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Abstract

In laboratory experiments, information cascades are ephemeral phenomena, collapsing soon
after they form, and then reforming again. These formation/collapse/formation cycles occur fre-
quently and repeatedly. Cascades may be reversed (collapse followed by a cascade on a different
state) and more often than not, such a reversal is self-correcting: the cascade switches from the
incorrect to the correct state. With a long enough horizon, full information aggregation may
therefore occur in an environment where Nash equilibrium predicts learning to be incomplete.

Past experimental work focused on relatively short horizons, where these interesting dynam-
ics are rarely observed. We present experiments with a longer horizon, and also investigate the
effect of signal informativeness. We propose a theoretical model, based on quantal response
equilibrium, where temporary and self-correcting cascades arise as equilibrium phenomena. The
model predicts that learning will be complete and also predicts the systematic differences we
observe experimentally in the dynamics, as a function of signal informativeness. We extend the
basic model to include a parameter measuring base rate neglect and find it to be a statistically
significant factor in the dynamics, resulting in somewhat faster rates of social learning.
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1. Introduction

In an information cascade, a sequence of imperfectly informed decision makers each of whom

observes all previous decisions, quickly reach a point at which they rationally ignore their private

information. Hence, after a few decisions, learning ceases as subsequent decision makers infer

nothing new from observing any of the actions. Information cascades are predicted to occur de-

spite the wealth of information available and despite the common interest of all decision makers.

This result, if robust to variations in the basic model, has obvious and pernicious implications

for economic welfare, and raises problematic issues for various applications of mass information

aggregation, such as stock market bubbles and crashes, bank runs, technology adoption, mass

hysteria, and political campaigns.

In this paper, we reconsider the canonical model of information cascades for which some

laboratory data (from short sequences) exist.1 There are two equally likely states of nature,

two signals, two actions, and T decision makers. Nature moves first and chooses a state, and

then reveals to each decision maker a private signal about the state. The probability a decision

maker receives a correct signal is q > 1/2 in both states of the world. Decision makers choose

sequentially, with each decision maker observing all previous actions (and her private signal). A

decision maker receives a payoff of 1 if she chooses the correct action and 0 otherwise. In this

environment, learning never progresses very far in a Nash or Sequential Equilibrium. In fact,

regardless of T , the equilibrium beliefs of all decision makers before considering their private

information (or, equivalently, the beliefs of an external observer) are confined to a narrow interval

centered around the initial prior.

In previous experimental data, however, there are numerous and repeated action choices

that are inconsistent with Nash equilibrium given the realized signals, by nearly all subjects.

AH observe that in their experiment with q = 2/3 and T = 6, more than 25% of the time

subjects make a choice against the cascade after receiving a contradictory signal. And nearly

1Anderson and Holt (1997) (AH) conducted the initial study. Subsequent studies by Anderson (2001), Hung
and Plott (2001), Domowitz and Hung (2003), Nöth and Weber (2003), Kübler and Weizsäcker (2004a, 2004b),
Celen and Kariv (2004), Huck and Oechssler (2000) and others replicate the AH findings and include additional
treatments.
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Table 1. Percentages of (broken) cascades in our data.

5% of subjects who receive a signal consistent with the cascade choose the opposite action. In the

experiments reported below we vary the signal precision, q = 5/9 and q = 6/9, and the number

of decision makers, T = 20 and T = 40. With this many decision makers we should observe

cascades arising in 100% of the sequences according to the theoretical model of Bikhchandani,

Hirschleifer, and Welch (1992). However, with T = 40, for instance, a cascade arises and persists

in only 8 out of 116 sequences (< 7%).

Table 1 indicates a few ways in which the standard theory misses badly. At a minimum,

a reasonable theory should explain two systematic features of the data. First, off-the-Nash-

equilibrium-path actions occur with significant probability. The theory as it stands does not

place adequate restrictions off the equilibrium path. Second, deviations from equilibrium are

systematic, indicating that such behavior is informative! Why? Because going off the equilibrium

path (i.e., choosing an action opposite to the cascade) happens much more frequently if the player

received a signal contradicting the cascade choices, see Table 2. Indeed, when a break occurs,

the observed frequency with which the received signal was contradictory is 84%.2 This should

come as no surprise as a deviation following a confirmatory signal is a worse deviation (e.g., in

terms of expected payoffs, and also intuitively) than a deviation following a contradictory signal.

An alternative approach to the perfect Bayesian equilibrium is to consider models which

admit a random component to behavior. The introduction of a random component ensures that

2When averaged over the four treatments. In the (q = 5
9 , T = 20), (q = 5

9 , T = 40), (q = 6
9 , T = 20), and

(q = 6
9 , T = 40) treatments the numbers are 87%, 78%, 87%, and 82% respectively.
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Table 2. Frequency of confirmatory/contrary signals when cascades are (not) broken.

all paths can be reached with positive probability, so Bayes’ rule places restrictions on future

rational inferences and behavior when a deviation from a cascade occurs. We consider such a

model, quantal response equilibrium (QRE), where deviations from optimal play occur according

to a statistical process and players take these deviations into account when making inferences

and decisions. In a QRE, deviations or mistakes are payoff dependent in the sense that the

likelihood of a mistake is inversely related to its cost.3 We demonstrate that QRE predicts the

temporary and self-correcting nature of cascades and also predicts the systematic differences we

observe experimentally in the dynamics, as a function of signal informativeness. Importantly,

QRE predicts that with an infinite horizon the true state will be revealed with probability one,

i.e. learning is complete. While no experiment can formally test this prediction, we do present

evidence below suggesting that information is continuously being aggregated.

The remainder of the paper is organized as follows. Section 2 presents the basic model and

theoretical results. Section 3 describes the experimental design. Section 4 contains an analysis

of the data. Section 5 presents an econometric analysis of the basic model and extensions

that better explain the data. Section 6 discusses efficiency properties and section 7 concludes.

Appendix A contains proofs and Appendix B contains an estimation program and results.

3We only consider monotone quantal response equilibrium, where choice probabilities are monotone in expected
utilities, see McKelvey and Palfrey (1995, 1998).
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2. The Basic Model

There is a finite set T = {1, 2, . . . , T} of agents who sequentially choose between one of two

alternatives, A and B. For each t ∈ T let ct ∈ {A,B} denote agent t’s choice. One of the

alternatives is selected by nature as “correct,” and an agent receives a payoff of 1 only when

she selects this alternative, otherwise she gets 0. The correct alternative (or state of the world),

denoted by ω ∈ {A,B}, is unknown to the agents who have common prior beliefs that ω = A

or ω = B with probability 1
2
. Further, they receive conditionally independent private signals st

regarding the better alternative. If ω = A then st = a with probability q > 1/2 and st = b with

probability 1− q. Likewise, when ω = B, st = b with probability q and st = a with probability

1− q.

We will be concerned with the evolution of agents’ beliefs, and how these beliefs co-evolve

with actions. Agent t observes the actions of all her predecessors, but not their signals. Thus a

history Ht for agent t is simply a sequence {c1, . . . , ct−1} of choices by agents 1, · · · , t− 1, with

H1 = ∅. Agents care about the history only to the extent that it is informative about which

alternative is correct. So let pt ≡ P (ω = A|Ht) denote the (common knowledge) posterior belief

that A is correct given the choice history Ht, with p1 ≡ 1
2
, the initial prior. We first determine

agent t’s private posterior beliefs given the public beliefs pt and given her signal st. Applying

Bayes’ rule shows that if st = a, agent t believes that alternative A is correct with probability

πa
t (pt) ≡ P (ω = A|Ht, st = a) =

q pt

q pt + (1− q)(1− pt)
. (2.1)

Likewise,

πb
t (pt) ≡ P (ω = A|Ht, st = b) =

(1− q)pt

(1− q)pt + q(1− pt)
(2.2)

is the probability with which agent t believes that A is correct if her private signal is st = b.

A direct computation verifies that πa
t (pt) > pt > πb

t (pt) for all 0 < pt < 1. In other words, for

any interior public belief an agent believes more strongly that ω = A after observing an a signal

than after observing a b signal.
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2.1. Nash Equilibrium

Following Bikhchandani, Hirshleifer, and Welch (1992) and Banerjee (1992) we first discuss

optimal behavior under the assumption that full rationality is common knowledge. Given that

each agent’s private information is of the same precision, and the initial prior puts equal mass

on both states, indifference occurs with positive probability resulting in a multiplicity of sequen-

tial equilibria.4 This multiplicity is potentially relevant for interpreting data from information

cascade experiments, since the restrictions on action sequences are minimal. Indeed, below we

illustrate how any action sequence is consistent with some sequential equilibrium for some se-

quence of signals. For field data, where signals cannot be directly observed, this means there are

essentially no restrictions imposed by the Nash equilibrium. Furthermore, implications about

behavior off the equilibrium path are quite ambiguous.

As an example to see that any action sequence is consistent with equilibrium, suppose the

following sequence of actions is observed in the first four periods of an information cascade game:

{A,A, A, B}. What (outsider) posterior beliefs are consistent with these actions if we assume

they are generated by equilibrium behavior? There are three restrictions derived from equilib-

rium behavior that drive possible beliefs. The first is that player 1 must have observed signal

a. Next the second and third players must have been using strategies that are uninformative

(follow player 1 regardless of signal, which is a weak best response), otherwise choosing action

B could not have been optimal for player 4. Third, since the intervening A choices by players

2 and 3 were uninformative, player 4 must have observed a b signal. Extending this argument

implies that for an outsider who cannot observe the private information of the players, any

sequence of actions is consistent with equilibrium for some realization of signals. Fortunately,

with experimental data, the outside observer (i.e., the experimenter) has the luxury of observing

both signals and actions, and hence can place some restrictions on the data.5

4This multiplicity is non-generic and occurs because of the symmetric information structure (uniform prior,
symmetric signal technology).

5The above argument also holds for Perfect Bayesian Equilibrium and Sequential Equilibrium since these
refinements do not rule out indifferent players always following the cascade.
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The multiplicity of equilibria disappears when indifferent players follow their signal with

non-zero probability, no matter how small. In this case, the “pure cascade” Nash equilibrium

identified by Bikhchandani, Hirshleifer and Welch (1992) is the only equilibrium.6

The pure cascade Nash equilibrium works as follows.7 The first agent chooses A if s1 = a,

and chooses B if s1 = b, so that her choice perfectly reveals her signal. If the second agent’s

signal agrees with the first agent’s choice, the second agent chooses the same alternative, which

is strictly optimal. On the other hand, if the second agent’s signal disagrees with the first agent’s

choice, the second agent is indifferent, as she effectively has a sample of one a and one b. Rather

than making a specific assumption, suppose she follows her signal with some probability β > 0.

The third agent faces two possible situations: (i) the choices of the first two agents coincide,

or (ii) the first two choices differ. In case (i), it is strictly optimal for the third agent to make

the same choice as her predecessors, even if her signal is contrary. Thus her choice imparts no

information to her successors, resulting in the onset of a cascade. The fourth agent is then in

the same situation as the third, and so also makes the same choice, a process which continues

indefinitely. In case (ii), however, the choices of the first two agents reveal that they have

received one a signal and one b signal, leaving the third agent in effectively the same position

as the first. Her prior (before considering her private information) is p3 = 1
2
, so that her signal

completely determines her choice. The fourth agent would then be in the same situation as the

second agent described above, et cetera.

One quantity of interest is the probability that “correct” and “incorrect” cascades have

formed after a particular number of choices. After the first two choices, the probabilities of a

correct cascade, no cascade, and an incorrect cascade are

q(1− β(1− q)) , 2βq(1− q) , (1− q)(1− βq) ,

6In fact, the trembling-hand perfect equilibrium selects a unique equilibrium in which indifferent players follow
their signal with probability 1.

7As we will see, most data are not consistent with this “pure cascade” Nash equilibrium. In fact, most
sequences of choices observed in the laboratory are not consistent with any Nash equilibrium.
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respectively. More generally, after 2t choices, these probabilities are

q(1− β(1− q))
(1− (2βq(1− q))t

1− 2βq(1− q)

)
, (2βq(1− q))t , (1− q)(1− βq)

(1− (2βq(1− q))t

1− 2βq(1− q)

)
.

Taking limits as t approaches infinity yields the long run probabilities of the three regimes.

First note that the probability of not being in a cascade vanishes as t grows. The probability

of eventually reaching a correct cascade is q(1−β(1−q))
1−2βq(1−q)

, and the complementary probability of

eventually reaching an incorrect cascade is (1−q)(1−βq)
1−2βq(1−q)

.8 Once a cascade has formed, all choices

occur independently of private information, and hence public beliefs remain unchanged. The

points at which public beliefs settle are the posteriors that obtain after two consecutive choices

for the same alternative, beginning with uninformative prior.

2.2. Quantal Response Equilibrium

We now describe the logit quantal response equilibrium (QRE) of the model described above.

In the logit QRE, each individual t privately observes a payoff disturbance for each choice,

denoted εA
t and εB

t . The payoff-relevant information for agent t is summarized by the difference

εt ≡ εA
t − εB

t . Denote agent t’s type by θt = (st, εt). The logit specification assumes that the

εt are independent and obey a logistic distribution with parameter λ.9,10 The disturbance, εt,

can be interpreted in several different ways. For example, it could represent a stochastic part

of decision making due to bounded rationality, or it could be an individual-specific preference

shock that occurs for other reasons. Irrespective of the interpretation of the noise, the resulting

logit choice model implies that the stronger the belief that A is correct, the more likely action

A is chosen. The logit QRE model assumes that the distribution of the payoff disturbances is

8Thus as q increases from 1
2 to 1, the probability of eventually reaching a good cascade grows from 1

2 to 1.
9This arises when εA

t and εB
t are i.i.d. extreme-value distributed.

10The properties derived in this section hold for all atomless error distributions that have full support over the
interval [−1, 1]. The logit specification is convenient because its behavior is determined by a single parameter
with a natural “rationality” interpretation.
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common knowledge.11 The logit QRE is calculated as the sequential equilibrium of the resulting

game of incomplete information, where each player observes only her own type θt.

It is straightforward to characterize the optimal decision of agent t given her type θt and the

history Ht (which determines public beliefs pt). The expected payoff of choosing A is πst
t (pt)+εt,

and that of selecting alternative B is 1− πst
t (pt). Thus given agent t’s signal, the probability of

choosing A is given by12

P (ct = A|Ht, st) = P (εt > 1− 2πst
t (pt))) =

1

1 + exp(λ(1− 2πst
t (pt)))

, (2.3)

and B is chosen with complementary probability P (ct = B|Ht, st) = 1−P (ct = A|Ht, st). When

λ →∞ choices are fully rational in the sense that they do not depend on the private realizations

εt and are determined solely by beliefs about the correct alternative. It is easy to show that the

logit QRE converges to the pure cascade Nash equilibrium with β = 1
2

in this limit.13 On the

other hand, as λ approaches 0 choices are independent of beliefs and become purely random.

The belief dynamics also depend on λ. To derive the evolution of the public belief that A

is correct, note that given pt there are exactly two values that pt+1 = P (ω = A|Ht, ct) can take

depending on whether ct is A or B. These are denoted p+
t and p−t respectively. The computation

of the posterior probabilities p+
t and p−t given pt is carried out by agents who do not know the true

state, and so cannot condition their beliefs on that event. In contrast, the transition probabilities

of going from pt to p+
t or p−t (i.e., of a choice for A or B) depend on the objective probabilities of a

and b signals as dictated by the true state. Thus when computing these transition probabilities,

it is necessary to condition on the true state. Conditional on ω = A, the transition probabilities

are:

T ω = A
t = P (ct = A|Ht, ω = A)

= P (ct = A|Ht, st = a)P (st = a|ω = A) + P (ct = A|Ht, st = b)P (st = b|ω = A)

11In general, the distributions of payoff disturbances in a logit QRE need not be the same for every decision
maker, but these distributional differences would be assumed to be common knowledge.

12Note that indifference occurs with probability zero under the logit specification, and hence plays no role.
13This is because for any λ ∈ (0,∞), an agent chooses equi-probably when indifferent.
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=
q

1 + exp(λ(1− 2πa
t (pt)))

+
1− q

1 + exp(λ(1− 2πb
t (pt)))

,

with the probability of a B choice given by 1 − PA
t . Similarly, conditional on ω = B, the

probability agent t chooses A is

T ω = B
t =

1− q

1 + exp(λ(1− 2πa
t (pt)))

+
q

1 + exp(λ(1− 2πb
t (pt)))

.

Using Bayes’ rule, we now obtain the two values that pt+1 may take as

p+
t ≡ P (ω = A|Ht, ct = A) =

ptT
ω = A

t

ptT ω = A
t + (1− pt)T ω = B

t

, (2.4)

and

p−t ≡ P (ω = A|Ht, ct = B) =
pt(1− T ω = A

t )

pt(1− T ω = A
t ) + (1− pt)(1− T ω = B

t )
. (2.5)

These expressions can be used to derive the following properties of the belief dynamics (see

Appendix A for proofs), where without loss of generality we assume the true state is ω = A.

Proposition 1. If q > .5 then for all λ > 0 there is a unique logit QRE with the following

properties:

(i) Beliefs are interior: pt ∈ (0, 1) for all t ∈ T .

(ii) Actions are informative: p−t < pt < p+
t for all t ∈ T .

(iii) Beliefs about the true state rise on average: E(pt+1|pt, ω = A) > pt for all t, t + 1 ∈ T .

(iv) Beliefs converge to the truth: conditional on ω = A, limt→∞ pt = 1 almost surely.

9



2.3. Testable Restrictions on the Data

We formally define several different kinds of cascade-like behavior.14 A pure A (B) cascade

is said to form at time t ≤ T if after period t−1 the number of A (B) choices exceed the number

of B (A) choices by 2 for the first time, and all choices from t to T are A (B) choices. Thus,

for example, if T = 6 and the sequence of choices is {A,B,A, A, A,A}, then we say a pure A

cascade forms at t = 5. In periods 5 and 6, we say the decision makers are in a pure A cascade.

Note that any pure cascade beginning at time t, will have length T − t + 1.

A temporary A (B) cascade or A (B) craze15 is said to form at time t ≤ T if after period

t− 1 (but not after period t− 2) the number of theoretically informative A (B) choices16 exceed

the number of theoretically informative B (A) choices by 2 and some decision maker τ , with

t ≤ τ ≤ T , makes a contrary choice.17 The number of periods decision makers follow the craze,

τ − t, defines the length of a craze. Thus in the sequence of decisions {A,A, B} we say that an

A craze of length zero occurs at t = 3.

Temporary cascades are particularly interesting because subsequent play of the game is off the

Nash equilibrium path. Moreover, if the sequence is long enough it is possible for a new cascade to

form after a temporary cascade has broken. Following AH, we define a simple counting procedure

to classify sequences of decisions and determine whether a new cascade has formed. This ad hoc

counting rule roughly corresponds to Bayesian updating when the probability that indifferent

subjects follow their signals, β, equals the probability that subjects who break cascades hold

contrary signals.18 Under the counting rule, every A decision when not in a cascade increases the

count by 1 and every B decision when not in a cascade decreases the count by 1. Recall that we

14One might argue for using the term “herd” instead of cascade, since cascade refers to belief dynamics, while
“herds” refer to choice dynamics. In the context of quantal response equilibrium, this distinction is artificial,
since neither herds nor cascades will occur in a logit equilibrium. All choices occur with positive probability at
every point in time, and beliefs never settle down in finite time.

15According to the Oxford English Dictionary (1980), a craze is defined as a “great but often short-lived
enthusiasm for something.”

16Choices made during a (temporary) cascade are called theoretically uninformative.
17These definitions extend in a natural way to more complex environments.
18These conditions are closely approximated in our data, where we find 85% of indifferent subjects go with

their signals and 84% of cascade breakers received contrary signals.
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enter the first cascade of a sequence when the count reaches 2 or −2. Then the decisions during

the cascade do not change the count, until there is an action that goes against the cascade,

which decreases the count to 1 if it was an A cascade or increases the count to −1 if it was a

B cascade. The count continues to change in this way, until the count reaches either 2 or −2

again, and then we are in a new cascade, which we call a secondary cascade.

We distinguish three different kinds of secondary cascades. One possibility is that actions

cascade on the same state as the previous cascade: a repeat cascade. The other possibility is

that the actions cascade on a different state: a reverse cascade. A self-correcting cascade is a

cascade that reverses from the incorrect state to the correct state.

The logit equilibrium implies several properties of the length and frequency of different kinds

of cascades, and how this depends on our two main treatment parameters, q and T .19

Observable implications of the logit QRE. If q > 1
2

then for all λ > 0 observed behavior in

the unique logit QRE will have the following properties:

(P1) The probability of observing a pure cascade is decreasing in T and increasing in q.

(P2) For any q the probability of a pure cascade goes to 0 as T gets large.

(P3) The number of cascades is increasing in T and decreasing in q.

(P4) The length of cascades is increasing in T and q.

(P5) Incorrect cascades are shorter than correct cascades.

(P6) Incorrect cascades reverse (self-correction) more frequently than correct cascades reverse,

for any T ≥ 6.20

19These properties are stated informally here: they have been verified by extensive simulations and in some
cases can be proved formally.

20Six periods are required for a reverse cascade, at least two periods to start the first cascade, and then at least
four periods to reverse itself. For example, {A,A, B, B, B, B} is the shortest possible sequence for a reverse from
an A cascade to a B cascade. If T < 6 then there is not enough time for a reverse cascade to occur, illustrating
the necessity of conducting experiments with sufficiently long sequences.
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(P7) Correct cascades repeat more frequently than incorrect cascades, for any T ≥ 4.21

(P8) Later cascades are more likely to be correct than earlier ones.

(P9) The ex ante (i.e., before player t has drawn a private signal) probability of a correct

decision is increasing in both t and q. An interim version of this statement is true, but

only conditional on receiving an incorrect signal.22

(P10) More informative signals lead to faster learning. That is, for any public belief pt, the

expected change in the public belief E[pt+1 − pt|pt, ω = A] is increasing in q.

(P11) The probability of a correct decision is higher for a correct than for an incorrect signal.

While the last three properties are also true for the initial few decisions in the pure cascade Nash

equilibrium, the effects go away quickly with longer sequences.23

3. Experimental Design

The primary innovation of our experimental design is the use of much longer choice sequences

than previous experiments, in order to assess the predictions of these models in the cascade

setting, and to gain insights into how the basic models might be improved. Past experiments

used short sequences that were inadequate to address the main questions we are interested in.

Our experiments were conducted at the Social Sciences Experimental Laboratory (SSEL) at

Caltech and the California Social Sciences Experimental Laboratory (CASSEL) at UCLA be-

21Repeat cascades require at least 4 periods. For example, {A, A,B, A} is the shortest possible sequence for a
repeated A cascade.

22It is not true conditional on receiving a correct signal. To see this, note that the interim probability of a
correct decision at time t = 1 with a correct signal approaches 1 as λ diverges as it is optimal to follow one’s
signal. In later periods it is bounded away from 1 because of the probability of a cascade on the wrong state.

23An exception is the second part of Property 9. In the perfect Nash equilibrium, the probability of a correct
decision is approximately equal to the probability of ending up in a correct cascade, which quickly approaches
q2/(q2 + (1− q)2) and rises with q.
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Table 3. Experimental sessions.

tween September 2002 and May 2003. The subjects included students from these two institutions

who had not previously participated in a cascade experiment.24

The experiments employ a 2× 2 design, where we use two values of both the signal quality q

and the number of individuals T . Specifically, q takes values 5/9 and 6/9, and T takes values 20

and 40. The number of games in each experimental session is denoted M . Table 3 summarizes

the experimental design.

In each session, a randomly chosen subject was selected to be the “monitor” and the remaining

subjects were randomly assigned to computer terminals in the laboratory. All interaction among

subjects took place through the computers; no other communication was permitted. Instructions

were given with a voiced-over Powerpoint presentation in order to minimize variations across

sessions.25 After logging in, the subjects were taken slowly through a practice trial (for which

they were not paid) in order to illustrate how the software worked, and to give them a chance

24There was one subject who had previously participated in a related pilot experiment.
25See www.hss.caltech.edu/̃ rogers/exp/ for the instructions.
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to become familiar with the process before the paid portion of the experiment commenced.

Before each trial, the computer screen displayed two urns. For the q = 5/9 treatment, one urn

contained 5 blue balls and 4 red balls and the other contained 4 blue balls and 5 red balls. For the

q = 6/9 treatment, one urn contained 6 blue balls and 3 red balls and the other contained 3 blue

balls and 6 red balls. The monitor was responsible for rolling a die at the beginning of each game

to randomly choose one of the urns with equal probabilities. This process, and the instructions

to the monitor (but not the outcome of the roll) were done publicly. At this point, the subjects

saw only one urn on the computer screen, with all nine balls colored gray, so that they could not

tell which urn had been selected. Each subject then independently selected one ball from the

urn on their screen to have its color revealed. Then, in a random sequence, subjects sequentially

guessed an urn. During this process, each guess was displayed on all subjects’ screens in real

time as it was made, so each subject knew the exact sequence of guesses of all previous subjects.

After all subjects had made a choice, the correct urn was revealed and subjects recorded their

payoffs accordingly. Subjects were paid $1.00 for each correct choice and $0.10 for each incorrect

choice. Subjects were required to record all this information on a record sheet, as it appeared

on their screen. Due to time constraints, the number of matches (sequences of T decisions) was

M = 30 in each T = 20 session and M = 20 in each T = 40 session.26 After the final game,

payoffs from all games were summed and added to a show-up payment, and subjects were then

paid privately in cash before leaving the laboratory.

4. Results I: Cascades and Off-the-Equilibrium-Path Behavior

In this section, we provide some descriptive aggregate summary information about the extent

of cascade formation, off-the-equilibrium-path behavior, and the number and lengths of cascades

of different kinds. We also compare these aggregate features across our four treatments, and

compare them to the shorter length experiments reported in AH.

26A few sessions contained fewer sequences due to technical problems, see Table 3.
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Table 4. Percentages of pure cascades by treatment.

4.1. Infrequency of Pure Cascades and Frequency of Crazes

In AH’s experiment with only T = 6 decision makers, all cascades were necessarily very

short making it difficult to sort out pure cascades from crazes. In contrast, our experiments

investigated sequences of T = 20 and T = 40 decision makers, allowing for the first time an

opportunity to observe long cascades and the length distribution of crazes. As Table 4 clearly

demonstrates, pure cascades essentially do not happen in the longer trials. The cascades that

persisted in the AH experiments simply appear to be pure cascades, a likely artifact of the short

horizon. Our numbers are comparable to those of AH when we consider only the first six decision

makers in our sequences. These numbers are given in the row marked ”First 6” in Table 4. In

contrast, we observe pure cascades in only 17 our of 206 sequences with T = 20 decision makers,

and only 8 of 116 sequences with T = 40 decision makers.

The final columns of Table 4 give the predicted frequency of pure cascades according to the

Nash equilibrium (and the QRE-BRF model, which we will discuss later). The Nash equilibrium

probability of a pure cascade with T decision makers is 1 − (2βq(1 − q))T/2, with β = 0.85 the

fraction of indifferent subjects who follow their signals. The data contradict this in three ways.

First, there are far fewer pure cascades than theory predicts. Second, there were far fewer than

were observed in past experiments with very short decision sequences. According to theory, the

frequency of pure cascades should increase with T but in fact the data show the opposite. Third,
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Table 5. Percentages of temporary cascades by treatment.

the frequency of pure cascades in the data is steeply increasing in q, while the Nash equilibrium

predicts almost no effect. In our data, pure cascades occurred nearly five times as often in the

q = 6/9 treatment than when q = 5/9 (20/150 compared to 5/172).27

In contrast to pure cascades, crazes are common in all treatments. Table 5 shows the fre-

quency of temporary cascades in our data. The rows and columns mirror Table 4, but the

entries now indicate the proportion of sequences in a given treatment that exhibit at least one

temporary cascade that falls apart. Clearly, for large T , essentially all cascades we observe are

temporary. Even with the short horizon of the AH experiment, crazes occur 27% of the time.

4.2. Number and Lengths of Crazes

With larger T , we generally observe multiple crazes along a single sequence. On average,

there are three or more crazes per sequence in all treatments, see Table 6. Furthermore, the

number of crazes rises with the sequence length, T , and falls with the signal precision, q, in

the sense of first-degree stochastic dominance, see the top panel of Figure 1. This figure also

shows the Nash prediction of exactly 1 cascade per sequence, independent of q and T , and the

predictions of the QRE-BRF model discussed below.

27Further evidence indicates this continues to increase with q. In a single additional session with q = 3/4 and
T = 20, we observed pure cascades in 28/30 sequences.
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Table 6. Number and lengths of cascades by treatment.

The average length of crazes also varies by treatment, see Table 6 and the bottom panel of

Figure 1.28 The Nash predictions are virtually independent of q and contrast sharply with the

observed (average) lengths. In contrast, the QRE-BRF model does reasonably well and captures

the comparative static effects predicted by the different treatments.

4.3. Off-the-Equilibrium-Path Behavior

Given that the vast majority (92%) of cascades are temporary and short in duration, and

nearly all (90%) sequences in our data exhibit multiple cascades, an immediate conclusion is that

there are many choices off the (Nash) equilibrium path. Table 2 in the Introduction characterizes

a subset of these choices for the different treatments as a function of the deviating decision

maker’s signal. The table shows the behavior of what we call cascade breakers, since these are

all terminal decisions of a temporary cascade.

The behavior of decision makers immediately following a cascade breaker also plays an im-

portant role in the dynamics. Because breaks are so informative, beliefs following a break move

back toward .5, reversing the trend in beliefs that occurred during the cascade. As a result,

28Recall that in the Nash model, cascades can only begin after an even number of choices. Moreover, for t
even, the probability a cascade forms after t + 2 choices conditional on one not having yet formed after t choices
is 1 − 2βq(1 − q), with β = 0.85 see section 2.1. Finally, in the Nash model, once a cascade forms it persists
through period T . The predicted length distributions of crazes can be calculated easily.
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Figure 1: The left panels depict the observed distributions of the number of cascades
(top) and of cascade lengths (bottom), color coded by treatment: dark (light) gray
lines correspond to q = 5/9 (q = 6/9) and they are solid (broken) for T = 40
(T = 20). The right panels show predictions of the Nash and QRE-BRF models.
In the top right panel, the solid line that jumps to 100% at 1 corresponds to Nash
predictions and the other lines the QRE-BRF predictions. In the bottom right panel,
the lines that jump to 100% at T − 2 correspond to Nash predictions and the others
to QRE-BRF predictions.
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Table 7. Percentages of choices confirming/contradicting the recent cascade after a break.

the probability of a second break is sharply increased.29 We see exactly this in the data, where

75% of the decision makers immediately following a cascade break follow their signals. A player

who observes a signal consistent with the recent cascade of course should follow the cascade,

a prediction that is borne out by our data: only 10% of these players are secondary deviators

who follow the recent break. In contrast, well over 50% of decision makers with contrary signals

are secondary deviators. Table 7 gives a complete breakdown of the choices directly following a

cascade break, by treatment.

The two key conclusions of this subsection are that play off the equilibrium path occurs

frequently and, moreover, is informative. The second of these observations has been made in

AH, but the first observation, indicating that the standard theory is completely contradicted by

the data, was underplayed in AH, as this could easily be missed in short sequences.

4.4. Repeated and Reversed Cascades: Self Correction

Since this off-path behavior is central to the dynamic properties of QRE (where such behavior

is actually not off-path) and to the resulting convergence of beliefs, our design, with much longer

29Indeed, even in a Nash equilibrium, one can construct plausible off-path beliefs such that in the move following
a break, choices can rationally depend on private signals again. That is the decision maker following a break
should rationally follow his signal.
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Table 8. Frequency of repeated and reversed cascades by treatment.

sequences, allows us to better observe the kinds of complex dynamics predicted by the theory,

in particular the phenomenon of self correction.

Table 8 shows the average number of repeated and reversed cascades per sequence, by treat-

ment, and also gives theoretical expectations according to the Nash and QRE-BRF models.

While such cascades are not possible in the Nash equilibrium, the latter model predicts the

observed number of reversed and repeated cascades remarkably well.

Table 9 shows how frequently correct and incorrect crazes repeat or reverse themselves.30

Averaging over the four treatments shows that when a correct cascade breaks, it reverses to an

incorrect one in less than 6% of all cases. In contrast, an incorrect cascade that breaks leads to

a self-corrected cascade in more than 21% of all cases. Table 9 also lists the initial, final, and

total number of correct and incorrect crazes by treatment. Notice that the fraction of correct

crazes is always higher among the final cascades than among the initial cascades, confirming the

predictions of Proposition 1.

4.5. Summary of Results

Here we summarize our findings by relating them to the properties of the logit QRE discussed

in section 2.3.
30The percentages listed ignore terminal cascades, since they neither repeat nor reverse.
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Table 9. Transitions between correct and incorrect cascades in our data.

• (P1) and (P2): The occurrence of pure cascades decreases with T and increases with q. The

effect of T is obvious from comparing the different rows in Table 4. Both for q = 5/9 and

q = 6/9, the percentages of pure cascades fall quickly with each successive row. Comparing

columns 1 and 3 and columns 2 and 4 in Table 4 shows the effect of signal informativeness.

• (P3): The number of cascades increases with T and decreases with q. See Table 6 and

Figure 1. Longer sequences have more cascades because they allow for more cycles of

formation and collapse. These effects are barely noticeable in short sequences: AH’s

experiment averaged slightly more than 1 cascade per sequence.

• (P4): Cascades lengths increase with T for q = 6/9 and increase with q. The effect of T

can be decomposed as follows. First, and most obvious, if T is short then some cascades

that would have lasted longer are interrupted at T . Second, the probability of collapse is

decreasing in the duration of the cascade (see Figure 2): the probability of a collapse in

period t+s, given the cascade started in period t is decreasing in s. In other words, longer

cascades are more stable (see Kübler and Weizsäcker, 2004b), which is predicted by QRE

but not by Nash. The two effects combined result in a fat tail of the length distribution
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Figure 2: Chance of cascade breaking as a function of cascade length.
The lines show 5-period moving averages of the probability of a break
in each of the treatments (color coded as in Figure 1).

and in a mass of cascades at T − 2, see Table 6 and Figure 1. Again, these differences are

barely noticeable in past experiments because the sequences were so short. Note that the

effect of T is not borne out by the q = 5/9 data, where the distributions of cascade lengths

are very similar for the T = 20 and T = 40 treatments.31

• (P5): Correct crazes last longer on average. The observed average lengths of (correct,

incorrect) crazes in the different treatments are: (2.55, 2.24) for q = 5/9 and T = 20,

(2.08, 1.91) for q = 5/9 and T = 40, (3.42, 2.85) for q = 6/9 and T = 20, and (8.31, 5.50)

for q = 6/9 and T = 40.

• (P6) and (P7): Reverse cascades are usually self-correcting. See Table 9. Across the four

31This may be due to subject pool effects, since the (q = 5/9, T = 20) treatment was the only one that used
mostly Caltech students.
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treatments, the probability that a reversed cascade is self-correcting is 63% (even though

there are many more correct than incorrect crazes to reverse from). It is this feature of

the dynamics that produces the full information aggregation result of Proposition 1.

• (P8): Later cascades are correct more frequently than earlier ones. See Table 9, which lists

the number of (in)correct cascades among initial and final cascades.

The final three properties, (P9)-(P11) address decision accuracy and are discussed in section 6.

5. Results II: Estimation

We start by describing the estimation procedure for the basic logit QRE model. The only

parameter is the slope of the logit response curve, which in the context of these games can be

interpreted as a proxy for rationality, experience, and task performance skill. In subsequent

subsections, we jointly estimate logit and other parameters, using standard maximum likelihood

estimation. For comparability, we choose to normalize payoffs in all experiments to equal 1 if a

subject guesses the state correctly and 0 otherwise.

Since subjects’ choice behavior depends on λ, public beliefs follows a stochastic process that

depends on λ. The evolution of the public belief can be solved recursively (see equations (2.4) and

(2.5)), so implicitly we can write pt(c1, · · · , ct−1|λ). Given {λ, st, (c1, · · · , ct−1)}, the probability

of observing player t choose A is:

P (ct = A|λ, st, c1, · · · , ct−1) =
1

1 + exp(λ(1− 2πst
t (pt(c1, · · · , ct−1|λ))))

,

and P (ct = B|λ, st, c1, · · · , ct−1) = 1−P (ct = A|λ, st, c1, · · · , ct−1). Therefore, the likelihood of a

particular sequence of choices, c = (c1, · · · , cT ), given the sequence of signals is simply:

l(c|λ) =
T∏

t=1

P (ct|λ, st, c1, · · · , ct−1).
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Finally, assuming independence across sequences, the likelihood of observing a set of M sequences

{c1, · · · , cM} is just:

L(c1, · · · , cM |λ) =
M∏

m=1

l(cm|λ).

The estimation results for the logit QRE model are given in Table B1 of Appendix B, which

also contains a detailed estimation program written in GAUSS. The λ estimates for the four

treatments are quite stable and the pooled estimate is close to that estimated from the AH data.

Notice that the estimated value of λ for the (q = 5/9, T = 20) treatment is somewhat greater

than the other three treatments. We attribute this to subject pool effects, since that treatment

was the only one that used mostly Caltech students.

Since comparison with Nash equilibium does not provide a particularly informative bench-

mark for the logit QRE, the following three subsections consider extensions and alternatives to

the basic model. This allows us to access the extent to which the choice behavior in our data

is explained by quantal response type decision errors as opposed to other sources, such as non-

Bayesian updating and non-rational expectations.32 Using parametric specifications we measure

the extent of certain types of these biases in the data.

5.1. Incorporating the Base Rate Fallacy

In their seminal article, Kahneman and Tversky (1973) present experimental evidence show-

ing that individuals’ behavior is often at odds with Bayesian updating. A particularly prevalent

judgement bias is the Base Rate Fallacy (BRF), or as Camerer (1995, pp. 597-601) more ac-

curately calls it, “base rate neglect”. In the context of our social learning model, the base rate

fallacy amounts to the assumption that agents weight their own signal more than they should

relative to the public prior. We formalize this idea as a non-Bayesian updating process in which

a private signal is counted as α signals, where α ∈ (0,∞).33 Rational agents correspond to

32Huck and Oechssler (2000) find strong evidence of violationg of Bayesian updating in a similar context.
33This could also be interpreted as a parametric model of “overconfidence” bias in the sense of Griffin and

Tversky (1992). See also Kariv (2003) and Nöth and Weber (2002).
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α = 1, while agents have progressively more severe base-rate fallacies as α increases above 1.34

While agents over-weight their private signals we retain the assumption that they have ra-

tional expectations about others’ behavior. The updating rules in (2.1) and (2.2) now become

πa
t (pt|α) =

qα pt

qα pt + (1− q)α(1− pt)
. (5.1)

and

πb
t (pt|α) =

(1− q)α pt

(1− q)α pt + qα(1− pt)
(5.2)

respectively.35

The public belief, pt, in equations (5.1) and (5.2) is derived recursively using (2.3)-(2.5). In

particular, this means that subjects not only overweight signals, but also take into account that

other subjects overweight signals too, and the public belief is updated accordingly. Thus, for

α > 1, the public belief is updated more quickly than in the pure Bayesian model.

There is good reason to think this model may better describe some features of the data.

First, when α = 1 QRE predicts that indifferent agents randomize uniformly. However in the

data 85% of indifferent subjects follow their signals, which is consistent with α > 1. Second,

when α > 1, cascades take longer to start.36 The base rate fallacy therefore provides one possible

explanation for the prevalence of length zero crazes in our data set (see Figure 1).

The estimation results for the QRE-BRF model are reported in the second panel of Table B1.

For all treatments, the BRF parameter, α, is significantly greater than 1. To test for significance

we can simply compare the loglikelihood of the QRE-BRF model to that of the constrained

model (with α = 1) in the top panel. Obviously, the BRF parameter is highly significant.37

34Values of α < 1 correspond to under-weighting the signal, or “conservatism” bias, as discussed in Edwards
(1968) and Camerer (1995, pp. 601-2). Although this latter kind of bias has less support in the experimental
literature, it is sufficiently plausible that we choose not to assume it away.

35From these equations, it is easy to see that for α > 1 the learning process is faster as agents’ choices depend
more on their own signals, in the sense that the expected change in posterior is greater.

36For example, after two A choices the third decision maker need not choose A if she sufficiently overweighs
her b signal.

37For the pooled data the difference in loglikelihoods is nearly 200. A simple t-test also rejects the hypothesis
that α = 1, with a t-statistic of 14.6. Tests conducted for the AH data also reject the constrained model, with a
slightly lower estimate of α.
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Furthermore, the constrained model yields a significantly (at the 0.01 level) higher estimate of

λ for all treatments.

There is at least one alternative interpretation to the finding that subjects respond too

strongly to their signal. By doing so, they are giving better information to later decision mak-

ers, which increases efficiency and raises the expected utility of the other players in the game.

Evidence from experiments on public goods and some game theory experiments suggest some

degree of altruism by the subjects. Conceivably, what we are calling a base rate neglect (or

overweighting of signals) may simply be a manifestation of altruistic behavior. However, there

is some counter evidence that suggests this is probably not the case. First, if altruism is the

motivating force, one would expect higher estimates of α for T = 40 than for T = 20. This is not

the case. Second, once would expect less overweighting of signals in later periods than in earlier

periods. We tested for this and found no significant effect. Therefore, our interpretation is not

that subjects are behaving altruistically, but rather the source of the distortion is a probability

judgement fallacy.

5.2. Incorporating Non-Rational Expectations

Rather than over-weighing private information relative to the choice history, it is possible

that players update incorrectly because they do not have rational expectations. The QRE

model implicitly assumes that λ is constant across the population and common knowledge. In

particular, if players believed other players’ λ were lower than it truly was, then beliefs, and

hence choice dynamics, would be qualitatively similar to those under a base rate neglect. The

reason is that when choices are believed to be generated by a noisier process, players draw weaker

inferences about predecessors’ signals from observing their choices. Accordingly, we consider a

model that allows for separate belief and action precision parameters, as proposed by Weizsäcker

(2003). These different parameters are labelled λa (action lambda) and λb (belief lambda). That

is, players choice probabilities follow the logit choice function with parameter λa but they believe

that other players’ choice probabilities follow a logit choice function with parameter λb. We call

26



this the non-rational expectations model, or QRNE model.

The estimation results for the QRNE model are also given in Table B1. While this two-

parameter model performs significantly better than the QRE model, the increase in likelihood

is not overwhelming, and is smaller than the increase of QRE-BRF relative to the simple QRE.

Moreover, when BRF is added to QRNE, so that the model includes both sources of error, the

action and belief λ are virtually identical when estimated from the pooled data, and the increase

in likelihood is barely significant. A similar conclusion holds for the AH data, indicating that

the assumption of rational expectations (λa = λb) is (approximately) valid in both data sets.

5.3. An Alternative Model: Cognitive Heterogeneity

It is instructive to consider other models with non-quantal response sources of noise which

could also potentially explain our data. This helps to check the validity of our basic story

for choice behavior, in light of the observation that the Nash equilibrium does not provide a

way to challenge any of the predictions of QRE. Although there are many options, one natural

candidate is to suppose that some players behave completely randomly, while other players

optimize against such behavior. Camerer, Chong, and Ho (2003) extend this idea to allow for

multiple levels of sophistication.38 Specifically, level 0 players are random, and all other players

use optimal strategies given their beliefs. Level 1 players believe all the other players are level 0,

level 2 players believe all others are a mixture of level 0 and level 1, and so forth. The proportion

of level k players in the population is given by a Poisson distribution with parameter τ . Players

are assumed to have truncated rational expectations, i.e. level k players believe all other players

are a mixture of levels less than k, with their relative probabilities given by the true Poisson

distribution. This is called the cognitive hierarchy (CH) model.

The presence of randomizing level 0 players will lead higher-level players to implicitly discount

the information contained in the choices of their predecessors. In this way the CH model can

38Stahl and Wilson (1995) explored a related model with levels of sophistication to study behavior in experi-
mental games, but that model was different from the one considered here. See Camerer, Chong, and Ho (2003)
for a discussion of the differences between the two models.
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pick up some of the same features of the data as QRE. Furthermore, like QRE, CH is “complete”

in the sense that it is consistent with any sequence of choices and signals. Hence we can obtain

maximum likelihood estimates of the parameter τ via the same methodology, without using

QRE, see Table B1.

We also estimate CH together with QRE to allow for further comparison with QRE. All three

models are then re-estimated with the inclusion of the BRF parameter α, also for purposes of

model comparison. Note that the estimates for the combined QRE-BRF-CH model are stable

across data sets and generally result in the highest likelihood. All three are significant factors,

based on likelihood ratio tests, and leaving out any one of these factors changes the magnitudes

of the other estimates.39

5.4. Summary of Estimation Results

Table 10 presents the pooled estimates for the different models. The estimation confirms our

intuition that these models are alternative good explanations. However, the models are really

quite different conceptually, and the BRF ingredient is clearly a significant factor even if other

behavioral factors are also present. The QRE-BRF model is simple and intuitively appealing,

which is why we used it for simulation and comparisons with data (see Tables 4-8 and Figures

1 and 3-5). The QRE-CH-BRF model results in a slightly higher likelihood, but the model is

conceptually harder and the effects on the descriptive statistics reported in the previous section

are negligible.

39The only unusual finding is that the estimate for τ is larger in magnitude than has been typically found in
other settings. Camerer, Chong, and Ho (2003) report estimates in the range of 1.5 to 2.5, while our estimate
in the combined model is 2.9 (with a standard error of 0.10). This appears to be due to an interaction between
τ , λ, and α. The estimate of τ in the pure CH model is 1.9, and its estimate in the CH-QRE model (without
BRF) is 2.5. Combining QRE and CH also leads to substantially larger estimates of λ. The reason for this is
that both are rationality parameters that substitute for each other. The 0 types in the CH model absorb a lot of
the randomness in the QRE model. In other words, the random behavior that can only be explained by 0 types
in the CH model is also explained by quantal response randomness. Hence we find relatively low values of either
parameter if the models are estimated separately, but both increase significantly when the models are combined.
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Table 10. Comparison of model estimates with our pooled data.

6. Results III: Efficiency

We consider both informational efficiency and allocative efficiency. Regarding informational

efficiency the relevant questions are: How well is the information from private signals aggregated?

How high is the public belief on the correct alternative after a sequence of decisions? How does

this vary with our treatment variables, q and T? In contrast, allocative efficiency concerns a

different set of questions: How frequently are actions correct? How does this change over time?

And how does this change as a function of signal informativeness?

6.1. Informational Efficiency

As shown in Proposition 1, in a QRE the public belief about the correct alternative converges

to 1 with probability 1 as T approaches infinity. The convergence is slower for the q = 5/9

treatments than for the q = 6/9 treatments. Of course, in any finite sequence, information

cannot possibly reveal the correct alternative, because of noise in the signal generation process.

Moreover, this noise in signal generation is compounded by strategic considerations that affect

the social learning process.

We have three hypotheses about informational efficiency:
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H1. For each q, the public belief about the correct alternative is closer to 1 in the final period

of the T = 40 treatments than in the T = 20 treatments.

H2. For each t, the public belief about the correct alternative is closer to 1 in the q = 6/9

treatments than in the q = 5/9 treatments.

H3. For all treatments, the average public belief about the correct alternative rises with t.40

Since we do not observe beliefs directly, we use the theoretical QRE-BRF model together

with the observed choice data to obtain estimated public belief paths.41 This is done for each

sequence. Using the pooled estimates λ = 4.23 and α = 2.46, each sequence of action choices

implies a unique public belief. This is illustrated in Figure 3, which shows the belief paths for

all sequences in one of the q = 6/9 and T = 20 sessions. Here the horizontal axis represents the

sequence of decisions, and the vertical axis the belief about the correct alternative. Each upward

tick in the belief paths corresponds to a correct choice and each downward tick to an incorrect

choice. Theoretically, for long enough sequences, the belief paths for almost all sequences should

converge to 1.

The simplest way to test Hypotheses 1-3 is to average the public belief about the correct

alternative across all sequences for a given treatment. This produces the four curves in the

left panel of Figure 4. The middle and right panels depict simulated average beliefs using the

QRE-BRF model and Nash model, respectively. The curves are obviously consistent with the

theoretical hypotheses.42

The comparison between the different q treatments is admittedly a weak test since the paths

are constructed using the theoretical model. That is, even if the sequences of signals and decisions

were exactly the same for all sequences in q = 6/9 and q = 5/9 session, the q = 6/9 curves

necessarily would lie strictly above the q = 5/9 curves. That said, the ordering also reflects a

40Smith and Sorenson (2001) observe a related effect in their model.
41Domowitz and Hung (2003) recently reported a social learning experiment using a belief elicitation procedure.

We did not elicit beliefs for several reasons. For example, it introduces incentive problems, as noted by the authors.
42The right most panel shows that the difference between the two q = 6/9 treatments is caused by the particular

signals drawn in these treatments.
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Figure 3: Estimated beliefs using the QRE-BRF model for all
sequences in one of the (q = 5/9, T = 20) sessions.

salient difference between our q = 5/9 and q = 6/9 data, namely that cascades fall apart more

quickly, and are more often incorrect in the q = 5/9 data than in the q = 6/9 data (see Tables

5-8 of the previous section).

However, that the curves are increasing in t is not an artifact of the construction, but simply

reflects the fact that there are more good cascades and fewer bad cascades toward the end of a

session than toward the beginning. In summary, we find strong support for hypotheses H1 and

H3 and somewhat weaker support for hypothesis H2.

6.2. Allocative Efficiency

Allocative efficiency is quite a different story from informational efficiency for at least two

reasons. First, in contrast to beliefs, allocative efficiency is directly measured (by the proportion

of correct decisions), since both the state and the action of each individual is observed in the

data. Second, full allocative efficiency will not be theoretically achieved in a quantal response

equilibrium, even for arbitrarily large T .43 After beliefs have converged to the true state, de-

cisions keep fluctuating because of the stochastic nature of QRE, resulting in efficiency losses.

43If λ increased without bound as T increased, then full allocative efficiency may be possible, but here we are
only considering QRE models with constant precision.
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Figure 4: Estimated public beliefs about the true state by treatment (coded as in Figure 1).
In the left panel, estimated beliefs are based on observed signals and decisions. The middle
panel is based on the average of 100 QRE-BRF simulations of decisions, always using the
same sequence of signals as in the experiment. The right panel shows estimated beliefs
implied by Nash decisions based on the sequence of signals employed in the experiment.

Given our estimate of λ, decisions would be correct only 99% of the time in the limit, when

beliefs have converged to the true state.44 At one extreme, when λ is close to 0, choice behavior

is random and decisions are correct 50% the time, regardless of history, signal, or q. We take

this as a reasonable lower bound for allocative efficiency.45

Our hypotheses regarding allocative efficiency are based on Properties 9-11 of the logit QRE

listed in section 2.3. First, average allocative efficiency will increase over time because expected

beliefs converge monotonically to the true state. Also, allocative efficiency should be positively

affected by signal informativeness in three ways. There is the direct effect that more good signals

are received with a higher q, but there are two indirect effects as well: with more informative

signals, social learning is faster because actions are more informative, and conditional on being

in a cascade, the cascade is more likely to be correct.46 Because of these two indirect effects,

44The base rate neglect, at least as we have modelled it, is another source of inefficiency. Again, this contrasts
with informational efficiency, where base rate neglect speeds up the learning process, as in Bernardo and Welch
(2001).

45This is the lower bound in an aggregate analysis that looks at average efficiency over many sequences. The
theoretical lower bound for any particular sequence is even lower, since it is possible for every action in a sequence
to be incorrect. In fact this happens in two of our sequences, where a pure cascade on the wrong state starts at
the very beginning.

46Another minor effect going in the same direction is that with a higher q the posterior beliefs are, on average,
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there should be a difference in allocative efficiency in the different q treatments controlling for

the signals subjects receive. Summarizing:

H4. The probability of a correct choice is increasing in t.47

H5. The probability of a correct choice is higher for a correct than for an incorrect signal.

H6. Controlling for signal correctness, the probability of a correct choice is increasing in q.

H7. The expected change in public belief is increasing in q.

Figure 5 shows the time-dependence of decision accuracy. Each row corresponds to a treat-

ment while the columns (from left to right) represent Nash predictions, data, and logit simu-

lations respectively. In each graph, the thick solid black line shows decision accuracy (i.e. the

fraction of correct choices) for all signals, the dashed red line for correct signals, and the thin

blue line for incorrect signals.

In the Nash equilibrium, decision accuracy becomes independent of signals very quickly,

reflecting the formation of pure cascades. The decision accuracy for (in)correct signals (rises) falls

for a few rounds and then levels off. As a result, the unconditional decision accuracy increases

for only a short amount of time as nearly all cascades are formed in the first 6 periods and

never break. This contrasts sharply with the dynamics in the actual data, and in the QRE-BRF

simulations, where unconditional decision accuracy continues to rise as the sequence of decision

makers passes through cycles of temporary cascades that break and re-form. Furthermore, there

is a strong signal dependence that persists throughout the experiment. The decision accuracy for

incorrect signals is always less than for correct signals in both the actual data and the QRE-BRF

simulations, in contrast to the Nash model. For incorrect signals, there is a clear and strong

upward trend in decision accuracy, indicating that information continues to be aggregated. There

further from 1
2 , so the expected payoff difference between a correct and incorrect action is generally increasing

in q.
47As pointed out in the theory section, this is true ex ante and conditional on receiving an incorrect signal,

but not conditional on receiving a correct signal.
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Figure 5: Decision accuracy along the sequence of decision makers by treatment: (q = 6/9,
T = 20) top row, (q = 6/9, T = 40) second row, (q = 5/9, T = 20) third row, and
(q = 5/9, T = 40) bottom row. In each graph, the thick solid black line shows the fraction of
correct choices for all signals, the dashed red line for correct signals, and the thin blue line
for incorrect signals. The lines show moving averages: a point at time t represents average
decision accuracy between t − 2 and t + 2 for 3 ≤ t ≤ T − 2. The left column gives Nash
predictions, the middle column data, and the right column QRE-BRF simulations, all based
on the actual signals used in the experiment.
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Table 11. Probit estimation of the effects of q and t on efficiency.

is only a very small, early, downward trend for decision makers with correct signals, due to the

possibility of being in a wrong cascade. This levels off or even reverses sign later, because later

cascades are more likely to be correct due to the phenomenon of self-correction. The net effect

is almost neutral, as reflected by the flat dashed lines in the middle and right panels of Figure 5.

For a more formal test of hypotheses H4-H7, we conduct a Probit regression with six inde-

pendent explanatory variables: t, q, q ∗ t, signal, signal ∗ t, match. Signal is dummy variable

that takes on the value of 1 if the signal is correct. The variable q ∗ t is an interaction of signal

informativeness and time period,48 which, according to hypothesis H4, should be positive. The

variable (signal ∗ t) is an interaction between time and signal correctness. From hypothesis H1,

the effect of t on decision accuracy should be positive only for incorrect signals, with a possible

small negative effect for correct signals. Match is a variable that is included to control for pos-

sible experience effects. Notice that we do not include T in the regression, because the theory

does not predict any effect except through the variable t.

The second column of Table 11 shows the estimated coefficients with standard errors in

parentheses. All coefficients have the expected sign and are highly significant. These results

deserve closer inspection for at least two reasons. First, the regression is not based on any kind

48Here q ∗ t equals 0 if q = 5/9 and q ∗ t equals t if q = 6/9.
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of structural model of decision making. Second, there are obvious dependencies in the data, and

un-modelled sources of error, including quantal response errors and variation in signal sequences.

To check the robustness of our findings and to check it against the theoretical model, we

generated two simulated data sets based on the QRE-BRF model, using the pooled estimates

λ = 4.23 and α = 2.46. The first of these simulations uses the same signal sequences as in

the laboratory experiment but decisions are generated by the QRE-BRF model. The second

simulation uses a completely new draw of signal sequences. The Probit estimations based on the

simulated data sets are reported in columns 3 and 4 of Table 11. While there are some small

differences in magnitude, all coefficients of theoretical interest are significant with the correct

sign.49 Note that the log-likelihoods for the simulated data are higher than for the real data.

This is likely caused by the fact that the simulations assume homogeneous agents, while we

would expect some heterogeneity to be present in the laboratory data.

To conclude it is interesting to ask whether or not allocative efficiency is improved by the

stochastic choice and the base-rate neglect inherent in the QRE-BRF model. Information is

aggregated better under this model than under Nash (see Proposition 1), but subjects are making

decision errors. From Figure 5 we can see that the latter effect dominates early on while the

positive effects of information aggregation dominate in later periods. In the long run as T grows

large, beliefs in the QRE-BRF model converge to the true state so that private beliefs and public

coincide, independent of signals. Furthermore, this conclusion holds irrespective of the level of

base rate neglect (α) or the degree of signal informativeness (q). Using the pooled estimate of

λ = 4.23 we can thus compute the asymptotic decision accuracy: 0.99, i.e. almost full allocative

efficiency is achieved in this limit.

49The only notable difference is the experience variable, which is not significant in the simulation using a
new batch of signal sequences, suggesting that its significance was spurious, due to more favorable order of
signals in later matches. (Indeed, there is no reason that experience should have had a significant effect in the
first simulation.) In any case, the magnitude of the experience effects, to the extent they may possibly not be
spurious, is negligible.
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7. Conclusion

This paper reports the results of an information cascade experiment with two novel features:

longer sequences of decisions and systematic variation of signal informativeness. According to

standard game theory, neither of these treatments should be interesting, and neither should

produce significantly different results. We find, however, that both of these treatment effects are

strong and significant, with important implications for social learning, information aggregation,

and allocative efficiency.

The longer sequences have several effects. First, they have fewer permanent cascades, more

temporary cascades, more repeated cascades, more reversed cascades, and more self-corrected

cascades. In contrast, standard theory predicts that longer sequences will have more perma-

nent cascades, and that temporary, repeated, reversed, and self-corrected cascades never occur.

Relatively uninformative signals lead to less stable dynamics, in the sense that cascades are

much shorter, more frequent, and reverse more often. These subtle but important features of

the dynamics are impossible to detect in the short sequences employed in previous experiments

(Anderson and Holt, 1997).

To explain the observed features of the dynamics and the dependence on signal informa-

tiveness, we consider the logit quantal response equilibrium (QRE). In addition, we apply QRE

as a structural model to estimate base rate neglect and to test for heterogeneity in levels of

rationality. We find both to be significant factors in observed behavior. In particular, subjects

tend to overweight their signals, or, alternatively, underweight the public prior generated by past

publicly-observed choices.

Our experimental results confirm a basic property of the QRE with profound implications

in this context: deviations happen and their likelihood is inversely related to their cost. This

property implies that cascade breakers more often than not hold contrary signals, and, hence,

that deviations from cascades are highly informative. Learning continues in a QRE even after

a cascade forms or breaks, and temporary, repeated, reversed, and self-correcting cascades arise
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as equilibrium phenomena. While standard cascade theory predicts that learning ceases after a

few initial decisions, our data show that information is continuously being aggregated, providing

evidence for the QRE prediction that ultimately the truth will prevail.
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A. Appendix: Proof of Proposition 1

Proofs of (i) and (ii): The proof of (i) is by induction. Recall that p1 = 1
2
, so we only need

to show that 0 < pt < 1 implies 0 < p−t < pt < p+
t < 1. Equation (2.4) can be expanded as

p+
t =

qpt(1− Fλ(1− 2πa
t )) + (1− q)pt(1− Fλ(1− 2πb

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,

with 1 > πa
t > πb

t > 0 defined in (2.1) and (2.2), and Fλ(x) = 1/(1 + exp(−λx)) the logistic

distribution with parameter λ and support (−∞,∞). Since 1
2

< q < 1 and 0 < pt < 1 by

assumption, the denominator exceeds the numerator: p+
t < 1. A direct computation shows

p+
t − pt =

pt(1− pt)(2q − 1)(Fλ(1− 2πb
t )− Fλ(1− 2πa

t ))

(qpt + (1− q)(1− pt))(1− Fλ(1− 2πa
t )) + ((1− q)pt + q(1− pt))(1− Fλ(1− 2πb

t ))
,

which is strictly positive because πa
t > πb

t . The proof that 0 < p−t < pt is similar. Q.E.D.

Proofs of (iii) and (iv): Let `t = (1− pt)/pt denote the likelihood ratio that A is correct. For

all t ∈ T we have

E(`t+1 |ω = A, `t) = `t,

i.e. the likelihood ratio constitutes a martingale, a basic property of Bayesian updating. Note

that pt is a strictly convex transformation of the likelihood ratio (pt = (`t + 1)−1), so

E(pt+1 |ω = A, pt) = E((`t+1 + 1)−1 |ω = A, `t) > (E(`t+1 + 1 |ω = A, `t))
−1 = pt,

by Jensen’s inequality and the fact that `+
t 6= `−t , see (ii). We sketch the proof of (iv). See

Goeree, Palfrey, and Rogers (2003) for proof details, and Smith and Sorenson (2000) for a

similar argument if there are continuous signals with unbounded beliefs. First, limit points of

the stochastic belief process {pt}t=1,2,··· have to be invariant under the belief updating process.

But (ii) implies that pt+1 6= pt when pt 6= {0, 1}, so the only invariant points are 0 and 1. Next,

the Martingale Convergence Theorem implies that `t converges almost surely to a limit random

39



variable `∞ with finite expectation. Hence, `∞ < ∞ with probability one, which implies that

p∞ > 0 with probability one and pt thus converges to 1 almost surely. Q.E.D.

B. Appendix: Estimation Program and Results

Below we assume the experimental data are stored in an MT ×2 matrix called ”data”; every

T rows correspond to a single sequence, or run, with a total of M runs, the first column contains

subjects’ signals and the second column subjects’ choices. The coding is as follows: A choices

and a signals are labelled by a 1 and B choices and b signals by a 0. The outcome of the proce-

dure is the log-likelihood for a single treatment (i.e. with a fixed precision, q, and fixed length,

T ) although it is easy to adapt the procedure to deal with pooled data.50

PROC loglikelihood(λ);
LOCAL logL,signal,choice,m,t,p,πa,πb,P(A|a),P(A|b),P(B|a),P(B|b),p+,p−;

logL=0; m=1;
DO WHILE m<=M;
p=1/2; t=1;
DO WHILE t<=T;

πa=qp/(qp+(1-q)(1-p));
πb=(1-q)p/((1-q)p+q(1-p));
P(A|a)=1/(1+exp(λ(1-2πa))); P(B|a)=1-P(A|a);
P(A|b)=1/(1+exp(λ(1-2πb))); P(B|b)=1-P(A|b);
p+=(pqP(A|a)+p(1-q)P(A|b))/((pq+(1-p)(1-q))P(A|a)+(p(1-q)+(1-p)q)P(A|b));
p−=(pqP(B|a)+p(1-q)P(B|b))/((pq+(1-p)(1-q))P(B|a)+(p(1-q)+(1-p)q)P(B|b));
signal=data[(m-1)T+t,1]; choice=data[(m-1)T+t,2];
IF signal==1 AND choice==1; p=p+; logL=logL+ln(P(A|a)); ENDIF;
IF signal==0 AND choice==1; p=p+; logL=logL+ln(P(A|b)); ENDIF;
IF signal==1 AND choice==0; p=p−; logL=logL+ln(P(B|a)); ENDIF;
IF signal==0 AND choice==0; p=p−; logL=logL+ln(P(B|b)); ENDIF;
t=t+1;

ENDO;
m=m+1;

ENDO;
RETP(logL);

ENDP;

50The procedure is simple because information cascade experiments concern individual decision-making envi-
ronments, not games, so there is no need to solve fixed-point equations to compute the QRE.
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Table B1. Parameter estimates for the different models with standard errors in parentheses.
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