty. The survival conditions derived in this paper

resemble a sufficient condition for the existence of a stable interior steady state in Lucas and

Stokey (1984), called increasing marginal impatience. This condition postulates that agents

discount future less as they become poorer. I show that my analysis crucially depends on

a similar quantity that I call relative patience. The key difference lies in the determination

of the two quantities. While Lucas and Stokey require that the time preference exogenously

encoded in the utility specification changes with the level of consumption, in this paper

the variation in relative patience arises endogenously as a response to the equilibrium price

dynamics driven by belief differences.

Anderson (2005) studies Pareto optimal allocations under heterogeneous recursive prefer-

ences in a discrete-time setup using similar methods but he does not consider survival under

belief heterogeneity. Mazoy (2005) discusses long-run consumption dynamics when agents

differ in their IES. Colacito and Croce (2010) prove the existence of nondegenerate long-run

equilibria in a two-good economy when agents are endowed with risk-sensitive preferences

and differ in the preferences over the two goods. Guerdjikova and Sciubba (2010) study the

interaction of expected-utility and smooth ambiguity averse agents. Branger, Dumitrescu,

Ivanova, and Schlag (2011) analyze survival in long-run risk models with heterogeneous re-

cursive preferences. However, none of these papers treats systematically the case of belief

heterogeneity. This work aims at filling this gap.

The paper is organized as follows. Section 2 outlines the economic environment, provides

a theoretical exposition to recursive preferences, and derives the planner’s problem that is

central to the analysis. Sections 3 and 4 present the survival results. I provide in analytical
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form tight sufficient conditions for survival and extinction and discuss the economic interpre-

tation of the results. This analytical part is followed by numerical analysis of consumption

and price dynamics for economies with nondegenerate long-run equilibria in Section 5. Sec-

tion 6 summarizes the findings and outlines extensions of the developed framework involving

learning and endogenously determined belief distortions derived, for instance, from robust

preferences. The Appendix contains proofs omitted from the main text. Further material

that provides more details and extends the analysis is available in the online appendix.3

2 Optimal allocations under heterogeneous beliefs

I analyze the dynamics of equilibrium allocations in a continuous-time endowment economy

populated by two types of infinitely-lived agents endowed with identical recursive preferences.

I call an economy where both agents have strictly positive wealth shares a heterogeneous

economy. A homogeneous economy is populated by a single agent only. The term ‘agent’

refers to an infinitesimal competitive representative of the particular type.

Agents differ in their subjective beliefs about the distribution of future quantities but

are firm believers in their probability models and ‘agree to disagree’ about their beliefs as in

Morris (1995). Since they do not interpret their belief differences as a result of information

asymmetries, there is no strategic trading behavior.

Without introducing any specific market structure, I assume that markets are dynami-

cally complete in the sense of Harrison and Kreps (1979). This allows me to sidestep the

problem of directly calculating the equilibrium by considering a planner’s problem. The dis-

cussion of market survival then amounts to the analysis of the dynamics of Pareto weights

associated with this planner’s problem. Optimal allocations and continuation values gener-

ate a valid stochastic discount factor and a replicating trading strategy for the decentralized

equilibrium.

In this section, I specify agents’ preferences and belief distortions, and lay out the plan-

ner’s problem. I utilize the framework introduced by Dumas, Uppal, and Wang (2000),

and exploit the observation that belief heterogeneity can be analyzed in their framework

without increasing the degree of complexity of the problem. The method then leads to a

Hamilton-Jacobi-Bellman equation for the planner’s value function.

2.1 Information structure and beliefs

The stochastic structure of the economy is given by a filtered probability space (Ω,F , {Ft} , P )

with an augmented filtration defined by a family of σ-algebras {Ft} , t ≥ 0 generated by a

3 https://files.nyu.edu/jb4457/public/files/research/survival heterogeneous beliefs online appendix.pdf
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univariate Brownian motion W . Given the continuous-time nature of the problem, equal-

ities are meant in the appropriate almost-sure sense. I also assume that all processes, in

particular belief distortions and permissible trading strategies, satisfy regularity conditions

like square integrability over finite horizons, so that stochastic integrals are well defined and

pathological cases are avoided (see, e.g., Huang and Pagès (1992)). Under the parameter

restrictions below, constructed equilibria satisfy these assumptions.

The scalar aggregate endowment process Y follows a geometric Brownian motion

dYt

Yt

= µydt+ σydWt, Y0 > 0 (1)

with given parameters µy and σy.

Agents of type n ∈ {1, 2} are endowed with identical preferences but differ in their

subjective probability measures that they use to assign probabilities to future events. I

model the belief distortion of agent n using an adapted process un such that the process

Mn
t =̇

(
dQn

dP

)

t

= exp

(

−
1

2

∫ t

0

|un
s |

2 ds+

∫ t

0

un
sdWs

)

, (2)

is a martingale under P . The martingale Mn is called the Radon-Nikodým derivative or the

belief ratio and defines the subjective probability measure Qn that characterizes the beliefs

of agent n. The Radon-Nikodým derivative measures the disparity between the subjective

and true probability measures.

In order for the belief heterogeneity not to vanish in the long run, the measures P and

Qn cannot be mutually absolutely continuous.4 However, given the construction of Mn, the

restrictions of the measures P and Qn, n ∈ {1, 2} to Ft for every t ≥ 0 are equivalent.5 In

other words, the agents agree with the data generating measure on zero-probability finite-

horizon events. While a likelihood evaluation of past observed data reveals that the view

of an agent with distorted beliefs becomes less and less likely to be correct as time passes,

absolute continuity of the measure Qn with respect to P over finite horizons implies that

she cannot refute her view of the world as impossible in finite time. The main results of

the paper are developed using a constant un, but the computational strategy allows me to

incorporate more general distortion processes, which I discuss in the concluding remarks.

The belief distortion process un has a clear economic interpretation. The Girsanov

theorem implies that agent n, whose deviation from rational beliefs is described by un,

4Sandroni (2000) and Blume and Easley (2006) link absolute continuity of the subjective probability
measures to merging of agents’ beliefs.

5See, for example, Revuz and Yor (1999), Section VIII for details. The construction prevents arbitrage
opportunities in finite-horizon strategies. The martingale representation theorem (e.g., Øksendal (2007),
Theorem 4.3.4) implies that modeling belief distortions under Brownian information structures using mar-
tingales of the form (2) is essentially without loss of generality.
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views the evolution of the Brownian motion W as distorted by a drift component un, i.e.,

dWt = un
t dt + dW n

t , where W n is a Brownian motion under Qn. Consequently, the aggre-

gate endowment is perceived to contain an additional drift component unσy, and un can

be interpreted as a degree of optimism or pessimism about the growth rate of Y . When

σy = 0, the distinction between optimism and pessimism loses its meaning but the survival

problem is still nondegenerate, as long as the agents can contract upon the realizations of

the process W .

2.2 Recursive utility

Agents endowed with separable preferences reduce intertemporal compound lotteries (differ-

ent payoff streams allocated over time) to atemporal simple lotteries that resolve uncertainty

at a single point in time. In the Arrow-Debreu world with separable preferences, once trading

of state-contingent securities for all future periods is completed at time 0, uncertainty about

the realized path of the economy can be resolved immediately without any consequences for

the ex-ante preference ranking of the outcomes by the agents.

Kreps and Porteus (1978) relaxed the separability assumption by axiomatizing discrete-

time preferences where temporal resolution of uncertainty matters and preferences are not

separable. While intratemporal lotteries in the Kreps-Porteus axiomatization still satisfy the

von Neumann-Morgenstern expected utility axioms, intertemporal lotteries cannot in general

be reduced to atemporal ones. The work by Epstein and Zin (1989, 1991) extended the results

of Kreps and Porteus (1978), and initiated the widespread use of recursive preferences in

the asset pricing literature. Duffie and Epstein (1992a,b) formulated the continuous-time

counterpart of the recursion.6

I utilize a characterization based on the more general variational utility approach studied

by Geoffard (1996) in the deterministic case and El Karoui, Peng, and Quenez (1997) in

a stochastic environment.7 They show that recursive preferences can be represented as a

solution to the maximization problem

λn
t V

n
t = sup

νn
EQn

t

[∫ ∞

t

λn
sF (Cn

s , ν
n
s ) ds

]

(3)

6Duffie and Epstein (1992b) provide sufficient conditions for the existence of the recursive utility process
for the infinite-horizon case but these are too strict for the preference specification considered in this paper.
However, the Markov structure of the problem allows me to rely on existence results derived Duffie and Lions
(1992). Schroder and Skiadas (1999) establish conditions under which the continuation value is concave, and
provide further technical details. Skiadas (1997) shows a representation theorem for the discrete time version
of recursive preferences with subjective beliefs.

7Hansen (2004) offers a tractable summary of the link between the recursive and variational utility.
Interested readers may refer to the online appendix for a more detailed discussion.
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subject to
dλn

t

λn
t

= −νn
t dt, t ≥ 0; λn

0 = 1, (4)

where νn is called the discount rate process, and λn the discount factor process. The felicity

function F (C, ν) encodes the contribution of the consumption stream C to present util-

ity. This representation closely links recursive preferences to the literature on endogenous

discounting, initiated by Koopmans (1960) and Uzawa (1968).

For the case of the Duffie-Epstein-Zin preferences, the felicity function is given by

F (C, ν) = β
Cγ

γ

(
γ − ρ ν

β

γ − ρ

)1− γ
ρ

, (5)

with parameters satisfying γ, ρ < 1, and β > 0. Preferences specified by this felicity function8

are homothetic and exhibit a constant relative risk aversion with respect to intratemporal

wealth gambles α = 1 − γ and (under intratemporal certainty) a constant intertemporal

elasticity of substitution η = 1
1−ρ

. Parameter β is the time preference coefficient. Assump-

tion 2 below restricts parameters to assure sufficient discounting for the continuation values

to be finite in both homogeneous and heterogeneous economies. In the case when γ = ρ, the

utility reduces to the separable CRRA utility with the coefficient of relative risk aversion α.

Formula (3), together with an application of the Girsanov theorem, suggests that it is ad-

vantageous to combine the contribution of the discount factor process λn and the martingale

Mn that specifies the belief distortion in (2):

Definition 1 A modified discount factor process λ̄n is a discount factor process that incor-

porates the martingale Mn arising from the belief distortion, λ̄n =̇ λnMn.

Applying Itô’s lemma to λ̄n leads to a maximization problem under the true probability

measure

λ̄n
t V

n
t = sup

νn
Et

[∫ ∞

t

λ̄n
sF (Cn

s , ν
n
s ) ds

]

(6)

subject to
dλ̄n

t

λ̄n
t

= −νn
t dt+ un

t dWt, t ≥ 0; λ̄n
0 = 1. (7)

The problem (6–7) indicates that F (C, ν) can be viewed as a generalization of the period

utility function with a potentially stochastic rate of time preference ν that depends on the

properties of the consumption process and thus arises endogenously in a market equilibrium.

Moreover, belief distortions are now fully incorporated in the framework of Dumas, Uppal,

8The cases of ρ → 0 and γ → 0 can be obtained as appropriate limits. The maximization problem (3)
assumes that the felicity function is concave in its second argument. When it is convex, the formulation
becomes a minimization problem.
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and Wang (2000) — the only difference is that the modified discount factor process is not

locally predictable.

The diffusion term un
sdWs has an intuitive interpretation. Consider an optimistic agent

with un > 0. This agent’s beliefs are distorted in that the mass of the distribution of dWs

is shifted to the right — the agent effectively overweighs good realizations of dWs. Formula

(7) indicates that under the true probability measure, positive realizations of dWs increase

the term dλ̄n
s/λ̄

n
s , which implies that the optimistic agent discounts positive realizations of

dWs less than negative ones.

From the perspective of the utility-maximizing agent, assigning a higher probability to an

event and a lower discounting of the utility contribution of this event have the same effect.

In fact, equation (3) suggests that we can understand the belief distortion as a preference

shock and view λ̄nF (Cn, νn) as a state-dependent felicity function. However, interpreting

the martingale Mn as a belief distortion is more appealing since it bears a clearer economic

meaning, separating the structure of beliefs and preferences.

2.3 Planner’s problem and optimal allocations

The problem of an individual agent (3–4) is homogeneous degree one in the modified discount

factors and homogeneous degree γ in consumption. In the homogeneous economy, there exists

a closed-form solution for the continuation value V n
t (Y ) = γ−1Y γ

t Ṽ
n where

Ṽ n =

(

β−1

[

β − ρ

(

µy + unσy −
1

2
(1− γ)σ2

y

)])− γ
ρ

(8)

with the associated discount rate

νn =
β

ρ

(

γ + (ρ− γ)
(

Ṽ n
)− ρ

γ

)

= β + (γ − ρ)

(

µy + unσy −
1

2
(1− γ)σ2

y

)

. (9)

Assumption 2 The parameters in the model satisfy the restrictions

β > max
n

ρ

(

µy + unσy −
1

2
(1− γ)σ2

y

)

, (10)

β > max
n

ρ

(

µc + u∼nσy −
1

2
(1− γ)σ2

y

)

+
ρ

1− ρ

[

(un − u∼n) σy +
1

2

(un − u∼n)2

1− γ

]

(11)

where ∼n is the index of the agent other than n.

The first restriction is sufficient for the continuation values in the homogeneous economies

to be well-defined. The second restriction, which may be, depending on the parameterization,

somewhat tighter, is a sufficient condition assuring that the wealth-consumption ratio is

12



asymptotically well-behaved in the survival proofs when the agent becomes infinitesimally

small. Observe that both conditions are restrictions on the time-preference parameter of

the agents and can always be jointly satisfied by making the agents sufficiently impatient.

Since the survival results will not depend on β, Assumption 2 does not introduce substantial

restrictions for the analysis of the problem.

In the heterogeneous economy, I can follow Dumas, Uppal, and Wang (2000) and intro-

duce a fictitious planner who maximizes a weighted average of the continuation values of the

two agents. Given a pair of strictly positive initial Pareto weights α = (α1, α2), the planner’s

time-0 objective function J0 (α) is the solution to the problem

J0 (α) = sup
(C1,C2,ν1,ν2)

2∑

n=1

E0

(∫ ∞

0

λ̄n
t F (Cn

t , ν
n
t ) dt

)

(12)

subject to the law of motion for the modified discount factors,

dλ̄n
t

λ̄n
t

= −νn
t dt+ un

t dWt, t ≥ 0; λ̄n
0 = αn (13)

for n ∈ {1, 2}, and the feasibility constraint C1 + C2 ≤ Y .

The validity of this approach for a finite-horizon economy is discussed in Dumas, Uppal,

and Wang (2000) and Schroder and Skiadas (1999). The infinite-horizon problem in (12–13)

is a straightforward extension when individual continuation values are well-defined.

The planner’s problem (12–13) suggests that we can interpret the modified discount factor

processes λ̄n as stochastic Pareto weights. Indeed, if λ̄n
0 = αn are the initial weights, then

λ̄n
t are the consistent state-dependent weights for the continuation problem of the planner

at time t.9,10

The evolution of the weights involves the drift component νn and thus can only be

determined in equilibrium unless agent n ’s preferences are separable, in which case νn = β.

The variation in Pareto weights arises from the interaction of two components in the model

9Similar techniques, which extend the formulation of the representative agent provided by Negishi (1960)
to representations with nonconstant Pareto weights, can be used to study models with incomplete markets
where changes in the Pareto weights reflect the tightness of the binding constraints. See Cuoco and He
(2001) for a general approach in discrete time and Basak and Cuoco (1998) for a model with restricted stock
market participation in continuous time.

10Jouini and Napp (2007) approach the problem from a different angle to show that a planner’s problem
formulation with constant Pareto weights is in general not feasible under heterogeneous beliefs. Given
an equilibrium with heterogeneous beliefs, they define a hypothetical representative agent with a utility
function constructed as a weighted average of individual utility functions, with weights given by the inverses
of marginal utilities of wealth. The implied consensus belief of the representative agent that would replicate
the equilibrium allocation is not a proper belief but can be decomposed into the product of a proper belief
and a discount factor. This discount factor would mimic the dynamics of the Pareto shares in problem
(12–13).
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— the nonseparable preference structure and the belief distortion that drives the diffusion

component in (13). Belief heterogeneity introduces an additional risk component un
t dWt

arising through the stochastic reweighing of wealth shares which will have a direct impact

on local risk prices.

Observe that the introduction of belief heterogeneity kept the structure of the problem

unchanged. For instance, Dumas, Uppal, and Wang (2000) show that in a Markov environ-

ment, the discount factor processes λn serve as new state variables that allow a recursive

formulation of the problem using the Hamilton-Jacobi-Bellman (HJB) equation. The same

conclusion is true for the modified discount factor processes λ̄n, once belief heterogeneity is

incorporated. Belief distortions thus do not introduce any additional state variables into the

problem, as long as the distorting processes un are functions of the existing state variables.

2.4 Hamilton-Jacobi-Bellman equation

From now on, I assume that both agents have constant belief distortions un, a frequently

considered case in the survival literature. Extensions involving endogenously determined

distortion processes including learning dynamics are considered in Section 6.

The planner’s problem has an appealing Markov structure. Homogeneity of the planner’s

problem (12–13) in
(
λ̄1, λ̄2

)
suggests a transformation of variables

θ1 = λ̄1
(
λ̄1 + λ̄2

)−1
θ2 = λ̄1 + λ̄2. (14)

The single state variable θ1 represents the Pareto share of agent 1. The dynamics of θ1

are central to the study of survival in this paper. Obviously, θ1 is bounded between zero

and one. It will become clear that for strictly positive initial weights, the boundaries are

unattainable, so that θ1 evolves on the open interval (0, 1). Since the objective function of

the planner is also homogeneous degree γ in Y , the planner’s problem can be characterized

as a solution to an ordinary differential equation with a single state variable θ1.

Proposition 3 The objective function for the planner’s problem (12–13) is

J0 (α) =
(
α1 + α2

)
γ−1Y γ

0 J̃
(
α1/

(
α1 + α2

))
,
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where J̃ (θ1) is the solution to the nonlinear ordinary differential equation

0 = θ1
β

ρ

(
ζ1
)ρ
(

J̃1
)1− ρ

γ
+
(
1− θ1

) β

ρ

(
1− ζ1

)ρ
(

J̃2
)1− ρ

γ
+ (15)

+

(

−
β

ρ
+ µy +

(
θ1u1 +

(
1− θ1

)
u2
)
σy +

1

2
(γ − 1) σ2

y

)

J̃ +

+θ1
(
1− θ1

) (
u1 − u2

)
σyJ̃θ1 +

1

2

1

γ

(
1− θ1

)2 (
θ1
)2 (

u1 − u2
)2

J̃θ1θ1

with boundary conditions J̃ (0) = Ṽ 2 and J̃ (1) = Ṽ 1, where Ṽ n are defined in (8). The

functions J̃n (θ1) are the continuation values of the two agents scaled by γ−1Y γ,

J̃1
(
θ1
)

=̇ J̃
(
θ1
)
+
(
1− θ1

)
J̃θ1
(
θ1
)

(16)

J̃2
(
θ1
)

=̇ J̃
(
θ1
)
− θ1J̃θ1

(
θ1
)
.

and the consumption share ζ1 is given by

ζ1
(
θ1
)
=

(θ1)
1

1−ρ

[

J̃1 (θ1)
] 1−ρ/γ

1−ρ

(θ1)
1

1−ρ

[

J̃1 (θ1)
] 1−ρ/γ

1−ρ

+ (1− θ1)
1

1−ρ

[

J̃2 (θ1)
] 1−ρ/γ

1−ρ

. (17)

Unfortunately, equation (15) does not in general have a closed-form solution. However,

the Pareto share θ1 of agent 1 remains the only state variable. This considerably simplifies

numerical solutions, and, more importantly, allows one to formulate the survival problem in

terms of the boundary behavior of a scalar Itô process. Indeed, the crucial part of the solution

is the law of motion for the state variable θ1 that dictates how the planner adjusts the weights

of the two agents, and thus their current consumption and wealth, over time. In this respect,

the only relevant force for survival is the willingness of the planner to increase the Pareto

weight of the agent that becomes negligible and faces the risk of becoming extinct, and thus

only the boundary behavior of J̃ (θ1) matters. Despite the nonexistence of a closed-form

solution for J̃ (θ1), this boundary behavior can be characterized analytically by studying the

limiting behavior of the objective function.

Equation (15) is not specific to the planner’s problem (12–13). For instance, Gârleanu

and Panageas (2010) use the martingale approach to directly analyze the equilibrium in

an economy with agents endowed with heterogeneous recursive preferences, and show that

they can derive their asset pricing formulas in closed form up to the solution of a nonlinear

ODE that has the same structure as (15), which they have to solve for numerically. The

analytical characterization of the boundary behavior of the ODE derived in this paper is thus

applicable to a wider class of recursive utility models, and can aid numerical calculations
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which are often unstable in the neighborhood of the boundaries in this type of problems.

3 Survival

Survival chances of agents with distorted beliefs have been studied extensively under separa-

ble utility. Kogan, Ross, Wang, and Westerfield (2011) show a tight link between the behavior

of the belief ratio, consumption shares, and the risk aversion coefficient as a measure of cur-

vature of the utility function when preferences are separable. Separable utility is obtained

a special case of the variational utility (3–4) with an optimal discount rate choice νn = β

where β is the time preference coefficient and the period utility function F (C, β) =̇U (C).

The first-order condition for the planner’s problem leads to the static equation

α1M1
t U

′
(
C1

t

)
= α2M2

t U
′
(
C2

t

)
.

Survival analysis thus corresponds to analyzing a sequence of state- and time-indexed static

problems that are interlinked only by the initial Pareto weights αn, whose choice is largely

innocuous for the long-run results. If agent 1 has a constant belief distortion u1 6= 0 and

agent 2 is rational, then M1 is a strictly positive supermartingale with lims→∞M1
t+s = 0

(P -a.s.) and M2
t ≡ 1, and thus lims→∞ U ′

(
C1

t+s

)
/U ′

(
C2

t+s

)
= +∞ (P -a.s.). For a class of

utility functions that includes the CRRA utility (the special case when γ = ρ in this paper),

this implies lims→∞ ζ1t+s/ζ
2
t+s = 0 (P -a.s.).

When preferences are not separable, this straightforward link breaks down because margi-

nal utilities of consumption also depend on continuation values and the first-order conditions

involve the evolution of the endogenously determined discount rate process νn between t and

t+ s. Since these continuation values and discount rate processes are not available in closed

form, they have to in general be solved for numerically.

I show in this section that in order to evaluate the survival chances of individual agents,

a complete solution for the consumption allocation, continuation values, and the implied

discount rate processes is not necessary. In fact, it is sufficient to characterize the wealth

dynamics in the limiting cases when the wealth share of one of the agents becomes negligible,

and this limiting behavior can be solved for in closed form. This characterization of survival

requires taking an approach that is different from the majority of the literature, which

typically analyzes the global properties of relative entropy as a measure of disparity between

subjective beliefs and the true probability distribution, and its convergence as t ր ∞.

Instead, I derive the local dynamics of the Pareto share θ1 and rely on its ergodic prop-

erties, which allow me to investigate the existence of a unique stationary distribution for θ1

that is closely related to survival. The derived sufficient conditions are tightly linked to the
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behavior of the difference of endogenous discount rates of the two agents. In a decentralized

economy, these relative patience conditions can be reinterpreted in terms of the difference in

expected logarithmic growth rates of individual wealth.

Since the analyzed model includes growing and decaying economies, I am interested in

a measure of relative survival. The following definition distinguishes between survival along

individual paths and almost-sure survival.

Definition 4 Agent 1 becomes extinct along the path ω ∈ Ω if limt→∞ θ1t (ω) = 0. Otherwise,

agent 1 survives along the path ω. Agent 1 dominates in the long run along the path ω if

limt→∞ θ1t (ω) = 1.

Agent 1 becomes extinct (under measure P ) if limt→∞ θ1t = 0, P -a.s. Agent 1 survives if

lim supt→∞ θ1t > 0, P -a.s. Agent 1 dominates in the long run if limt→∞ θ1t = 1, P -a.s.

Kogan, Ross, Wang, and Westerfield (2011) or Yan (2008) use the consumption share

ζ1 as a measure of survival. Since the consumption share (17) is continuous and strictly

increasing in θ1 and the limits are limθ1ց0 ζ
1 (θ1) = 0 and limθ1ր1 ζ

1 (θ1) = 1, the two

measures are equivalent in this setting.

3.1 Dynamics of the Pareto share and long-run distributions

Recall the dynamics of the modified discount factor processes λ̄n in (13). An application of

Itô’s lemma to θ1 = λ̄1/
(
λ̄1 + λ̄2

)
yields

dθ1t
θ1t

=
(
1− θ1t

) [
ν2
t − ν1

t +
(
θ1t u

1 +
(
1− θ1t

)
u2
) (

u2 − u1
)]

dt+ (18)

+
(
1− θ1t

) (
u1 − u2

)
dWt.

Both heterogeneous beliefs and heterogeneous recursive preferences lead to nonconstant

dynamics of the Pareto share, although with different implications. Under nonseparabil-

ity, preference heterogeneity induces a smooth evolution of the Pareto weights, while belief

heterogeneity leads to dynamics with a nonzero volatility term. Identical belief distortions

(u1 = u2) under separable preferences with identical time preference coefficients or under

identical recursive preferences imply a constant Pareto share θ1t ≡ α1/ (α1 + α2). In what

follows, I abstract from this situation, and assume u1 6= u2.

Under nonseparable preferences, the discount rates are determined endogenously in the

model as a solution to problem (12–13) and are given by

νn
(
θ1
)
=

β

ρ

(

γ + (ρ− γ)

(

ζn (θ1)

J̃n (θ1)1/γ

)ρ)

. (19)
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The discount rates νn are twice continuously differentiable functions of the state variable

θ1, and thus θ1 is an Itô process on the open interval (0, 1) with continuous drift and volatility

coefficients.11 Intuitively, one would expect a stationary distribution for θ1 to exist if the

process exhibits sufficient pull toward the center of the interval when close to the boundaries.

This is formalized in the following Proposition:

Proposition 5 Define the following ‘repelling’ conditions (i) and (ii), and their ‘attracting’

counterparts (i’) and (ii’).

(i) limθ1ց0 [ν
2 (θ1)− ν1 (θ1)] > 1

2

[

(u1)
2
− (u2)

2
]

(i’) <

(ii) limθ1ր1 [ν
2 (θ1)− ν1 (θ1)] < 1

2

[

(u1)
2
− (u2)

2
]

(ii’) >

Then the following statements are true:

(a) If conditions (i) and (ii) hold, then both agents survive under P .

(b) If conditions (i) and (ii’) hold, then agent 1 dominates in the long run under P

(c) If conditions (i’) and (ii) hold, then agent 2 dominates in the long run under P .

(d) If conditions (i’) and (ii’) hold, then there exist sets S1, S2 ⊂ Ω which satisfy

S1 ∩ S2 = ∅, P
(
S1
)
6= 0 6= P

(
S2
)
, and P

(
S1 ∪ S2

)
= 1

such that agent 1 dominates in the long run along each path ω ∈ S1 and agent 2

dominates in the long run along each path ω ∈ S2.

The conditions are also the least tight bounds of this type.

Given the dynamics of the Pareto share (18), conditions (i) and (ii) are jointly sufficient

for the existence of a unique stationary density q (θ1). The proof of Proposition 5 is based

on the classification of boundary behavior of diffusion processes, discussed in Karlin and

Taylor (1981). The four ‘attracting’ and ‘repelling’ conditions are only sufficient and their

combinations stated in Proposition 5 are not exhaustive. However, the only unresolved cases

are knife-edge cases involving equalities in the conditions of the Proposition, which are only

of limited importance in the analysis below.

I call the difference in the discount rates ν2 (θ1) − ν1 (θ1) relative patience because it

captures the difference in discounting of future felicity in the variational utility specification

(3) between the two agents. Conditions in Proposition 5 have an intuitive interpretation.

11The unattainability of the boundaries follows from the proof of Proposition 5.
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Survival condition (i) states that agent 1 survives under the true probability measure even

in cases when her beliefs are more distorted, |u1| > |u2|, as long as her relative patience

becomes sufficiently high to overcome the distortion when her Pareto share vanishes.

Lucas and Stokey (1984) impose a similar condition called increasing marginal impatience

that is sufficient to guarantee the existence of a nondegenerate steady state as an exogenous

restriction on the preference specification. This condition requires the preferences in their

framework to be nonhomothetic, and rich agents must discount future more than poor ones.

In this model, preferences are homothetic, and variation in relative patience arises purely as

a response to the market interaction of the two agents endowed with heterogeneous beliefs.

The discount rate νn encodes not only a pure time preference but also the interaction of

current discounting with the dynamics of the continuation values that reflects the behavior

of the optimal consumption stream.

3.2 CRRA preferences

The framework introduced in this paper includes as a special case the separable constant

relative risk aversion preferences when γ = ρ. Yan (2008) and Kogan, Ross, Wang, and

Westerfield (2011) show that in the economy presented in this paper under CRRA prefer-

ences, the agent whose beliefs are less distorted dominates in the long run under measure P .

The conditions in Proposition 5 confirm these results as follows:

Corollary 6 Under separable CRRA preferences (γ = ρ), agent n dominates in the long

run under measure P if and only if |un| < |u∼n|. Agent n survives under P if and only if the

inequality is non-strict. Further, agent n always survives under measure Qn, and dominates

in the long run under Qn if and only if un 6= u∼n.

Under separable CRRA preferences, the dynamics of the Pareto share (18) do not de-

pend on the characteristics of the endowment process. The survival result in Corollary 6

thus extends to an arbitrary adapted aggregate endowment process Y that satisfies elemen-

tary integrability conditions, including a constant one, as long as the two agents can write

contracts on the realizations of the Brownian motion W . It is a special case of the analysis in

Kogan, Ross, Wang, and Westerfield (2011), who show that this survival result holds, under

mild conditions, for any separable preferences with bounded relative risk aversion. In this

sense, the separable environment generates a robust result about the extinction of agents

whose beliefs are relatively inaccurate.

A specific situation in Corollary 6 arises when un = −u∼n. The proof of the corollary

shows that although none of the agents becomes extinct, a nondegenerate long-run distribu-

tion for θ1 does not exist.
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3.3 The nonseparable case

When preferences are not separable, consumption choices across periods are interlinked

through the endogenously determined discount rate processes νn, which opens another chan-

nel for intertemporal tradeoff and thus potential survival. This endogenous discounting is

reflected in the evolution of the Pareto share θ1. In this section, I derive closed-form formulas

for the boundary behavior of νn, and evaluate analytically the region in the parameter space

in which the conditions of Proposition 5 hold.

The proof strategy in this section relies on a decentralization argument and utilizes the

asymptotic properties of the differential equation (15) for the planner’s continuation value.

The economy is driven by a single Brownian shock, and two suitably chosen assets that

can be continuously traded are therefore sufficient to complete the markets in the sense of

Harrison and Kreps (1979). Let the two traded assets be an infinitesimal risk-free bond

in zero net supply that yields a risk-free rate rt = r (θ1t ) and a claim on the aggregate

endowment with price Ξt = Ytξ (θ
1
t ), where ξ (θ

1) is the aggregate wealth-consumption ratio.

Individual wealth levels are denoted Ξn
t = Ytζ

n (θ1t ) ξ
n (θ1t ), where ξn (θ1) are the individual

wealth-consumption ratios.

The results reveal that as the Pareto share of one of the agents converges to zero, the

infinitesimal returns associated with the two assets converge to those which prevail in a

homogeneous economy populated by the agent with the large Pareto share. This implies

that an agent that becomes extinct in the long run also has no long-run price impact on the

two assets that are traded.

These results are, however, even stronger because they also state that when the wealth

of an agent becomes negligible, she has no impact on the current prices of the two assets

even if she survives in the long run and her wealth recovers in the future. The ability to

pin down asset returns when the wealth of one agent is negligible even though she may

survive in the long run plays a crucial role in the analysis because it allows me to determine

the wealth dynamics of the two agents in the proximity of the boundary by solving two

straightforward portfolio choice problems. The solutions then yield in closed form the re-

quired limiting behavior of the discount rates νn from Proposition 5, and thus determine the

survival outcomes. Further, the link between the decentralized solution and the planner’s

problem conditions from Proposition 5 reveals that the survival conditions can be directly

restated as conditions on the limiting expected growth rates of the logarithm of individual

wealth levels in a decentralized economy.
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3.3.1 Equilibrium prices

Without loss of generality, it is sufficient to focus on the case θ1 ց 0. Using the construction

from Duffie and Epstein (1992a), the stochastic discount factor process for agent n under

the subjective probability measure Qn is given by

Sn
t = exp

(

−

∫ t

0

νn
(
θ1s
)
ds

)(
Yt

Y0

)γ−1(
ζn (θ1t )

ζn (θ10)

)ρ−1
(

J̃n (θ1t )

J̃n (θ10)

)1− ρ
γ

. (20)

For the large agent 2, Lemma 15 in the Appendix shows that limθ1ց0 ζ
2 (θ1) = 1 and

limθ1ց0 J̃
2 (θ1) = Ṽ 2 from equation (8), implying that limθ1ց0 ν

2 (θ1) = ν2 which is given in

(9). It remains to be shown that the local drift and volatility of the last two terms decline

to zero as θ1 ց 0, which implies that the infinitesimal risk-free rate and the local price of

risk converge to their counterparts from a homogeneous economy populated only by agent

2. Moreover, the price of aggregate endowment Ξ converges as well, and so does the lo-

cal return on aggregate wealth. The following Proposition summarizes the limiting pricing

implications.

Proposition 7 As θ1 ց 0, the infinitesimal risk-free rate r (θ1), the aggregate wealth-

consumption ratio ξ (θ1), and the drift and volatility coefficients of the aggregate wealth

process dΞt/Ξt = µΞ (θ
1
t ) dt + σΞ (θ

1
t ) dt converge to their homogeneous economy counter-

parts:

lim
θ1ց0

r
(
θ1
)

= r (0) = β + (1− ρ)
(
µy + u2σy

)
−

1

2
(2− ρ) (1− γ) σ2

y ,

lim
θ1ց0

ξ
(
θ1
)

= ξ (0) =

[

β − ρ

(

µy + u2σy −
1

2
(1− γ) σ2

y

)]−1

,

lim
θ1ց0

µΞ

(
θ1
)

= µy, and lim
θ1ց0

σΞ

(
θ1
)
= σy.

Consequently, the infinitesimal return on the claim on aggregate wealth,

[[
ξ
(
θ1t
)]−1

+ µΞ

(
θ1t
)]

dt+ σΞ

(
θ1t
)
dWt, (21)

has coefficients that converge as well.

Notice that the convergence of the coefficients of the wealth process is not an immediate

consequence of the convergence of the aggregate wealth-consumption ratio. It may be that

the wealth-consumption ratio ξ (θ1) converges as θ1 ց 0, yet the price dynamics are such

that µΞ (θ
1) and σΞ (θ

1) do not converge to µy and σy, respectively. The fact that this

does not happen is closely linked to the dynamics of log θ1 which has bounded drift and
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volatility coefficients. This ensures that the local variation in ξ (θ1) becomes irrelevant as

log θ1 ց −∞.

The results in Proposition 7 are sufficient to proceed with the construction of the main

result. As a side note, prices of finite-horizon risk-free claims and individual cash flows from

the aggregate endowment converge as well:

Corollary 8 For every fixed maturity t, the prices of a zero-coupon bond and a claim to a

payout from the aggregate endowment stream (a consumption strip) converge to their homo-

geneous economy counterparts as θ1 ց 0.

The agent with negligible wealth therefore has no price impact not only on the two

assets that dynamically complete the market but also on every finite-maturity bond and

consumption strip. Recall that the results from Proposition 7 and Corollary 8 do not assume

that the agent with negligible wealth vanishes in the long run. The reason is that even if

the agent survives, the logarithmic growth rates of her wealth are always bounded in this

economy. This implies that the distribution of her wealth at a given future date t can

be driven arbitrarily close to zero by driving to zero her current wealth level. Of course,

ultimately, the surviving agent will recover from an arbitrarily small wealth level, so that

the convergence in Corollary 8 is not uniform in the maturity horizon t ∈ (0,∞).

3.3.2 Decision problem of an agent with negligible wealth

Proposition 7 establishes that the actual general equilibrium price dynamics in the proximity

of the boundary are locally the same as those in an economy populated only by agent 2. To

conclude the argument, we need to infer the wealth dynamics for agent 1 that has negligible

wealth. The marginal utility under recursive preferences is forward-looking and depends on

agent’s continuation value (see the stochastic discount factor specification (20)). If agent 1

ultimately survives, then she will always have a nontrivial price impact in the future, even

if her current Pareto share is negligible. The forward looking nature of the optimization

problem then implies that she should take this price impact into account when making her

current portfolio and consumption-saving decisions. However, the result below shows that

this impact of future price dynamics becomes immaterial as θ1 ց 0.

Proposition 9 The consumption-wealth ratio of agent 1 converges to

lim
θ1ց0

[
ξn
(
θ1
)]−1

= [ξ (0)]−1 −
ρ

1− ρ

[

(
u1 − u2

)
σy +

1

2

(u1 − u2)
2

1− γ

]

(22)
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and the wealth share invested into the claim on aggregate consumption to

lim
θ1ց0

π1
(
θ1
)
= 1 +

u1 − u2

(1− γ) σy

. (23)

It follows that the asymptotic coefficients for the evolution of agent’s 1 wealth are

lim
θ1ց0

µΞ1

(
θ1
)

= µy +
1

1− ρ
(u1 − u2) σy +

1

2

2− ρ

1− ρ

(u1 − u2)
2

1− γ
−

u1 (u1 − u2)

1− γ

lim
θ1ց0

σΞ1

(
θ1
)

= σy +
u1 − u2

(1− γ)
.

Proposition 9 derives the consumption-saving decision (22) and portfolio allocation de-

cision (23) relative to the same decisions of the large agent 2. Recall that agent’s 2 choices

agree in the limit as θ1 ց 0 with aggregate ones — her consumption-wealth ratio is equal

to the aggregate ratio [ξ (0)]−1 and she holds the market portfolio, limθ1ց0 π
2 (θ1) = 1. As

the formulas indicate, when u1 = u2 the agents are identical and their decisions and wealth

dynamics coincide.

The logic of the proof relies on showing that the current continuation value dynamics

of the agent with negligible wealth is not influenced by the fact that she may become non-

negligible in the future and have impact on aggregate price dynamics. Since the drift and

volatility coefficients of the logarithm of the Pareto share process log θ1 are bounded, then

by pushing the current θ1 arbitrarily close to zero (log θ1 arbitrarily far toward −∞), one

can extend the time before the presence of the agent 1 becomes noticeable from aggregate

perspective (measured, e.g., by sufficiently large deviations in prices or return distributions

from their homogeneous economy counterparts) arbitrarily far into the future.

The portfolio and consumption-saving decision of agent 1 as θ1 ց 0 thus coincides with a

‘partial equilibrium’ solution where agent 1 behaves as if she lived forever as an infinitesimal

agent in a homogeneous economy populated only by the large agent 2.

This implies that the survival question, whose answer only depends on the behavior at

the boundaries, can be resolved by studying homogeneous economies with an infinitesimal

price-taking agent. Even if the negligible agent survives with probability one and has an

impact on equilibrium prices in the long run, these effects do not influence current prices,

returns, and wealth dynamics.

3.3.3 Limiting relative patience and relationship to wealth growth

Importantly, the limiting discount rate ν1 (θ1) in Proposition 5 can be inferred from the

portfolio problem (43–44), which leads to the statement of the main result of this section.
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Proposition 10 The expressions for the limiting behavior of the relative patience in Propo-

sition 5 are

lim
θ1ց0

ν2
(
θ1
)
− ν1

(
θ1
)

=
ρ− γ

1− ρ

[

(
u1 − u2

)
σy +

1

2

(u1 − u2)
2

1− γ

]

, (24)

lim
θ1ր1

ν2
(
θ1
)
− ν1

(
θ1
)

=
ρ− γ

1− ρ

[

(
u1 − u2

)
σy −

1

2

(u1 − u2)
2

1− γ

]

. (25)

Section 4 discusses which regions of the parameter space satisfy the individual survival

and extinction conditions from Proposition 5. It remains for me to verify that the assumption

about the boundedness of wealth consumption ratios indeed holds.

Corollary 11 Under parameter restrictions in Assumption 2, the wealth-consumption ratios

are bounded and bounded away from zero.

Notice that while Assumption 2 imposes a restriction on the time-preference parameter

β of the agents, the survival conditions do not explicitly depend on β. The survival results

thus always hold with the implicit assumption that time discounting is sufficiently high.

The construction of the main survival result utilized the link between the planner’s prob-

lem and the competitive equilibrium. It turns out that relative patience conditions that

assure survival can be restated as conditions on the relative growth rates of individual wealth.

Corollary 12 The survival conditions in part a) of Proposition 5 are equivalent to:

(i) limθ1ց0 µΞ1 (θ1)− 1
2
[σΞ1 (θ1)]

2
> limθ1ց0 µΞ2 (θ1)− 1

2
[σΞ2 (θ1)]

2
,

(ii) limθ1ր1 µΞ1 (θ1)− 1
2
[σΞ1 (θ1)]

2
< limθ1ր1 µΞ2 (θ1)− 1

2
[σΞ2 (θ1)]

2
.

Verifying the conditions in Proposition 5 therefore amounts to checking that the expected

growth rate of the logarithm of wealth (the drift coefficient for d log Ξn
t ) is higher for the agent

who is at the brink of extinction.

3.3.4 Decomposition of wealth growth rates

The previous discussion identified the portfolio allocation and the consumption-saving de-

cisions as the two mechanisms underlying wealth accumulation and long-run survival. It is

therefore informative to decompose the growth rate of individual wealth from Corollary 12

into the contribution of the logarithmic return on the agent’s portfolio, net of the rate of

consumption represented by the consumption-wealth ratio,

d log Ξn
t = d logRn

t − (ξnt )
−1 dt.
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Denoting the drift coefficient on d log Ξn
t as µ̃Ξn (θ1) = µΞn (θ1)− 1

2
[σΞn (θ1)]

2
and the drift

coefficient on d logRn
t (the expected logarithmic return) as µ̃Rn (θ1), we can collect the results

above to establish the following decomposition.

Proposition 13 As θ1 ց 0, the difference in the logarithmic wealth growth rates between

the agent with negligible wealth and the large agent can be written as

lim
θ1ց0

[
µ̃Ξ1

(
θ1
)
− µ̃Ξ2

(
θ1
)]

= lim
θ1ց0

[
µ̃R1

(
θ1
)
− µ̃R2

(
θ1
)]

− lim
θ1ց0

[(
ξ1
(
θ1
))−1

−
(
ξ2
(
θ1
))−1

]

where the difference in the expected logarithmic portfolio returns is

lim
θ1ց0

[
µ̃R1

(
θ1
)
− µ̃R2

(
θ1
)]

=
u1 − u2

(1− γ) σy
︸ ︷︷ ︸

difference in

portfolios

[
(1− γ) σ2

y − u2σy

]

︸ ︷︷ ︸

risk premium

−
u1 − u2

1− γ

(

σy +
1

2

u1 − u2

1− γ

)

︸ ︷︷ ︸

lognormal correction

and the difference in consumption rates is given by

lim
θ1ց0

[(
ξ1
(
θ1
))−1

−
(
ξ2
(
θ1
))−1

]

= −
1

2

ρ

1− ρ

[

2
(
u1 − u2

)
σy +

(u1 − u2)
2

1− γ

]

︸ ︷︷ ︸

difference in subjective expected returns

.

The difference in the expected logarithmic portfolio returns at the boundary only depends

on the risk relative risk aversion 1 − γ, not on the parameter ρ that determines the IES.

This difference consists of the familiar terms — the risk premium on the claim on aggregate

consumption times the difference in the portfolio shares invested in the risky asset (recall

that agent 2 holds the market portfolio while agent’s 1 portfolio allocation is given by (23)).

The risk premium consists of the standard rational expectations premium (1− γ)σ2
y and a

‘mispricing’ effect −u2σy (if the large agent 2 is optimistic, she overprices the risky asset

which generates a lower expected return). However, it is the expected logarithmic return

that drives survival, and thus a lognormal correction is necessary. This lognormal correction

is the dominant force for survival when risk aversion declines to zero (γ ր 1).

The difference in consumption rates also has two components. The term in brackets

represents the difference between the expected portfolio return of agent 1 as perceived by

agent 1, and the portfolio return of agent 2 as perceived by agent 2, informally

1

dt

(

EQ1

t

[
dR1

t

]
−EQ2

t

[
dR2

t

])

.

It is the subjective expected returns (computed under Qn, not P ) that enter the formula

because the consumption-saving decision of the agent depends on the expected portfolio
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return as perceived by herself. When IES = 1 (ρ = 0), the consumption-wealth ratios of the

two agents are identical and equal to β as in the case of myopic logarithmic utility, and the

consumption-saving decision plays no role in the survival outcomes. When preferences are

elastic (IES > 1, i.e., 1 > ρ > 0), the saving rate is an increasing function of the subjective

expected portfolio return and the difference in consumption rates is therefore negatively

related to the difference in subjective expected returns — vis-à-vis a high expected return,

the agent with elastic preferences decides to postpone consumption and tilt the consumption

profile toward the future. This helps the agent with the higher expected subjective return

outsave her extinction.

3.3.5 Dependence of survival results on individual parameters

It is worth noting that the survival results do not depend on the time-preference parameter

β and the growth rate of the economy µy. Both these parameters influence individual prefer-

ences for saving versus consumption. Since the impact of these parameters on both agents’

decisions is identical, they do not affect the difference in the rates of wealth accumulation.

This would no longer be true if, for instance, the agents differed in the IES parameter.

Finally, using the results from Proposition 10 in the inequality conditions from Proposi-

tion 5 reveals that the survival regions depend on the ratios of parameters u1/σy and u2/σy,

and not on the three parameters independently. This is an important insight that shows

that what matters for survival in this economy is the importance of aggregate fundamental

risk embedded in σy relative to the willingness of the agents to generate additional volatility

in their individual consumption processes through betting, reflected in the magnitude of the

belief distortions un. For instance, if agent 1 has correct beliefs, u1 = 0, then the long-run

survival outcome will be the same if we fix the belief distortion u2 and make the aggregate

endowment deterministic, σy ց 0, or if we fix σy and make the agent’s beliefs infinitely

incorrect. I will revisit this aspect of the survival results in the next section.

4 Survival regions

This section analyzes the regions of the parameter space in which agents with distorted

beliefs survive or dominate the economy. It turns out that all four combinations generated

by the pair of inequalities in Proposition 5 do occur generically, and Figure 1 visualizes the

survival regions. Each panel fixes the belief distortions (u1, u2) and the volatility of aggregate

endowment σy, and plots the regions in the risk aversion / inverse of IES (1− γ, 1− ρ) plane.

The results do not reveal what happens at the boundaries of the regions where conditions

from Proposition 5 hold with equalities, but the survival characteristics inside the individual

regions are well-defined.
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4.1 Asymptotic results

It is useful to start by describing the asymptotic results as either risk aversion or intertem-

poral elasticity of substitution moves toward extreme values, holding the other parameters

fixed.

Corollary 14 Holding other parameters fixed, for any given pair of beliefs un, n ∈ {1, 2}

and σy > 0, the survival restrictions imply the following asymptotic results.

(a) As agents become risk neutral (γ ր 1), each agent dominates in the long run with a

strictly positive probability.

(b) As risk aversion increases (γ ց −∞), the agent who is relatively more optimistic about

the growth rate of aggregate endowment always dominates in the long run.

(c) As intertemporal elasticity of substitution increases (ρ ր 1), the relatively more opti-

mistic agent always survives. The relatively more pessimistic agent survives (and thus

a nondegenerate long-run equilibrium exists) when risk aversion is sufficiently small.

(d) As the intertemporal elasticity of substitution decreases to zero (ρ ց −∞), a nondegen-

erate long-run equilibrium cannot exist.

In order to provide the intuition underlying result (a), consider the limiting case when

agents are risk neutral (γ = 1). Then the felicity function F (C, ν) in (5) is linear in C,

and the planner will choose a corner solution for the allocation of consumption in the next

instant. There will be a cutoff in the distribution of the next-instant shock dWt above

which the planner allocates all consumption to the relatively more optimistic agent, and vice

versa for states below the cutoff. Further, when the planner chooses zero consumption for

the agent in the next instant, he will allocate zero consumption to that agent also at all

subsequent dates and states. This result may seem puzzling but it is closely related to the

exact role of the IES parameter, which captures the elasticity of substitution between current

consumption and the expected risk-adjusted continuation value. When IES is finite (ρ < 1),

then the only way how to optimally provide zero consumption in the next instant is to also

provide zero continuation value in the same state, which also implies zero consumption at

all subsequent dates and states (up to a set of paths of measure zero).12 When risk aversion

is strictly positive but sufficiently small, the same force will not operate instantaneously but

over time in the long-horizon limit. The planner will optimally let the continuation values

drift apart as he tolerates a wide distribution of future continuation values.

12A very similar mechanism underlies the results in Backus, Routledge, and Zin (2008). The discrete-time
specification from Epstein and Zin (1989) adopted in their paper makes clear the role of IES parameter as
the elasticity between current consumption and the expected risk-adjusted continuation value next period.
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The interpretation of this result from the perspective of decentralized decision-making of

the two agents has been already discussed in the introduction. Agents with a low risk aversion

are willing to make large bets on the states next period. Once a sequence of unsuccessful bets

reduces the wealth of one agent substantially, she is the only one who can continue to make

large bets, as the agent with the dominant amount of wealth is disciplined by market clearing

(prices have to adjust so as to make the large agent consume the aggregate endowment, and

hold her portfolio entirely invested in the risky asset without any leveraging). Further betting

of the small agent continues to be detrimental for her survival chances — despite the fact

that she may earn a high expected level return on her portfolio, the expected logarithmic

return is low due to the variance correction that comes from the high dispersion of future

wealth that the agent tolerates. This leads to her extinction along a set of paths that has a

strictly positive measure. Since events when either of the agents becomes sufficiently small

recur with probability one, ultimately one of the agents becomes extinct with probability

one, and each of the agents faces a strictly positive probability of extinction.

In the other extreme, when agents become very risk averse (γ ց −∞, result (b)), the

felicity function is highly curved and the provision of consumption in the low realizations of

the shock becomes very costly for the planner. Since the relatively more pessimistic agent

overweighs the probability of the low realizations, the planner will provide consumption to

this agent in these low states but he will compensate the high cost of this consumption by

providing a lower average promised utility across all states. In the decentralized equilibrium,

this is manifested by the relatively more optimistic agent earning a strictly higher expected

return on her portfolio that is overweighed in the high-return risky asset, despite the fact

that betting motives that lead agents with inaccurate beliefs to allocate wealth incorrectly

disappear as risk aversion increases.

Under separable preferences, the relatively more pessimistic agent would still survive

(and dominate) in this situation if her beliefs are more accurate because an increase in risk

aversion implies a decrease in IES. This agent would correctly understand that she pays

for her insurance of the low states with a lower expected return, and the lower IES would

also motivate her to decrease current consumption more. Under the recursive preference

structure, the IES is fixed as risk aversion increases, and this saving channel will not outweigh

the advantage of the relatively more optimistic agent.

Result (c) highlights the role of the consumption-saving mechanism. With a high IES,

agents are willing to substantially decrease their consumption rate vis-à-vis an increase in

the subjective expected return on their portfolio (see also the expression for the difference in

consumption rates in Proposition 13 which scales the difference in subjective expected returns

by the term ρ/ (1− ρ)). Whenever an agent becomes small, she can choose a portfolio with

a high subjective expected return while the market clearing mechanism forces her large
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counterpart to choose a portfolio that is close to the market portfolio. The high IES then

gives a survival advantage to the small agent because it induces her to increase her saving

rate in response to the high subjective expected return.

At the same time, risk aversion cannot be too high for this mechanism to be sufficiently

strong. A high risk aversion discourages betting, and the incentives of the small agent to

choose a sufficiently ‘leveraged’ portfolio with a high subjective expected return diminish.

Result (d) is a direct counterpart to (c). When preferences of the agents become inelastic

(ρ ց −∞), formulas in Proposition 10 imply that the survival conditions cannot hold

simultaneously. Inelastic preferences imply that the agents are unwilling to substantially

change the slope of their consumption profiles, and the mechanism based on differences

in saving rates, which operated for high IES, is largely absent. This result again shows

the critical role of the consumption-saving decision and the endogenous equilibrium price

dynamics in generating equilibria in which both agents survive in the long run. Partial

equilibrium models with exogenous price dynamics that do not depend on wealth shares of

individual agents cannot replicate this survival mechanism.

4.2 Comparative statics

The panels in Figure 1 depict the shape of the survival regions for different choices of the

belief distortions. Agent 2 is assumed to have correct beliefs (except the last panel), while

I vary the belief distortion of agent 1. The volatility of aggregate endowment is set to a

plausible value of σy = 0.02. The magnitude of the belief distortion u1 = 0.1 implies that

the agent overestimates the annual growth rate of aggregate endowment by u1σy = 0.2%

(and, correspondingly, by 0.5% for u1 = 0.25). The existing literature established that

along the dotted diagonal, which represents the parameter combinations for separable CRRA

preferences, the agent with more accurate beliefs (i.e., with a smaller |un|) dominates the

economy in the long run.

4.2.1 Optimistic belief distortion

The first panel starts with a moderately optimistic agent 1. Consistent with the previous

results, the correct agent 2 dominates in the long run in the neighborhood of the diagonal.

Also, for very high levels of risk aversion, the relatively more optimistic agent 1 dominates

the economy. However, there is a nontrivial intermediate region where both agents coexist

in the long run. In this whole region, risk aversion is larger than the inverse of IES, which

is a standard parametric choice in the asset pricing literature. The two boundaries in the

top left panel which delimit this region are asymptotically parallel as γ ց −∞ with slope

2σy/ (u
1 + u2 + 2σy). Finally, for very low levels of risk aversion, either agent can dominate
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Figure 1: Survival regions for different parameterizations. All panels except the third panel

assume σy = 0.02. In the third panel, aggregate endowment is deterministic, σy = 0, but the

survival regions take the same shape for any parameterization with u2 = 0 and |u1/σy| → ∞.

Belief distortion parameters un are shown in the titles of individual panels.

in the long run with a strictly positive probability (result (a) from Corollary 14).

The second (top right) panel shows a comparison of the results when the optimism of

the optimistic agent 1 increases to u1 = 0.25. Due to the increased inaccuracy of beliefs of

agent 1, the region where the correct agent 2 dominates expands. At the same time, the

region in which both agents coexist in the long run expands as well.

The natural question is to ask whether the region in which both agents coexist vanishes

as the inaccuracy of beliefs of agent 1 increases further. The answer is, maybe somewhat

surprisingly, no. The third panel depicts the survival outcomes for the case |u1/σy| → ∞,

which includes several rather different parameterizations. The first case is the case of extreme

optimism, u1 → ∞. The region of the parameter space from the first two panels in which

both agents survive shifts to the right and down, but converges to a nontrivial region that

occupies most of the half-plane for IES > 1. Regardless how incorrectly optimistic agent 1

becomes, she still survives in a large set of plausible preference parameterizations.
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4.2.2 Deterministic economy

However, the same region of coexistence of the two agents is obtained for the case of extreme

pessimism (u1 → −∞), or the case of an economy with a deterministic aggregate endow-

ment (σy = 0). All these economies share the common feature that the magnitude of the

risk premium associated with the claim on aggregate endowment, which is proportional to

σ2
y , becomes trivial compared to the amount of perceived mispricing that depends on the

magnitude of the difference in belief distortions. Since the incorrect belief is manifested

as a perceived drift term in the increment of the Brownian motion and this increment has

a symmetric distribution, then in an economy where aggregate risk has a negligible pric-

ing implication a positive and a negative drift distortion have the same (merely mirrored)

distributional implications.

This is apparent in the case of a deterministic aggregate endowment. To interpret this

economy, consider without loss of generality the case of Yt ≡ 1. The agents observe the

Brownian motion W and can contract upon its realizations. A possible decentralization of

this economy involves an asset in unit supply that pays the safe aggregate endowment, and

a risky asset in zero net supply that pays out according to the realizations of W . While the

aggregate endowment is safe, W provides a lottery to the agents with a probability distri-

bution about which they disagree, and they use their claims on the aggregate endowment to

bet using this lottery. Because W is symmetric, it is irrelevant whether the agent’s beliefs

are distorted by un or −un.

As the wealth share of an agent converges to one, her consumption stream becomes

deterministic which implies that risk is not priced in equilibrium. The zero net supply

risky asset can be mispriced in equilibrium but the large agent holds only a negligible share

of wealth invested in this asset due to market clearing, and thus her portfolio earns the

risk-free return which is correctly perceived by the agent. The negligible agent can choose a

risk-free portfolio as well but since she has different beliefs than the large agent, she perceives

the risky asset as mispriced and chooses either a short or long position in the risky asset,

depending on the direction of the mispricing. Such a portfolio generates a higher subjective

expected return to the negligible agent than the risk-free return earned by the large agent.

With IES > 1, this translates into a higher saving rate of the negligible agent, and if IES is

sufficiently high, the high saving motive will always be strong enough to let the negligible

agent outsave her extinction and survive in the long run.

4.2.3 Pessimistic belief distortion

The fourth and fifth graphs represent the survival results for a pessimistic agent 1. The

sequence of the graphs can be interpreted as shrinking the magnitude of the agent’s pessimism
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from an infinite belief distortion (u1 → −∞) in the third graph toward smaller distortions in

graphs four and five. Interestingly, the region in which the pessimistic agent survives shrinks

as the belief distortion of the agent is reduced. This is in stark contrast to the conventional

wisdom obtained from the study of survival under separable preferences. Not only can the

incorrect agent survive in the long run, her survival chances are actually better with larger

distortions.

Notice that the pessimistic agent invests a smaller share of her wealth into the risky

asset, so she cannot benefit from the risky asset’s higher expected return. At the same time,

the pessimism seems to imply that her subjective expected return is even lower, so that she

will not improve her survival chances by choosing a higher saving rate under IES > 1. But

since the agent is pessimistic about the return on the asset, she actually is optimistic about

the return on a short position in that asset. Observe that the last term in brackets in the

consumption-wealth ratio (22), which dominates the saving decision of agent 1 when ρ ր 1,

is equal to
1

2

(
u1 − u2

)
σy

(
1 + π1 (0)

)
. (26)

If agent 1 is relatively more pessimistic, then u1 − u2 < 0, and thus π1 (0) < −1 is needed

for the saving motive of agent 1 to dominate that of the large agent 2 as ρ ր 1. While the

short position in the risky asset earns a low objective expected return, a high IES will then

generate a sufficiently strong offsetting saving motive that will allow the pessimistic agent

to outsave her extinction.

The region in the fourth and fifth graph in which the two agents coexist does not include

high levels of risk aversion and shrinks for smaller belief distortions. A high level risk

aversion or a lower incentive to bet caused by a smaller belief distortion will prevent the

small agent from choosing a sufficiently large short position in the risky asset which is, as

shown in formula (26), necessary to generate the high subjective expected return needed for

the saving mechanism to operate in favor of the pessimistic agent 1.

The above discussion also explains why the described mechanism cannot lead to the

long-run dominance of the pessimistic agent. As the wealth share of the pessimistic agent

approaches one, she can no longer hold a short position in the risky asset, and the effect of

the saving mechanism generated through the high subjective expected return disappears.

Finally, there are also cases when the pessimistic agent dominates the economy even

if her beliefs are more inaccurate than those of her counterpart, although the difference

in belief accuracies of the two agents has to be only very small (the exact condition is

u1+u2+2σy > 0). The last graph of Figure 1 depicts such a case. Contrary to the previous

results, the pessimistic agent can only survive in the empirically less plausible region when

risk aversion is lower than the inverse of IES (γ > ρ). The online appendix discusses this

case in more detail.
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5 Dynamics of long-run equilibria

Propositions 5 and 10 in Section 3 derive parametric restrictions on the survival regions.

However, even if a nondegenerate long-run equilibrium exists, the question remains whether

this equilibrium delivers quantitatively interesting endogenous dynamics under which each

of the agents can gain a significant wealth share. The derived analytical boundary conditions

cannot answer this questions, as a full solution of the model is necessary to investigate the

interior of the (0, 1) interval for the Pareto share. This section investigates numerically the

equilibrium allocations and prices and their dynamics by solving the ODE (15) and the

associated decentralization.

5.1 Stationary distributions and evolution over time

The top left graph of Figure 2 plots the densities q (ζ1) for the stationary distribution of

the consumption share ζ1 of the optimistic agent 1 in economies with an optimistic and

a correct agent. The parameterizations13 are chosen along a horizontal line in the top

right panel of Figure 1, corresponding to different levels of risk aversion. As risk aversion

increases, the distribution of consumption shifts toward the optimistic agent (the results

from the previous section show that for a sufficiently high risk aversion, the optimistic agent

will ultimately dominate), but in all the parameterizations, both agents have quantitatively

nontrivial consumption shares and the shape of the densities indicates that the equilibria

permit substantial variation over time in these consumption shares.

In empirical applications, it is advantageous when the time-series of observable variables

converge sufficiently quickly to their long-run distributions from any initial condition, so that

data observed over finite horizons are a representative sample of the stationary distribution.

For instance, Yan (2008) conducts numerical experiments under separable utility when one

of the agents always vanishes, and shows that the rate of extinction can be very slow.

Proposition 5 gives sufficient conditions for the existence of a unique stationary distribution

for θ1 but it does not say anything about the rate of convergence.

I show in the online appendix that under the conditions from Proposition 5, convergence

for the state variable θ1 occurs at an exponential rate, so that the process θ1 does not exhibit

strong dependence properties. At the same time, the exponent in the rate calculation can

still be small, and I therefore conduct a numerical simulation. The remaining three graphs in

Figure 2 plot the conditional distribution of the consumption share ζ1 (θ1t ) of the optimistic

agent 1 conditional on ζ1 (θ10) = 0.5 for different time horizons t. These are computed from

13A full solution of the consumption dynamics requires setting additional parameters that do not influence
the survival regions. I set β = 0.05 and µy = 0.02. The high value for the time preference coefficient is
chosen merely to assure that restrictions in Assumption 2 hold for all compared models.

33



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

ζ1

q(
ζ1 )

 

 
RA = 3
RA = 4
RA = 6
RA = 8

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

ζ1

p t(ζ
1 )

 

 
t = 25
t = 100
t = 250
t = 1000
t = 2500
t = ∞

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

ζ1

p t(ζ
1 )

 

 
t = 1
t = 5
t = 10
t = 50
t = 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

ζ1

p t(ζ
1 )

 

 
t = 1
t = 5
t = 10
t = 50
t = 100

Figure 2: The top left panel depicts the stationary distributions for the consumption share ζ1
(
θ1
)

of the agent with optimistically distorted beliefs. All models are parameterized by u1 = 0.25, u2 = 0,

IES = 1.5, β = 0.05, µy = 0.02, σy = 0.02, and differ in levels of risk aversion, shown in the legend.

The remaining three panels plot the distributions of ζ1
(
θ1t
)
conditional on ζ1

(
θ10
)
= 0.5 for different

time horizons t. In the top right panel (risk aversion = 8), the economy has a nondegenerate long-

run distribution. In the bottom left panel (risk aversion = 0.75), the correct agent 2 dominates,

and in the bottom right panel (risk aversion = 0.25), each agent dominates with a strictly positive

probability.

the dynamics of the state variable θ1 in equation (18) by solving the associated Kolmogorov

forward equation

∂pθt (θ
1)

∂t
+

∂

∂θ1
[
θ1µθ1

(
θ1
)
pθt
(
θ1
)]

−
1

2

∂2

∂ (θ1)2

[(
θ1σθ1

(
θ1
))2

pθt (θ)
]

= 0

for the conditional density pθt (θ
1) of θ1t with the initial condition pθ0 (θ

1) = δθ1
0
(θ1), where δ

is the Dirac delta function, and then transforming to obtain the conditional density for ζ1

pt
(
ζ1
(
θ1
))

= pθt
(
θ1
)
[
∂ζ1

∂θ1
(
θ1
)
]−1

.

The graphs show the evolution of the conditional distribution for three cases. In the top

right graph, the conditional distribution converges to a nondegenerate stationary distribution

and both agents survive. In the bottom left graph, the mass of the conditional distribution

shifts to the left and agent 2 dominates. Finally, in the bottom right graph, the mass of the

conditional distribution shifts out toward both boundaries, and either agent dominates with

a strictly positive probability.
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The speed of the evolution of the conditional distribution depends on the magnitude of

the belief distortions and the level of risk aversion in the economy. When risk aversion is high,

agents are not willing to engage in large bets on the realizations of the Brownian motions

W , and wealth and consumption shares evolve only slowly. In the example in Figure 2, it

takes 2,500 periods until the density pt is indistinguishable from the stationary density. As

risk aversion decreases, and agents are willing to bet larger portions of their wealth, the

evolution of the conditional density pt speeds up.

While the evolution of the conditional density in Figure 2 may appear rather slow, the

process can be accelerated substantially. One possible way is to increase the magnitude of the

belief distortions but very large belief distortions may be rejected as empirically implausible.

A more fundamental argument relies on the appropriate interpretation of the modeled

risk in this economy. In the model, the nature of risk is extremely simplistic, the agents can

disagree only about the distribution of the aggregate shock. In reality, there are many other

sources of aggregate or idiosyncratic risk about which the agents can disagree and write

contracts on, and agents with heterogeneous beliefs would also find it optimal to introduce

additional such betting devices, even if these are otherwise economically irrelevant. Fedyk,

Heyerdahl-Larsen, and Walden (2013) show in an economy with CRRA preferences that

if agents disagree about multiple sources of risk, the speed of extinction of the relatively

more incorrect agent can be accelerated substantially. The same mechanism operates under

recursive utility, increasing the magnitude of wealth fluctuations and the rate of convergence

of pt (ζ
1) to the stationary density q (ζ1) when both agents survive in the long run.14 The

main message arising from these considerations is that the speed of extinction or rate of

convergence to the stationary distribution in stylized models with very few sources of risk

should not be viewed as a strong quantitative test of the model.

5.2 Survival forces

The existence of nondegenerate long-run equilibria depends on the behavior of the relative

patience ν2 (θ1) − ν1 (θ1) in the neighborhood of the boundaries. Figure 3 displays three

different cases. The dashed line represents the low risk aversion case in which both attracting

conditions from Proposition 5 hold and each of the agents dominates with a strictly positive

probability. The solid line corresponds to a parameterization that is close to the CRRA

case when only the survival condition for the rational agent 2 is satisfied (with CRRA

preferences, the relative patience would be identically zero). Finally, a case for which both

14The online appendix provides an example with two imperfectly correlated Brownian motions. One
concern from the perspective of the survival results may be that belief distortions about multiple sources of
risk can be reinterpreted as one large belief distortion. This view is, with some qualifications, correct but
the survival results show that agents can coexist in the long run even under very large belief distortions.
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Figure 3: Relative patience ν2
(
θ1
)
− ν1

(
θ1
)
(left panel) and the drift component of the Pareto

share evolution E
[
dθ1t | Ft

]
/dt (right panel) as functions of the Pareto share θ1. All models are

parameterized by u1 = 0.25, u2 = 0, IES = 1.5, β = 0.05, µy = 0.02, σy = 0.02, and differ in

levels of risk aversion. The dotted horizontal line in the left panel represents the survival threshold
1
2

((
u1
)2

−
(
u2
)2
)

from Proposition 5.
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Figure 4: Difference in consumption-wealth ratios
(
ξ2
)−1

−
(
ξ1
)−1

as a function of the consumption

share ζ1 of agent 1. The left panel considers an optimistic agent 1 (u1 = 0.25) while the right panel

a pessimistic agent 1 (u1 = −0.25). The remaining parameters are u2 = 0, RA = 2, β = 0.05,

µy = 0.02, σy = 0.02, and individual curves correspond to different levels of intertemporal elasticity

of substitution.

survival conditions hold is shown by the dot-dashed line.

Figure 3 also plots the impact of relative patience on the drift component of the Pareto

share process. The drift vanishes at the boundaries and the boundaries are unattainable

(a reflection of the Inada conditions), but sufficiently large positive (negative) slopes at the

left (right) boundaries assure the existence of a nondegenerate stationary equilibrium of the

Pareto share.

The two essential components of the survival mechanism are the propensity to save

and the portfolio allocation of the two agents. Figure 4 displays the differences in the

consumption-wealth ratios [ξn (θ1)]
−1

of the two agents, which are primarily driven by the

intertemporal elasticity of substitution. For the case of IES = 1, the difference is exactly

zero since each agent consumes a fraction β of her wealth per unit of time. A higher IES

improves the survival chances of the agent who is relatively more optimistic about the return

on her own wealth, as she is willing to tilt her consumption profile more toward the future.
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Figure 5: Wealth shares πn of the two agents invested in the claim to aggregate endowment as

functions of the consumption share ζ1 of agent 1. The left panel considers an optimistic agent 1

(u1 = 0.25) while the right panel a pessimistic agent 1 (u1 = −0.25). The remaining parameters

are u2 = 0, IES = 1.5, β = 0.05, µy = 0.02, σy = 0.02, and individual curves correspond to different

levels of risk aversion. Wealth share curves originating at 1 for ζ1 = 1 (ζ1 = 0) belong to agent 1

(agent 2).

Figure 4 captures this effect for both an optimistic agent 1 (u1 = 0.25, left panel), as well as

a pessimistic agent 1 (u1 = −0.25, right panel).

The portfolio allocation mechanism is depicted in Figure 5. The share of wealth invested

in the risky asset is primarily driven by the risk aversion parameter γ. A higher risk aversion

limits the amount of leverage. For the pessimistic agent, this implies that if risk aversion is

high, she does not form a large enough short stock position that would make him sufficiently

optimistic about the return on her own wealth and outsave the rational agent when IES > 1.

6 Extensions and concluding remarks

Before concluding, I briefly discuss two extensions of the analyzed model that involve

Bayesian learning about the underlying model and representation of other preference struc-

tures as belief distortions. The online appendix outlines in more detail how to set up these

problems within the framework of this paper.

6.1 The role of learning

The analysis in this paper focuses on the case of fixed belief distortions. Agents are firm be-

lievers in their probability models, and do not use new data to update their beliefs. This can

be interpreted as the strongest form of incorrect beliefs, and a bias against survival of agents

with whose beliefs are initially incorrect. A natural question is to ask what happens when

agents are allowed to learn. Learning can be incorporated into the current framework by a

introducing a law of motion that represents the Bayesian updating of the belief distortions

un. These belief distortions become new state variables.
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Blume and Easley (2006) provide a detailed analysis of the impact of Bayesian learning

on survival under separable utility, and they are able to characterize the relationship between

survival chances and the complexity of the learning problem. The central message arising

from the analysis is that learning, which reduces belief distortions over time, in general aids

survival of agents with incorrect beliefs.

It seems to be reasonable to expect that this insight should hold also under nonseparable

preferences. Unfortunately, results presented in the previous analysis indicate that this logic

is not generally correct. For instance, Figure 1 shows that the survival region of a pessimistic

agent can shrink if her belief distortion diminishes and the pessimistic agent moves from a

region of the parameter space where a nondegenerate long-run equilibrium exists to one where

only the rational agent survives. Whether the pessimist can then learn quickly enough so

that her beliefs converge to rational expectations at a rate that allows survival depends on

the complexity of the learning problem, as shown by Blume and Easley (2006). As agents

learn and the beliefs converge, the evolution of the Pareto share process θ1 settles. The

limiting distribution of θ1 as t ր ∞ from which we can deduce the wealth and consumption

distribution and resolve the survival problem remains an open question.

6.2 Robust utility

The economic interpretation of the distortionary processes un is not limited to ‘irrationality’,

and other preference specifications lead to representations which are observationally equiv-

alent to belief distortions. Consider, for instance, an agent who believes that the model for

the aggregate endowment dynamics is misspecified and views (1) only as a reference model

that approximates the true dynamics, as in the robust utility models of Anderson, Hansen,

and Sargent (2003) and Skiadas (2003). This class of models leads to a representation where

agent n views as relevant the realization of the worst case scenario, characterized by the least

favorable dynamics

dYt

Yt
= µydt+ σy (u

n
t dt+ dW n

t ) ,

where W n is a Brownian motion under Qn
u associated with an endogenously determined

distortionary process un. Epstein and Miao (2003) and Uppal and Wang (2003) construct

models with ambiguity aversion where the optimal solution to the minimization problem

involves a constant un, and thus exactly corresponds to the framework in this paper.

Under separable preferences, agents who fear misspecification more (and therefore assign

a lower penalty θ to deviations from the reference model) choose a more distorted worst

case scenario, which tends to worsen their survival chances. However, the results for con-

stant belief distortions un indicate that survival chances of the more fearful agents may well
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look much better for appropriate nonseparable parameterizations of preferences. A detailed

analysis of the dynamics of these models is left for future research.

6.3 Summary

Survival of agents with heterogeneous beliefs has been studied extensively under separable

preferences. The main conclusion arising from the literature is a relatively robust argument

in favor of the market selection hypothesis. Under complete markets and identical utility

functions, a two-agent economy is dominated in the long run by the agent whose beliefs are

closest to the true probability measure for a wide class of preferences and endowments. In

particular, Kogan, Ross, Wang, and Westerfield (2011) show elegantly that this result holds,

irrespective of the specification of the aggregate endowment process,15 as long as relative

risk aversion is bounded.

This paper shows that the robust survival result is specific to the class of separable

preferences. Under nonseparable recursive preferences of the Duffie-Epstein-Zin type, non-

degenerate long-run equilibria in which both agents coexist arise for a broad set of plausible

parameterizations when risk aversion is larger than the inverse of the intertemporal elasticity

of substitution. It is equally easy to construct economies dominated by agents with relatively

more incorrect beliefs.

The analysis reveals the important role played by the interaction of risk aversion with

respect to intratemporal gambles that determines risk taking, and intertemporal elasticity of

substitution that drives the consumption-saving decision. Critical for obtaining the survival

results, and in particular the nondegenerate long-run equilibria, are the general equilibrium

price effects generated by the wealth dynamics.

The survival results are obtained by extending the planner’s problem formulation of

Dumas, Uppal, and Wang (2000) to a setting with heterogeneous beliefs. Long-run survival of

the agents is determined by the dynamics of a stochastic process that models the Pareto share

of one of the agents as the share becomes negligible. These dynamics can be characterized

in closed form by studying the boundary behavior of a nonlinear ODE resulting from the

planner’s problem. This type of ODE arises in a wider class of recursive utility problems, so

these results can be utilized in a broader variety of economic applications.

I provide in analytical form tight sufficient conditions that guarantee survival or extinc-

tion. These conditions can be interpreted as relative patience conditions similar to those in

Lucas and Stokey (1984). An agent survives in the long run if her relative patience becomes

sufficiently large as her wealth share vanishes. However, in this framework, the dynam-

ics of relative patience arises endogenously as an equilibrium outcome, and is not a direct

15The survival results under separable utility thus also hold for ‘exotic’ endowment processes like the rare
disaster framework in Chen, Joslin, and Tran (2012).
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property of agents’ preferences. I also show that the survival conditions are equivalent to

conditions on the limiting expected growth rates of the logarithm of individual wealth levels

in a decentralized economy.

These results are obtained for a two-agent economy with an aggregate endowment process

that is specified as a geometric Brownian motion, but the theoretical framework can also be

utilized to derive an analog HJB equation for multi-agent economies with more sophisticated

Markov dynamics. In principle, the qualitative survival results should extend to a wider

class of models with stable consumption growth dynamics, although the analysis of the

existence of a stationary distribution for the Pareto share becomes more complicated in a

multidimensional state space.

Importantly, the developed solution method is not limited to constant distortions and

applies to a much wider class of preferences that are interpretable as deviations in beliefs.

I outline how to use the method in a framework with model uncertainty and learning and

in a model where agents are endowed with robust preferences. Solutions of these problems

are left as open questions for future research. Similarly, formulas for survival regions can

be extended by incorporating heterogeneity in preferences, as in Dumas, Uppal, and Wang

(2000), in a straightforward way.

The bad news for the market selection hypothesis is in some sense good news for models

with heterogeneous agents. Models with agents who differ in preferences or beliefs often

have degenerate long-run limits in which only one class of agents survives. This paper shows

that coupling belief heterogeneity (including preferences that can be interpreted as belief

distortions) and recursive preferences with empirically plausible parameters leads to models

in which the heterogeneity does not vanish over time.
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Appendix

Before proving Proposition 3, I first discuss the behavior of the objective function at the boundaries.

The planner’s objective function is, for a given Y , bounded from above by the weighted average

of continuation values from the homogeneous economies, J0 (α) ≤ α1V n
0 (Y ) + α2V n

0 (Y ), and the

supremum in (12) thus exists. Since the continuation values are concave, first-order conditions are

sufficient for the supremum problem. We have the following Lemma.

Lemma 15 The objective function J0 (α) can be continuously extended at the boundaries as α1 ց 0

or α2 ց 0 by the continuation values calculated for the homogeneous economies, i.e., for α2 > 0

J0
(
0, α2

)
=̇ lim

α1ց0
J0
(
α1, α2

)
= α2V 2

0 (Y ) (27)

and limα1ց0C
2
(
α1, α2

)
= Y . The case α2 ց 0 is symmetric.

Proof of Lemma 15. Schroder and Skiadas (1999) prove that V n (Cn) is concave. Consider the

case α1 ց 0. Given optimal consumption streams Cn (α), we have

J0 (α) = α1V 1
0

(
C1 (α)

)
+ α2V 2

0

(
C2 (α)

)
(28)

and since V 1
0

(
C1 (α)

)
is bounded from above as a function of α, it follows that

α1V 1
0

(
C1 (α)

) α1ց0
−→ v1 ≤ 0

and thus J0
(
0, α2

)
≤ limα1ց0 α

2V 2
0

(
C2 (α)

)
≤ α2V 2

0 (Y ).

Assume suboptimal policies Ĉ1
(
α1, α2

)
=
(
α1
) 1

2|γ| Y and Ĉ2
(
α1, α2

)
=
(

1−
(
α1
) 1

2|γ|

)

Y . Then

α1V 1
0

(

Ĉ1
(
α1, α2

))

=
(
α1
)1+ 1

2

γ
|γ| γ−1Y γ

0 Ṽ
n α1ց0

−→ 0

and

α2V 2
0

(

Ĉ2
(
α1, α2

))

= α2
(

1−
(
α1
) 1

2|γ|

)γ

γ−1Y γ
0 Ṽ

n α1ց0
−→ α2V 2

0 (Y )

which implies J0
(
0, α2

)
≥ α2V 2

0 (Y ). Therefore (27) holds, and the convergence of C2
(
α1, α2

)
is a

direct consequence.

Proof of Proposition 3. The planner’s problem has an appealing Markov structure. Denoting

λ̄ =
(
λ̄1, λ̄2

)′
and u =

(
u1, u2

)′
, the state vector is Z =

(
λ̄′, Y

)′
, and the planner’s problem (12-13)

leads to the Hamilton-Jacobi-Bellman equation for J (Z),

0 ≡ sup
(C1,C2,ν1,ν2)

2∑

n=1

λ̄n [F (Cn, νn)− Jλ̄nνn] + JyµyY +
1

2
tr (JzzΣ) , (29)
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where

Σ =

( (
diag

(
λ̄
)
u
) (

diag
(
λ̄
)
u
)′ (

diag
(
λ̄
)
u
)
σyY

σyY
(
diag

(
λ̄
)
u
)′

σ2
yY

2

)

and diag
(
λ̄
)
is a 2× 2 diagonal matrix with elements of λ̄ on the main diagonal.

The maximization over
(
ν1, ν2

)
in the HJB equation (29) can be solved separately. Under the

optimal discount rate process νn for agent n,

f (Cn, Jλ̄n) ≡̇ sup
νn

F (Cn, νn)− Jλ̄nνn =
β

ρ

[

(Cn)ρ (γJλ̄n)
1− ρ

γ − γJλ̄n

]

. (30)

The function f is the aggregator in the stochastic differential utility representation of recursive

preferences postulated by Duffie and Epstein (1992b). The online appendix gives more detail on

this relationship. Optimal consumption shares ζn are given by the first-order conditions in the

consumption allocation

ζn=̇
Cn

Y
=

(γJλ̄n)
1−ρ/γ
1−ρ

(
λ̄n
) 1

1−ρ

∑2
k=1 (γJλ̄k)

1−ρ/γ
1−ρ

(
λ̄k
) 1

1−ρ

,

where Jλ̄n are agents’ continuation values under the optimal consumption allocation.

The HJB equation (29) further implies that J is homogeneous degree one in λ̄ and homogeneous

degree γ in Y . The transformation of variables (14) leads to the guess

J (Z) = γ−1Y γθ2J̃
(
θ1
)
= γ−1Y γθ2

[

θ1J̃1
(
θ1
)
+
(
1− θ1

)
J̃2
(
θ1
)]

,

where J̃n
(
θ1
)
are continuation values of the two agents scaled by γ−1Y γ , defined in (16). The ODE

for J̃n
(
θ1
)
then immediately follows. The continuity at the boundaries follows from Lemma 15.

In addition, the same logic and derivation of the HJB equation applies to multi-agent economies

and more sophisticated Markov dynamics of the aggregate endowment process. In an N -agent

economy, the state vector includes N−1 Pareto shares as state variables. The boundary conditions

for θn = 0, n ∈ {1, . . . , N} associated with the N -agent version of the ODE (15) are given by the

solutions of (N − 1)-agent economies that exclude agent n. In this way, solutions to multi-agent

economies can be calculated by iteratively adding individual agents.

Proof of Proposition 5. Given an initial condition θ10 ∈ (0, 1), the process (18) lives on the open

interval (0, 1) with unattainable boundaries (the preferences satisfy an Inada condition at zero).

For any numbers 0 < a < b < 1, the process θ1 has bounded and continuous drift and volatility

coefficients on (a, b), and the volatility coefficient is bounded away from zero. It is thus sufficient

to establish the appropriate boundary behavior of θ1 in order to make the process positive Harris

recurrent (see Meyn and Tweedie (1993)). Since the process will also be ϕ -irreducible for the

Lebesgue measure under these boundary conditions, there exists a unique stationary distribution.
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Denote µθ (θ) and σθ (θ) the drift and volatility coefficients in (18). The boundary behavior of

the process θ1 is captured by the scale measure S : (0, 1)2 → R defined as

s (θ) = exp

{

−

∫ θ

θ0

2µθ (τ)

σ2
θ (τ)

dτ

}

S [θl, θh] =

∫ θl

θh

s (θ) dθ

for an arbitrary choice of θ0 ∈ (0, 1), and the speed measure M : (0, 1)2 → R

m (θ) =
1

σ2
θ (θ) s (θ)

M [θl, θh] =

∫ θl

θh

m (θ) dθ.

Karlin and Taylor (1981, Chapter 15) provide an extensive treatment of the boundaries.

The boundaries are nonattracting if and only if

lim
θlց0

S [θl, θh] = ∞ and lim
θhր1

S [θl, θh] = ∞ (31)

and this result is independent of the fixed argument that is not under the limit. With nonattracting

boundaries, the stationary density will exist if the speed measure satisfies

lim
θlց0

M [θl, θh] < ∞ and lim
θhր1

M [θl, θh] < ∞, (32)

again independently of the argument that is not under the limit.

In our case,

s (θ) = exp

{

−

∫ θ

θ0

2
(
ν2 (τ)− ν1 (τ)

)

τ (1− τ) (u1 − u2)2
dτ

}

ssep (θ) ,

where

ssep (θ) =

(
1− θ

1− θ0

)− 2u1

u1−u2
(

θ

θ0

) 2u2

u1−u2

(33)

is the integrand of the scale function in the separable case, when ν2 (θ)− ν1 (θ) ≡ 0.

For the left boundary, assume that in line with condition (i), there exist θ ∈ (0, 1) and ν ∈ R

such that ν2 (θ)− ν1 (θ) ≥ ν for all θ ∈ (0, θ). Taking θ0 = θ, the scale measure can be bounded as

S [θl, θ] ≥

∫ θ

θl

exp

{

−

∫ θ

θ

2ν

τ (1− τ) (u1 − u2)2
dτ

}(
1− θ

1− θ

)− 2u1

u1−u2
(
θ

θ

) 2u2

u1−u2

dθ =

=

∫ θ

θl

(
θ

θ

) 2u2

u1−u2
− 2ν

(u1−u2)2
(
1− θ

1− θ

) 2ν

(u1−u2)2
− 2u1

u1−u2

dθ

The left limit in (31) thus diverges to infinity if

2u2

u1 − u2
−

2ν

(u1 − u2)2
≤ −1,
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which is satisfied when ν ≥ 1
2

[(
u1
)2

−
(
u2
)2
]

.

The argument for the right boundary is symmetric. Taking θ̄ ∈ (0, 1) and ν̄ ∈ R such that

ν2 (θ)− ν1 (θ) ≤ ν̄ for all θ ∈
(
θ̄, 1
)
, the calculation reveals that we require ν̄ ≤ 1

2

[(
u1
)2

−
(
u2
)2
]

.

It turns out that the bounds implied by conditions (32) are marginally tighter. Following the

same bounding argument as above, sufficient conditions for (32) to hold are

ν >
1

2

[(
u1
)2

−
(
u2
)2
]

and ν̄ <
1

2

[(
u1
)2

−
(
u2
)2
]

. (34)

The construction reveals that these bounds are also the least tight bounds of this type under which

the proposition holds.

It is also useful to note that the unique stationary density q (θ) is proportional to the speed

density m (θ). Finally, if the limits in Proposition 5 do not exist, they can be replaced with

appropriate limits inferior and superior.

This discussion has sorted out case (a). Conditions (i’) and (ii’) are sufficient conditions for

the boundaries to be attracting. Lemma 6.1 in Karlin and Taylor (1981) then shows that if the

‘attracting’ condition is satisfied for a boundary, then θ1 converges to this boundary on a set of

paths that has a strictly positive probability. This probability is equal to one if the other boundary

is non-attracting. Combining these results, we obtain statements (b), (c), and (d).

Proof of Corollary 6. Assume without loss of generality that
∣
∣u2
∣
∣ ≤

∣
∣u1
∣
∣. The sufficient part is

an immediate consequence of Proposition 5. Under separable preferences, ν2 − ν1 ≡ 0, and thus if
∣
∣u2
∣
∣ <

∣
∣u1
∣
∣ then conditions (i’) and (ii) hold, and agent 2 dominates in the long run under P .

For the necessary part, when u2 = u1, then θ1 is constant and both agents survive under P .

When −u2 = u1 = u, then it follows from inspection of formula (33) in the proof of Proposition 5

that conditions (31) are satisfied and the boundaries are non-attracting. Lemma 6.1 in Karlin and

Taylor (1981) then implies that both agents survive under P .

Note that even though both agents survive when −u2 = u1, the speed density m (θ) ∝

θ−1 (1− θ)−1 is not integrable on (0, 1) and thus there does not exist a finite stationary measure.

The result on survival under measure Qn follows from the fact that the evolution of Brownian

motion W under the beliefs of agent n is dWt = undt+ dW n
t . Since the evolution of θ1 completely

describes the dynamics of the economy, substituting this expression into (18) and reorganizing

yields the desired result.

Proof of Proposition 7. The proof of the proposition relies on showing that they dynamics of

the continuation values of the two agents in the proximity of the boundaries becomes degenerate in

a specific sense. From this fact, I can infer the dynamics of the stochastic discount factor implied

by the consumption process of the large agent and, consequently, the equilibrium price dynamics.

I state the limiting properties of the continuation values separately in Lemmas 16 and 17.

Homotheticity of preferences implies that individual wealth-consumption ratios are given by

ξn
(
θ1
)
=

1

β

(

J̃n
(
θ1
)1/γ

ζn (θ1)

)ρ

. (35)
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I start by assuming that ξn
(
θ1
)
are functions that are bounded and bounded away from zero. This,

among other things, implies that the discount rate functions νn
(
θ1
)
in (19) are bounded and that

the drift and volatility coefficients in the stochastic differential equation for θ1, (18), are bounded

as well. The assumption will ultimately be verified by a direct calculation of the limits of ξn
(
θ1
)

as θ1 ց 0 or θ1 ր 1. Without loss of generality, it is sufficient to focus on the case θ1 ց 0. First

notice some asymptotic results for the planner’s continuation value J̃
(
θ1
)
.

Lemma 16 The solution of the planner’s problem implies that

lim
θ1ց0

θ1J̃θ1
(
θ1
)
= lim

θ1ց0

(
θ1
)2

J̃θ1θ1
(
θ1
)
= lim

θ1ց0

(
θ1
)3

J̃θ1θ1θ1
(
θ1
)
= 0.

Proof. Lemma 15 implies that the planner’s objective function can be continuously extended at

θ1 = 0 by the continuation value for agent 2 living in a homogeneous economy. Expression (28)

scaled by
(
α1 + α2

)
γ−1Y γ leads to an equation in scaled continuation values

J̃
(
θ1
)
= θ1J̃1

(
θ1
)
+
(
1− θ1

)
J̃2
(
θ1
)

and the proof of Lemma 15 yields

lim
θ1ց0

J̃(θ1) = lim
θ1ց0

J̃2(θ1) = Ṽ 2,

where Ṽ 2 is defined in (8). Since J̃2
(
θ1
)
= J̃

(
θ1
)
− θ1J̃θ1

(
θ1
)
, then

lim
θ1ց0

θ1J̃θ1
(
θ1
)
= 0. (36)

Further, consider the behavior of individual terms in ODE (15) as θ1 ց 0. Using expression

(17), the first term is proportional to

θ1
(
ζ1
(
θ1
))ρ
(

J̃1
(
θ1
))1−

ρ
γ

=
(
θ1
) 1

1−ρ

(

J̃1
(
θ1
))

1−ρ/γ
1−ρ [

K
(
θ1
)]−ρ

=

= ζ1
(
θ1
) [

K
(
θ1
)]1−ρ

,

whereK
(
θ1
)
is the denominator in the formula for the consumption share (17), and limθ1ց0K

(
θ1
)
=

(

Ṽ 2
) 1−ρ/γ

1−ρ
, which is a finite value. Since limθ1ց0 ζ

1
(
θ1
)
= 0, the first term in (15) vanishes as

θ1 ց 0. The sum of the second and third term converges to

β

ρ

(

Ṽ 2
)1− ρ

γ
+

(

−
β

ρ
+ µy + u2σy +

1

2
(γ − 1) σ2

y

)

Ṽ
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and formula (8) implies that this expression is zero. Since the fourth term in (15) also converges

to zero due to result (36), the last term in (15) must also converge to zero, or

lim
θ1ց0

(
θ1
)2

J̃θ1θ1
(
θ1
)
= 0. (37)

Finally, differentiate the PDE (15) by θ1 and multiply the equation by θ1. Using comparisons

with results (36–37), the assumption that ζn
(
θ1
)
/J̃n

(
θ1
)1/γ

are bounded and bounded away from

zero and limθ1ց0 ζ
1
(
θ1
)
= 0, it is possible to determine that all terms in the new equation con-

taining derivatives of J̃
(
θ1
)
up to second order vanish as θ1 ց 0. The single remaining term that

contains a third derivative of J̃
(
θ1
)
is multiplied by

(
θ1
)3

and must necessarily converge to zero

as well, and thus

lim
θ1ց0

(
θ1
)3

J̃θ1θ1θ1
(
θ1
)
= 0.

The Markov structure of the problem implies that the evolution of the continuation values and

consumption shares can be written as

dJ̃n
(
θ1t
)

J̃n
(
θ1t
) = µJ̃n

(
θ1t
)
dt+ σJ̃n

(
θ1t
)
dWt (38)

dζn
(
θ1t
)

ζn
(
θ1t
) = µζn

(
θ1t
)
dt+ σζn

(
θ1t
)
dWt, (39)

where the drift and volatility coefficients are functions of θ1, and the results from Lemma 16 allow

the characterization of their limiting behavior.

Lemma 17 The coefficients in equations (38–39) for agent 2 satisfy

lim
θ1ց0

µJ̃2

(
θ1
)
= lim

θ1ց0
σJ̃2

(
θ1
)
= lim

θ1ց0
µζ2

(
θ1
)
= lim

θ1ց0
σζ2
(
θ1
)
= 0. (40)

Proof. The result follows from an application of Itô’s lemma to J̃2 and ζ2. Utilizing formulas

(16) and (17), the coefficients will contain expressions for the value function J̃
(
θ1
)
and its partial

derivatives up to the third order, and all the expressions can be shown to converge to zero using

Lemma 16.

Itô’s lemma implies

dJ̃2
(
θ1t
)

= d
[

J̃
(
θ1t
)
− θ1t J̃θ1

(
θ1t
)]

=

= −
(
θ1t
)2

J̃θ1θ1
(
θ1t
) dθ1t
θ1t

−
1

2

[(
θ1t
)2

J̃θ1θ1
(
θ1t
)
+
(
θ1t
)3

J̃θ1θ1θ1
(
θ1t
)]
(
dθ1t
θ1t

)2

and since the drift and volatility coefficients in the dynamics of θ1 given by equation (18) are

bounded by assumption, applying results from Lemma 16 proves the claim about the drift and

volatility coefficients of J̃2
(
θ1
)
(J̃2 itself converges to a nonzero limit so the scaling is innocuous).
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Further notice that

dJ̃1
(
θ1t
)

= d
[

J̃
(
θ1t
)
+
(
1− θ1t

)
J̃θ1
(
θ1t
)]

= −
(
θ1t
)2

J̃θ1θ1
(
θ1t
) dθ1t
θ1t

+ (41)

+
1

2

[(
θ1t
)2

J̃θ1θ1
(
θ1t
)
+
(
1− θ1t

) (
θ1t
)2

J̃θ1θ1θ1
(
θ1t
)]
(
dθ1t
θ1t

)2

and that
ζ1
(
θ1
)

J̃1 (θ1)
1

γ

=
(
θ1
) 1

1−ρ

(

J̃1
) 1−1/γ

1−ρ
K
(
θ1
)−1

(42)

is bounded and bounded away from zero by assumption. Denote the numerators of ζ1 and ζ2

Z1
(
θ1
)
=
(
θ1
) 1

1−ρ

(

J̃1
(
θ1
))

1−ρ/γ
1−ρ

Z2
(
θ1
)
=
(
1− θ1

) 1

1−ρ

(

J̃2
(
θ1
))

1−ρ/γ
1−ρ

.

Then ζ2 = Z2/
(
Z1 + Z2

)
and, omitting arguments,

dZ1 =
1

1− ρ
Z1dθ

1

θ1
+

1− ρ
γ

1− ρ
Z1dJ̃

1

J̃1
+

1

2

ρ

(1− ρ)2
Z1

(
dθ1

θ1

)2

+

+
1

2

(

ρ− ρ
γ

)(

1− ρ
γ

)

(1− ρ)2
Z1

(

dJ̃1

J̃1

)2

+
1− ρ

γ

(1− ρ)2
Z1dθ

1

θ1
dJ̃1

J̃1

dZ2 = −
1

1− ρ
Z2 θ1

1− θ1
dθ1

θ1
+

1− ρ
γ

1− ρ
Z2dJ̃

2

J̃2
+

1

2

ρ

(1− ρ)2
Z2

(
θ1

1− θ1

)2(
dθ1

θ1

)2

+

+
1

2

(

ρ− ρ
γ

)(

1− ρ
γ

)

(1− ρ)2
Z2

(

dJ̃2

J̃2

)2

−
1− ρ

γ

(1− ρ)2
Z2 θ1

1− θ1
dθ1

θ1
dJ̃2

J̃2
.

Since the drift and volatility coefficients of dJ̃2/J̃2 vanish as θ1 ց 0, and limθ1ց0 Z
2
(
θ1
)
=

(

Ṽ 2
) 1−ρ/γ

1−ρ
, the drift and volatility coefficients in the equation for dZ2 vanish. In the equation for

dZ1, it remains to determine the behavior of terms containing dJ̃1 (the remaining contributions to

drift and volatility terms converge to zero because limθ1ց0 Z
1
(
θ1
)
= 0):

Z1

J̃1
= θ1

[

(
θ1
) 1

1−ρ

(

J̃1
) 1−1/γ

1−ρ

]ρ

,

where the term in brackets is bounded and bounded away from zero by utilizing (42). Using the

first θ1 to multiply the coefficients in dJ̃1 in formula (41), we conclude that the coefficients in
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Z1dJ̃1/J̃1 vanish as θ1 ց 0. Finally, the drift term arising from
(

dJ̃1
)2

vanishes, and

Z1

(

dJ̃1

J̃1

)2

=

(
θ1
)5
(

J̃θ1θ1
)2

J̃ + (1− θ1) J̃θ1

[

(
θ1
) 1

1−ρ

(

J̃1
) 1−1/γ

1−ρ

]ρ(
dθ1t
θ1t

)2

.

Here, the last term has bounded drift, the second last term is bounded, and the first term converges

to zero as θ1 ց 0, which can be shown by using the l’Hôpital’s rule (the numerator converges to

zero and the denominator to zero or +∞, depending on the sign of γ):

lim
θ1ց0

(
θ1
)5
(

J̃θ1θ1
)2

J̃ + (1− θ1) J̃θ1
= lim

θ1ց0

5
(
θ1
)4

J̃θ1θ1 + 2
(
θ1
)5

J̃θ1θ1θ1

1− θ1
= 0.

Thus all terms in the drift and volatility coefficients of dZ1 vanish.

Applying Itô’s lemma to ζ2 yields

dζ2 =
1

Z1 + Z2
dZ2 −

Z2

(Z1 + Z2)2
(
dZ1 + dZ2

)
+

+
Z2

(Z1 + Z2)3
(
dZ1 + dZ2

)2
−

1

(Z1 + Z2)2
dZ2

(
dZ1 + dZ2

)

and the results on the behavior of dZ1 and dZ2 as θ1 ց 0 lead to the desired conclusion about the

convergence of drift and volatility coefficients of dζ2.

We can now finally proceed with the proof of Proposition 7. Convergence of the risk-free interest

rate follows from the direct calculation of

r (0) = lim
tց0

−
1

t
logE

[
M2

t S
2
t (0) | F0

]

where S2
t (0) is the limiting stochastic discount factor corresponding to the one prevailing in a

homogeneous economy populated only by agent 2. Lemma 17 shows that the local behavior of S2
t

converges to S2
t (0) as θ

1
0 ց 0. Similarly, convergence of the wealth-consumption ratio follows from

ξ
(
θ1
)
= ξ1

(
θ1
)
ζ1
(
θ1
)
+ ξ2

(
θ1
)
ζ2
(
θ1
)
.

Since ξn
(
θ1
)
are bounded and ζ1

(
θ1
)
converges to zero, we have

lim
θ1ց0

ξ
(
θ1
)
= lim

θ1ց0
ξ2
(
θ1
)
=

1

β

(

Ṽ 2
)ρ

,

where Ṽ 2 is given by (8).

In order to obtain the convergence of the infinitesimal return, observe that

ξ1
(
θ1
)
ζ1
(
θ1
)
= β−1θ1J̃1

(
θ1
) [

Z1
(
θ1
)
+ Z2

(
θ1
)]ρ−1
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and

d
[

θ1J̃1
(
θ1
)]

= θ1J̃1
(
θ1
) dθ1

θ1
+ θ1dJ̃1

(
θ1
)
+ θ1dJ̃1

(
θ1
) dθ1

θ1
.

The drift and volatility coefficients of the first term on the right-hand side vanish as θ1 ց 0 by the

proof of Lemma 16, and the coefficients of the other two terms vanish by combining the results in

that Lemma with equation (41). Further,

d
{[

Z1 + Z2
]ρ−1

}

= (ρ− 1)
[
Z1
(
θ1
)
+ Z2

(
θ1
)]ρ−2 (

dZ1 + dZ2
)
+

+
1

2
(ρ− 2) (ρ− 1)

[
Z1
(
θ1
)
+ Z2

(
θ1
)]ρ−3 (

dZ1 + dZ2
)2

and since dZ1 and dZ2 have vanishing coefficients by the proof of Lemma 17 and the remaining

terms are bounded, we obtain that dξ1
(
θ1
)
ζ1
(
θ1
)
has vanishing drift and volatility coefficients as

θ1 ց 0. The same argument holds for dξ2
(
θ1
)
ζ2
(
θ1
)
, and thus dξ

(
θ1
)
has vanishing coefficients

as well. Therefore all but the first term in

dΞt = d
[
ξ
(
θ1t
)
Yt

]
= Ξt

dYt

Yt
+ Ytdξ

(
θ1t
)
+ dξ

(
θ1t
)
dYt

have coefficients that decline to zero as θ1t ց 0, which proves the result.

Proof of Proposition 8. The evolution of θ1 given by equation (18) implies that for every fixed

t ≥ 0

θ10 ց 0 =⇒ θ1t → 0, P -a.s.

and thus also ζ2
(
θ1t
)
→ 1 and J̃2

(
θ1t
)
→ Ṽ 2, P -a.s.16 The last two terms in the expression for the

stochastic discount factor, S2
t , equation (20), converge to one, P -a.s., and since ν2

(
θ1s
)
, 0 ≤ s ≤ t

also converges to ν2 (0) and is bounded, we have S2
t

P
−→ S2

t (0). Consider a family of random

variables M2
t S

2
t

(
θ10
)
indexed by the initial Pareto share θ10. Since this family is uniformly integrable,

then convergence in probability implies convergence in mean, and we obtain the convergence result

for bond prices

E
[
M2

t S
2
t

(
θ10
)
| F0

] θ1
0
ց0

−→ E
[
M2

t S
2
t (0) | F0

]
.

The same argument holds for M2
t S

2
t

(
θ10
)
Yt, which yields the result for the price of individual cash

flows from the aggregate endowment.

16This result becomes more transparent if we consider ζ2 and J̃2 as functions of log θ1. The dynamics of
log θ1

d log θ1t =
(
1− θ1t

)
[

ν2t
(
θ1t
)
− ν1

(
θ1t
)
+

1

2

((
u2
)2

−
(
u1
)2
)

−
1

2
θ1t
(
u1 − u2

)2
]

dt+

+
(
1− θ1t

) (
u1 − u2

)
dWt

has bounded drift and volatility coefficients and thus for ∀ε > 0, ∀k > 0, it is possible to achieve

P
[
θ1t < k

]
= P

[
log θ1t < log k

]
> 1− ε

by setting log θ1
0
sufficiently low.
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Proof of Proposition 9. Agent 1, whose wealth Ξ1 is close to zero, solves

λ̄1
tV

1
t = max

C1,π1,ν1
Et

[∫ ∞

t
λ̄1
sF
(
C1
s , ν

1
s

)
ds

]

(43)

subject to (7) and the budget constraint,

dΞ1
t

Ξ1
t

=

[

r
(
θ1t
)
+ π1

t

([
ξ
(
θ1t
)]−1

+ µΞ

(
θ1t
)
− r

(
θ1t
))

−
C1
t

Ξ1
t

]

dt+ π1
t σΞ

(
θ1t
)
dWt = (44)

= µΞ1

(
θ1t
)
dt+ σΞ1

(
θ1t
)
dWt

where π1 is the portfolio share invested in the risky asset. The local behavior of returns on the

risk-free bond r
(
θ1
)
and risky asset (21) as θ1 ց 0 is known from Proposition 7.

The homogeneity of the problem (43–44) motivates the guess

γV 1
t =

(
Ξ1
t

)γ
V̂ 1
(
θ1t
)
. (45)

The drift and volatility coefficients depend explicitly on θ1 because Ξ1 and θ1 are linked through

Ξ1
t = Ytζ

1
(
θ1t
)
β− 1

1−ρ

[

V̂ 1 (θ)
] ρ

γ
1

1−ρ
. (46)

Recall that we are interested in the characterization of the limiting solution as θ1 ց 0. The

associated HJB equation leads to a second-order ODE (omitting dependence on θ1)

0 = max
C1,π1,ν1

1

ρ
β

1

1−ρ

(

V̂ 1
)1− ρ

γ
1

1−ρ
+ V̂ 1

(

−
β

ρ
+ µΞ1 + u1σΞ1 −

1

2
(1− γ) (σΞ1)2

)

+ (47)

+V̂ 1
θ1θ

1

(
1

γ

(
µθ1 + u1σθ1

)
+ σθ1σΞ1

)

+ V̂ 1
θ1θ1

(
θ1
)2 1

2

1

γ
(σθ1)

2 ,

which yields the first-order conditions on C1
t and π1

t :

C1
t

Ξ1
t

= β
1

1−ρ

(

V̂ 1
(
θ1t
))−

ρ
γ

1

1−ρ
(48)

π1
t =

[
ξ
(
θ1t
)]−1

+ µΞ

(
θ1t
)
+ u1σΞ

(
θ1t
)
− r

(
θ1t
)
+

θV̂ 1

θ1
(θ1)

V̂ 1(θ1)
σθ1
(
θ1t
)
σΞ1

(
θ1t
)

(1− γ)
(
σΞ
(
θ1t
))2 ,

where µΞ1 and σΞ1 are the drift and volatility coefficients on the right-hand side of (44), and µθ1

and σθ1 are the coefficients associated with the evolution of dθ1t /θ
1
t . Notice that the portfolio choice

π1 almost corresponds to the standard Merton (1971) result, except the last term in the numerator

which explicitly takes into account the covariance between agent’s 1 wealth and the evolution in

the state variable θ1 imposed by (46).

The solution of this equation determines the consumption-wealth ratio of agent 1 and, conse-

quently, the evolution of her wealth. While a closed-form solution of this equation is not available,
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it is again possible to characterize the asymptotic behavior as θ1 ց 0, established in Lemma 19.

For the proof of that lemma, the following result, the following result will be useful:

Lemma 18 Let f : R → R be differentiable with a monotone first derivative in a neighborhood of

−∞ and have a finite limit limx→−∞ f(x). Then limx→−∞ f ′(x) = 0.

Lemma 19 The following results hold:

lim
θ1ց0

θ1V̂ 1
θ1
(
θ1
)
= lim

θ1ց0

(
θ1
)2

V̂ 1
θ1θ1

(
θ1
)
= 0.

Proof of Lemma 19. Transformation (45) together with the previously used γV 1
t = Y γ J̃1

(
θ1t
)

imply that

V̂ 1
(
θ1
)
= βγ

(

J̃1
(
θ1
)1/γ

ζ1 (θ1)

)γ(1−ρ)

. (49)

Think for a moment of V̂ 1 as a function of log θ1, where we are interested in the limiting behavior

as log θ1 → −∞. We have

θ1V̂ 1
θ1 = V̂ 1

log θ1 and
(
θ1
)2

V̂ 1
θ1θ1 = V̂ 1

(log θ1)2
− V̂ 1

log θ1 . (50)

Differentiating repeatedly expression (49) and exploiting the local behavior of J̃
(
θ1
)
as θ1 ց 0, we

conclude that the assumptions of Lemma 18 hold, and thus both expressions in (50) converge to

zero as θ1 ց 0.

These results are similar to those in Lemma 16. They imply that the derivative terms in the

ODE (47) vanish as θ1 ց 0, and we obtain the limit for V̂ 1
(
θ1
)
and the evolution of Ξ1 in closed

form.

We have thus pinned down the behavior of the last term in the numerator of the portfolio

share π1 in equation (48). This term explicitly takes into account agent 1’s knowledge about the

impact of her portfolio decision on equilibrium prices. Since this term vanishes as θ1 ց 0, the agent

understands that asymptotically the portfolio decisions made by agents of her type will not have

any impact on local equilibrium price dynamics, and thus behaves as if she resided in an economy

populated only by agent 2.

We can now continue with the proof of Proposition 9. Utilizing Lemma 19 to deduce which

terms in ODE (47) vanish and Proposition 7 to determine the limiting values of the remaining

coefficients, we obtain

lim
θ1ց0

β
1

1−ρ

(

V̂ 1
(
θ1
))−

ρ
γ

1

1−ρ
= lim

θ1ց0

[
ξn
(
θ1
)]−1

= β − ρ

(

µy + u2σy −
1

2
(1− γ) (σy)

2

)

−

−
ρ

1− ρ

[

(
u1 − u2

)
σy +

1

2

(
u1 − u2

)2

1− γ

]

,
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which is the limiting consumption-wealth ratio for agent 1. The formulas for the wealth share

invested in the claim on aggregate consumption and the coefficients of the wealth process are

obtained by plugging in the previous results into expressions (44) and (48).

Proof of Proposition 10. Given convergence to the homogeneous economy counterpart, the

expression for limθ1ց0 ν
2
(
θ1
)
is given by equation (9). Utilizing the formula for the wealth-

consumption ratio (35) and the result from Lemma 9 then yields

lim
θ1ց0

ν1
(
θ1
)

= lim
θ1ց0

β
γ

ρ
+ (ρ− γ)

[
ξ1
(
θ1
)]−1

= β + (γ − ρ)

(

µy + u2σy −
1

2
(1− γ) σ2

y

)

+

+
γ − ρ

1− ρ

[

(
u1 − u2

)
σy +

1

2

(
u1 − u2

)2

1− γ

]

.

The first two terms in the last expression are equal to the limit for ν2
(
θ1
)
, which yields the result

for the difference of the discount rates. The expression for part (ii) is obtained by symmetry.

Proof of Corollary 11. The critical point is the limits for the consumption-wealth ratios as

the Pareto share of one of the agents becomes small. Since the large agent’s consumption-wealth

ratio converges to that in a homogeneous economy, the relevant parameter restriction is the same

as restriction (10) in Assumption 2. The consumption-wealth ratio of the small agent is given in

expression (35), and restriction (11) in Assumption 2 assures that this quantity is strictly positive,

and the wealth-consumption ratio finite.

Proof of Corollary 12. Utilize results in Proposition 9 and the fact that limθ1ց0 µΞ2

(
θ1
)
= µy

and limθ1ց0 σΞ2

(
θ1
)
= σy, then form the differences in the limiting expected logarithmic growth

rates, and compare them to inequalities in Proposition 5.

Proof of Proposition 13. The difference in expected logarithmic returns is obtained by com-

puting the limiting behavior of

(
π1
(
θ1
)
− π2

(
θ1
)) [[

ξ
(
θ1
)]−1

+ µΞ

(
θ1
)
− r

(
θ1
)]

−
1

2

[(
π1
(
θ1
))2

−
(
π2
(
θ1
))2
] (

σΞ
(
θ1
))2

,

utilizing the results for θ1 ց 0 from Propositions 7 and 9. The first term above is the difference

in the risk premium associated with the two portfolios, and the second term is the lognormal

correction. The same propositions also contain the results for the consumption-wealth ratios of the

two agents.

Proof of Corollary 14. The results are obtained by taking limits of the expressions in Proposi-

tion 10.
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