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Abstract

This paper studies dynamic pricing by a monopolist selling to buyers who learn from each
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buyer, as well as to control the amount of information transmitted to future buyers. As

information increases future rent extraction, the monopolist has an incentive to subsidize

learning by charging a price that results in information revelation. Nonetheless in the long

run, the monopolist generally induces herding by either selling to all buyers or exiting the
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1 Introduction

This paper studies optimal pricing by a monopolist in a market in which buyers learn from

each other’s purchases. We consider buyers who have limited first-hand information about the

product’s value, and who freely can observe the decisions made by other buyers in the past.

For example, readers deciding which book to buy often consult the list of best sellers,1 licensees

of a new technology look at the behavior of other potential adopters, and employers assess job

applicants on the basis of their employment history. In these situations, buyers decide without

taking into account the value of the information revealed to the future buyers who observe these

decisions. An informational externality is therefore present.

When buyers face fixed prices, this externality easily leads to pathological outcomes, such as

herd behavior. As shown by Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992),

henceforth BHW, public information quickly swamps private information, and late buyers end

up imitating the decisions of a few initial buyers who act alike. Since these late buyers behave in

the same way regardless of their private information, nothing can be inferred from their behavior.

These informational cascades result in the loss of a potentially large amount of private information

collectively possessed by late buyers.

This paper investigates what happens when prices are instead variable, being set by a monop-

olist. The monopolist is a long-run player and can charge different prices over time, and thereby

affect the process of information aggregation. We examine what happens when prices are allowed

to adjust in response to the buyers’ choices; how the monopolist influences the buyers’ learning

process; and finally, whether monopoly power improves or worsens herd behavior.

In our model, on the demand side of the market there is a sequence of potential buyers, one

in each period. All buyers have unit demand and identical (ex post) valuations of the product.

The common value of the good is either high or low and is unknown to buyers and seller. Each

buyer observes a discrete private signal partially informative about the good’s value, as well as

the decisions made by all previous buyers. On the supply side, in each period the monopolist

posts a price without observing the private signal of the current buyer, who then decides whether

to accept or reject the offer. The seller and the subsequent buyers observe the public history of

posted prices and purchase decisions, but do not directly observe the private signals on the basis

of which these decisions were taken. We assume that the monopolist has no private information

about the good’s value and is learning alongside with the buyers.

In this setting, prices have two functions: immediate rent extraction and information screen-

ing. On the one hand, the current price allows the monopolist to extract rent from the current

buyer. On the other hand, the inference of future buyers about the current buyer’s signal de-

1For a recent empirical analysis see Sorensen (2004).
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pends on the price the current buyer is charged. That is, the monopolist also uses the price

as a screening device, affecting how much of the current buyer’s information is made publicly

available, and thus, how much future buyers are willing to pay for the product.

As a building block to our analysis, we isolate the immediate rent extraction role of prices by

considering static monopoly pricing with a partially informed buyer. In Section 4, we revisit the

classic monopoly trade-off between price and quantity, for the case in which the buyer’s willingness

to pay depends on the realization of a discrete signal about the good’s value. Since long-run

outcomes depend on what happens when beliefs are extreme, we are specifically interested in the

situation of extreme prior beliefs. We find that when the prior belief about the good’s value

is favorable enough, it is optimal for the monopolist to sell even to the buyer with the most

unfavorable signal.2 When the prior belief is instead sufficiently unfavorable, the monopolist

either exits the market by setting a price so high that no buyer type purchases (if the low value

of the good is below its cost); or sells to all buyer types (if the low value of the good is above

its cost). In the borderline case in which the low value of the good exactly equals its cost, the

seller never exits the market and may find it optimal, even at extremely unfavorable beliefs, to

demand a price such that only buyers with sufficiently high signals purchase the good.

In Section 5, we analyze the effect of prices on information screening and expected future

profits. We start by examining how prices affect the information available to future buyers.

In each period, any given price induces a bi-partition of the set of signal realizations. Buyers

purchase if and only if they observe a private signal above a certain threshold. If the price is so

low that all buyer types purchase, or so high that no type purchases, no information is revealed

publicly, as in an informational cascade. Intermediate prices instead allow future buyers to infer

some information, and result in more information than extreme prices.3 The question of interest

is whether the monopolist benefits from charging an information-revealing price. To answer this,

we first show that the monopolist’s static profit is convex in the prior belief. Since revelation of

public information corresponds to a mean preserving spread in the belief distribution, it increases

expected profits. Hence, the monopolist’s expected future profits are maximized at a price which

reveals information to future buyers. Of course, the monopolist risks that ex post the information

turns out to be unfavorable. However, ex ante this loss is more than compensated by the gain

realized if the information is favorable. Being a long-run player, the monopolist has an incentive

to partially internalize the informational externality.

The dynamically optimal prices depend on the interplay of immediate rent extraction and

information screening (Section 6). The price that maximizes the expected present period’s profit

2To understand what happens in this limit, note that exclusion of the buyer with the most unfavorable signal
would result in an infinitesimal increase in the price, but in a discrete reduction in quantity.

3But in general, the amount of information revealed by different prices cannot be ranked in the sense of
Blackwell.
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generally does not also maximize expected future profits. The monopolist may therefore sacrifice

immediate rent extraction to ensure that information is revealed to future buyers. The resolution

of this trade-off naturally depends on the discount factor and the public belief about quality. For

any fixed public prior belief, a sufficiently patient seller is exclusively interested in information

screening and so demands a price that reveals information. However, given any discount rate,

immediate rent extraction dominates when the belief is sufficiently extreme. The reason is that

the value of information screening goes to zero when the belief that the value is high is either

sufficiently optimistic or pessimistic. This is because the posterior belief is very close to the prior

belief when the prior is very high or very low. Since the value of information goes to zero, while

its cost is bounded away from zero, the optimal price is the one that maximizes immediate rent

extraction.

We then turn to the long-run predictions of the model, for a fixed discount factor.4 Provided

that the cost does not equal the low value of the good, the monopolist eventually stops the

learning process by inducing an informational cascade or exiting, thereby preventing asymptotic

learning of the good’s true value. Instead, if the cost equals the low value of the good, herding

is still triggered at high public beliefs, but it may be optimal to charge an informative price for

all low beliefs. Only in this case and only if the value of the good is actually low, may buyers

asymptotically learn the good’s true value. In all other cases, learning stops before the true value

is learned.

The paper proceeds as follows. Section 2 discusses the related literature. Section 3 formulates

the model, Section 4 analyzes immediate rent extraction, and Section 5 considers the effect of

information screening on future rent extraction. Section 6 gives results for the general dynamic

model, focusing on the long-term outcomes and consequences for information aggregation. Sec-

tion 7 concludes by discussing the role played by competition for the efficiency of the process of

information aggregation. The Appendix collects the proofs of all the results.

2 Related literature

Despite the pervasiveness of social influence on economic decisions, its implications for pricing

in markets have been largely overlooked in economics until recently. Becker (1991) considered a

competitive market in which each buyer’s demand for a good depends directly on the demand

by other buyers. Our model provides a foundation for such dependence based on informational

externalities. In our model, the payoff to a buyer depends on the decisions of others only indirectly,

through the information revealed about the good’s value.

4Our companion paper (Bose, Orosel, Ottaviani, and Vesterlund, 2005), provides a full characterization of the
seller’s optimal strategy, comprising the short as well as the long run, for the specific case where buyers have binary
signals.
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In the herding literature, other papers have analyzed the role of prices. Welch (1990) con-

sidered pricing by a monopolist (IPO issuer) in a market with a sequence of partially informed

buyers (investors). In his model, the monopolist is constrained to choose a fixed price for all

buyers and finds it optimal to induce an immediate informational cascade.5 In this paper, we

instead characterize the optimal dynamic pricing strategy for the monopolist. We find that the

monopolist benefits from inducing social learning in the market, and typically delays the oc-

currence of informational cascades. In the conclusion, we discuss why we obtain such sharply

different predictions.

Avery and Zemsky (1995) have also introduced history-dependent prices in the herding model.

In their sequential trading model, in each period a privately informed trader places an order on

either side of the market. Prices are set competitively by market makers and so incorporate ret-

rospectively the information revealed by past trades. In that setting, herd behavior is impossible

when agents have unidimensional information. In our model instead, a monopolist sets prices

taking into account the prospective effect of information to be revealed in the future.

The paper closest in spirit to ours is Caminal and Vives (1996).6 In their two-period model,

there is a continuum of buyers with normally distributed private signals about the quality of two

competing products.7 Second-period buyers infer quality from the observable quantity sold in

the first period, but do not directly observe first-period prices. Our model is instead designed to

study the effect of monopoly pricing on informational cascades, and so differs from theirs in a

number of ways. First, in our model there is a single buyer in each period with a discrete signal

about the binary value of the good, as in BHW.8 Second, we consider the case of monopoly

rather than duopoly.9 Third, we assume that past prices are observed publicly in order to avoid

the additional signal jamming effect that they identify.10

This paper also relates to the literature on learning and experimentation in markets, pioneered

by Rothschild (1974) and further developed by Easley and Kiefer (1988) and Aghion, Bolton,

Harris, and Jullien (1991), among others. As in those models, in our model the price charged by

the monopolist affects what is learnt about the demand curve. But while learning in those models

is one sided, in our model the seller as well as the buyers have the opportunity of becoming better

5Clearly, the monopolist obtains higher expected profits by conditioning the price charged on the history of
purchases by previous buyers. Welch argues that a sufficiently risk averse monopolist would prefer to create a
cascade immediately and forgo the gain in expected profits resulting from dynamic pricing.

6See also Neeman and Orosel (1999) and Taylor (1999) for models in which a seller of a unique object approaches
a sequence of bidders.

7See also Caminal and Vives (1999) for a more general multi-period version of the model.
8As shown by Smith and Sørensen (2000), if instead buyers had unboundedly informative (e.g., normal) signals

no cascades would occur even with fixed prices.
9See Moscarini and Ottaviani (2001) for an analysis of the static problem of duopoly competition with a privately

informed buyer.
10See Bose, Orosel, and Vesterlund (2001) for an analysis of a version of this model with unobservable past

prices.
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informed about the quality of the good. The effect of current prices on future demand curves

through learning is typically absent in those models, but plays a key role in our model.

Our analysis of the effect of endogenous pricing on the outcomes of bilateral learning is in

the spirit of Bergemann and Välimäki (1996 and 2000). While they focused on situations in

which ex-post information (such as experience) about product quality is revealed publicly over

time, in our model buyers make purchase decisions on the basis of pre-existing (ex-ante) private

information.11 In Bergemann and Välimäki’s models the information that is publicly revealed in

each period depends on the good that is purchased by the current buyer, because experience is

specific to the good. In our model instead, the information that is publicly revealed depends not

only on the purchase decision, but also on the price at which the decision is taken. Because of

this difference, our analysis of the price setting problem is considerably more involved.

3 Model

A risk-neutral monopolist (or seller) offers identical goods to a sequence of risk-neutral potential

buyers with quasi-linear preferences. In each period t ∈ {1, 2, ...}, a different potential buyer
arrives to the market, indexed by the time of arrival. The action space for each buyer is A =

{0, 1}. Action at = 1 indicates purchase of one unit of the good, and at = 0 no purchase.

The sequence of events in each period t is as follows. First, the seller and buyer t observe

the purchase decisions taken by previous buyers, as well as the prices posted in the past. The

price of period τ ∈ {1, 2, ...} is denoted by pτ , and the public history at time t is denoted by

ht−1 = (p1, a1, ..., pt−1, at−1), with h0 = ∅. Second, the seller makes a take-it-or-leave-it price
offer pt for a unit of the good to buyer t. Third, buyer t privately observes a signal about the

good’s value. Fourth, buyer t makes the purchase decision at. The set of all possible histories is

denoted by H.
The good’s common value is either low or high, v ∈ {L,H}, with 0 ≤ L < H. Without loss

of generality we choose the monetary unit such that H − L = 1. The good’s value is unknown

to the seller and the buyers. The initial prior belief that the value is high, v = H, is commonly

known to be equal to λ1 ∈ (0, 1).
We denote the random signal of buyer t by s̃t ∈ S and its realization by st (or s if time does

not matter), where S = ©
s0, s1, ..., sK

ª ⊂ R is the signal space, with K ≥ 1 and finite.12 The
11See also Bar-Isaac (2003) for a related learning model with a long-run seller in which learning is incomplete

when the seller does not have perfect information about own quality. We obtain a similar result in our model.
12The number of signal realizations, K+1, may be infinite provided that (i) infσ∈S σ > s0 > s0, and (ii) s0 is

not perfectly informative (i.e., α0 > 0 and β0 > 0 in the notation below). Smith and Sørensen (2001) have shown
that informational cascades cannot occur when signals are of unbounded informativeness. Since in our model an
informational cascade implies a constant price, the analysis of Smith and Sørensen (2001) applies and the seller
cannot trigger an informational cascade and herding.
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conditional probabilities of the signals are denoted by

αk ≡ Pr
³
sk | H

´
> 0

βk ≡ Pr
³
sk | L

´
> 0

for k = 0, ...,K, with
PK

i=0 α
i =

PK
i=0 β

i = 1. For convenience, we index the signal realizations

in such a way that the likelihood ratio αk

βk
is weakly increasing in k, so that the Monotone

Likelihood Ratio Property (MLRP) is satisfied.13 For simplicity, we further assume that each

signal realization sk has a different likelihood ratio αk

βk
, which implies that αk

βk
is strictly increasing

in k.14 A signal sk such that αk

βk
< 1 is bad news for v = H, while a signal with αk

βk
> 1 is good

news (see e.g., Milgrom, 1981).

The payoff of buyer t when the value is v is [v − pt] at. That is, a buyer that does not purchase

the good receives a payoff of zero, whereas a buyer that purchases the good receives the payoff

v − pt. Buyer t then purchases the good if and only if its expected value E [v|st, ht] exceeds the
price.15

The seller has a constant marginal cost c per unit sold, with 0 ≤ c < H.16 In the analysis,

we distinguish three cases, depending on whether the cost c is equal to, below, or above L.17

The seller’s payoff is the discounted sum of profits,
P∞

t=1 δ
t−1 [pt − c] at, with discount factor

δ ∈ [0, 1). In each period t ∈ {2, 3, ...} , the seller knows the prices pτ demanded from previous

buyers, and the previous buyers’ actions aτ , τ ∈ {1, ..., t− 1}. A pure strategy for the seller is a
function p : H → (L,L+ 1) that maps every history ht−1 into a price pt, t ∈ {1, 2, ...}. Since it
is common knowledge that the seller can always sell at some price above the object’s minimum

value, L, and is unable to sell at a price at or above the maximum value, H, we restrict attention

to prices pt ∈ (L,H) = (L,L+ 1).
The model constitutes a game between the seller and the buyers. The perfect Bayesian equi-

librium (PBE) of this game can be derived directly from the seller’s optimal strategy. The seller

anticipates how the buyers react to her dynamic pricing strategy, and maximizes her expected

payoff accordingly.

To each period t we can associate the public history ht−1 = (p1, a1, ..., pt−1, at−1) of past prices

and actions, which determines the period’s public prior belief on the value, λt ≡ Pr (v = H | ht−1).
13 In this setting with two states the MLRP is then always satisfied, without loss of generality.
14This simplification is without loss of generality. Signal realizations with identical likelihood ratios lead to

identical posterior beliefs and so can be collapsed into one signal.
15For technical reasons we assume the tie-breaking rule that a buyer purchases the good when indifferent between

purchasing and not.
16The seller incurs the cost c only when the buyer accepts the offer, but not when the offer is rejected. This can

be interpreted as production to order.
17Although the case c = L may seem non-generic, there are plausible economic circumstances where it occurs.

For example, in the case of a license for a patent the seller has zero marginal cost and the patent may be worthless,
so that c = L = 0.
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This belief is the state variable in the seller’s dynamic optimization problem. The associated value

function is denoted by V (λt). When focusing on a single period, we drop the time subscript of

λt and treat λ as the key parameter for comparative statics.

In each period, the seller has to decide whether to stay in the market, and if so what price to

demand. When making this decision, the seller has to take into account all the future contingen-

cies and associated decisions. Because information revelation depends on the price demanded, the

seller must consider the effect of the price on immediate rent extraction as well as on information

screening. Before resolving this trade-off, we investigate these two effects in isolation.

4 Immediate rent extraction

In this section, we set the stage for our dynamic model by characterizing the solution of the static

problem of monopoly pricing with a partially-informed buyer. The purpose of this exercise is not

only to examine immediate rent extraction, but also to show how monopoly profits depend on

the prior belief about the good’s value. This dependence is important in the presence of social

learning, as the price affects future beliefs about the good’s value and, therefore, the demand of

future buyers.

Demand and profit functions

When receiving signal realization sk, the buyer’s posterior belief is equal to

λk (λ) ≡ Pr
³
H | λ, sk

´
=

αkλ

αkλ+ βk (1− λ)
(1)

by Bayes’ rule. Using the normalization H − L = 1, the willingness to pay for the good is then

equal to the conditional expected value

E
³
v | λ, sk

´
= λkH +

³
1− λk

´
L = L+

αkλ

αkλ+ βk (1− λ)
.

The probability of selling at price p is equal to the probability that the buyer’s willingness to pay

is greater or equal to p, i.e., Pr
¡
E
¡
v | λ, sk¢ ≥ p

¢
. This is the monopolist’s demand function.

The MLRP implies that Pr
¡
H | λ, sk¢ is monotonic in k, so that the buyer’s willingness to pay

is increasing in the signal. With this discrete signal structure, there areK+1 steps in the demand

function, each corresponding to the K +1 posterior expected values. At any price strictly above

E
¡
v | λ, sK¢, the probability of selling is 0. At a price weakly lower than pk (λ) ≡ E

¡
v | λ, sk¢

but higher than pk−1 (λ) ≡ E
¡
v | λ, sk−1¢ the probability of selling is

ψk (λ) ≡ Pr
³
st ≥ sk | λ

´
= λ

KX
i=k

αi + (1− λ)
KX
i=k

βi. (2)
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The pooling price p0 (λ) ≡ E
¡
v | λ, s0¢ results in a sale with probability one.

Given this demand function, the monopolist who wishes to sell with positive probability

has K + 1 potentially optimal prices, pk (λ) for k = 0, ...,K. In addition, the monopolist can

avoid selling by posting any price p > pK (λ) . We denote any such exit price by pE(λ), with

corresponding sale probability ψE = 0. Because of their critical role in the analysis, we single

out the two extreme prices p0 (λ) and pE (λ), and refer to all other prices as intermediate prices.

The expected static profit for the seller when posting price pk (λ) is then

πk (λ) ≡ E
h³
pk (λ)− c

´
a | λ

i
=
h
pk (λ)− c

i
ψk (λ) for k ∈ {0, ...,K}

and πE (λ) ≡ E
£¡
pE (λ)− c

¢
a | λ¤ = 0 at price pE (λ). Thus, the static problem of monopoly

pricing has been reduced to this simple discrete maximization problem

max
k∈{0,...,K,E}

πk (λ) . (3)

Maximized static profit is denoted by π (λ).

Optimal prices

We now characterize the solution to the static problem (3). In this setting, the buyer’s

demand function is generated from an arbitrary discrete signal structure with binary state. The

probability of selling plays the role of quantity. We begin by revisiting the classic monopoly

trade-off between price and quantity, and then focus on the solution for extreme prior beliefs.

To find the optimal policy, it is useful to consider how the expected static profit is affected

by incremental changes in the probability of sale. In order to increase the probability of selling

from ψk (λ) to ψk−1 (λ), the monopolist needs to reduce the price from pk (λ) to pk−1 (λ) so that

the buyer with signal sk−1 prefers to purchase. The change in profit is then

πk−1 (λ)− πk (λ)

=
h
pk−1 (λ)− c

i h
ψk−1 (λ)− ψk (λ)

i
−
h
pk (λ)− pk−1 (λ)

i
ψk (λ)

=
h
L− c+ λk−1 (λ)

i h
λαk−1 + (1− λ)βk−1

i
(4)

−
h
λk (λ)− λk−1 (λ)

i "
λ

KX
i=k

αi + (1− λ)
KX
i=k

βi

#
. (5)

The first term (4) corresponds to the expected revenue acquired from sales to the marginal

buyer type, net of the cost of provision. Notice that the mass of marginal buyers (i.e., the

increase in the probability of selling) is always bounded away from zero for any fixed λ. The sign

of this quantity effect is ambiguous in general. If the low value of the good is higher than the

cost, c < L, this effect is positive because pk (λ)− c > 0 for all λ and k. If instead c > L, these
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increased sales add to profits when λ is large (since pk (1)− c = H− c > 0 for any k), but detract
from profits when λ is small (since pk (0)− c = L− c < 0 for any k).

The second term (5) corresponds to the expected revenue lost on all the inframarginal buyer

types and is equal to the difference in the willingness to pay of the marginal buyer type and the

preceding type, multiplied by the total mass of inframarginal types. This price effect is always

negative. Starting with pk (λ), the size of the reduction in price, pk (λ)− pk−1 (λ) , necessary to

induce the buyer with signal sk−1 to purchase depends on the level of the belief λ and the signal

probabilities.

If the prior belief is extreme (either λ → 0 or λ → 1), the difference λk (λ) − λk−1 (λ) goes

to zero, so that the price effect converges to zero. This is because the prior belief is not updated

at all if the good’s value is already known to be high or low. As a consequence, for large enough

λ, we always have πk−1 (λ) > πk (λ), because the quantity effect is positive and bounded away

from zero, while the price effect becomes negligible. In contrast, for small enough λ, the price

effect again becomes negligible, but the sign of the quantity effect depends on the sign of L− c:

if L − c > 0, the quantity effect is positive so that πk−1 (λ) > πk (λ); if instead L − c < 0, the

quantity effect is negative so that πk−1 (λ) < πk (λ); finally, if L − c = 0, the quantity effect is

positive but also negligible, and so πk−1 (λ)− πk (λ) may be positive or negative.

Consider now the solution for extreme prior beliefs, beginning with the case of large λ.

Proposition 1 For any λ large enough, the expected static profit is maximized by the pooling

price p0 (λ).

When the prior is sufficiently favorable, the willingness to pay of the buyer goes to H for any

signal. In this limit, the demand curve becomes flat at a price H and the price effect becomes

negligible. Since H is above the marginal cost c, the quantity effect is positive and it becomes

optimal to sell to the entire market, ψ0 (λ) = 1.

At the other extreme, consider the optimal pricing policy in the case of small λ.

Proposition 2 For any λ small enough, the expected static profit is maximized by:

(i) the pooling price p0 (λ), if c < L,

(ii) one of the selling prices pk (λ) with k = 0, ...,K, if c = L, and

(iii) a non-selling price pE (λ), if c > L.

When λ tends to 0, demand is perfectly elastic at a price equal to the low value, L. If the

low value is above the production cost, it is optimal to sell to all buyer types. If instead the low

value is below the cost, the good cannot be sold profitably. Finally, in the borderline case with

c = L, it is not optimal to exit the market, because all buyer types are willing to pay more than

the cost.
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5 Information screening

Having examined how prices affect immediate rent extraction, we now examine how they affect

information screening. We start by showing how the monopolist can use prices to control what

information is revealed and thereby the updating that occurs in the market. We then establish

that, ignoring the associated costs, this potential revelation of information is beneficial to the

monopolist. The reason is that the monopolist’s expected static profit is convex in the prior. The

implication for information screening, is that expected future profits are maximized at a price

which reveals some information to future buyers.

Public updating

In each period, an intermediate price pk (λ) induces a bi-partition of the set of signal real-

izations of the buyers, into b<k ≡ {s0, ..., sk−1} and b≥k ≡ {sk, ..., sK}. Buyers who privately
observe sk or higher purchase, while those with lower signal realizations do not purchase. As a

result, after a purchase a = 1 at price pk(λ) the prior belief is updated favorably to

λ≥k (λ) ≡ Pr
³
H | λ, pk (λ) , a = 1

´
=

λ
K

i=k
αi

λ
K

i=k
αi+(1−λ)

K

i=k
βi
, (6)

and after no purchase a = 0 unfavorably to

λ<k (λ) ≡ Pr
³
H | λ, pk(λ), a = 0

´
=

λ
k−1

i=0
αi

λ
k−1

i=0
αi+(1−λ)

k−1

i=0
βi
. (7)

Now consider the public updating following extreme prices. When the pooling price p0 is

posted, all buyer types purchase, so that no updating takes place λ≥0 (λ) = λ. Similarly, at the

non-selling price pE no type purchases, and λ<E (λ) = λ. Neither of these two extreme prices

reveal public information. In accordance with BHW we say that an informational cascade occurs

when either of the extreme prices is charged from some period T onwards. As in BHW, in this

model an informational cascade is equivalent to herding.

Definition An informational cascade occurs at time T , if all buyers t ≥ T make the same

purchase decisions regardless of their signal realizations.

Until an informational cascade occurs, prices partition the types of buyers in two non-empty

subsets. Once an informational cascade occurs, no signals can be inferred from the actions at,

for all t ∈ {T, T + 1, ...}. There are two types of informational cascades, depending on which
extreme price is charged.
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First, consider a period T in which the seller finds it optimal to charge the pooling price

pT = p0 (λT ), so as to induce even the buyer with the lowest signal to purchase the good. Since

all buyer types are willing to buy at this price, a purchase in period T is uninformative to future

buyers. Therefore, the situation facing the seller and buyer T + 1 is identical to the one that

the seller and buyer T were confronted with in period T , and the price charged in the previous

period, pT , is also optimal in period T + 1. Hence, all types of buyers will again purchase the

good in period T + 1 and the argument can be repeated for all the following periods. In this

purchase cascade, the monopolist sells to all buyers and effectively covers the market.

Second, a similar reasoning applies when the seller optimally decides in period T to charge

a non-selling price, pT = pE (λT ), i.e., a price so high that even the buyer with the highest

signal realization decides not to purchase. Again, future buyers will not be able to infer any

information from the absence of purchase in period T . In this exit cascade, the monopolist

effectively abandons the market.

Next, consider the updating of the belief following intermediate prices. These prices allow

future buyers to infer some information, and therefore necessarily result in more information (in

the sense of Blackwell) than extreme prices. In general, the strength of the updating following a

purchase or no purchase depends on the level of the price at which the decision was made. Since

the probability of a purchase is decreasing in the level of the price, a purchase at a higher price

is stronger good news about the product’s value than a purchase at a lower price. The resulting

updating is then skewed to the right, in the sense that the upward update of the belief following

a purchase is stronger the higher the price. On the flip side, the inference following the failure

of selling at a low price is more damaging than at a high price. Updating following no purchase

is then more skewed to the left for lower prices. Note that the amount of information revealed

by two different intermediate prices generally cannot be Blackwell ranked.

We now define the set of public beliefs that can be attained starting from the initial prior λ1.

Depending on whether buyer t buys or not at price pt = pk(λ), it is publicly observed whether

buyer t’s signal realization lies in the set b≥k = {sk, ..., sK} or in the set b<k = {s0, ..., sk−1}.
Denoting by P the set of all K + 2 monotonic bi-partitions

©
b<k, b≥k

ª
of the support of the

signal distribution S, for k ∈ {0, ...,K,E}, we define the set of countable public beliefs that can
be attained from λ1 ∈ (0, 1) as

Λ (λ1) ≡
½
λ

there exists an integer T and a sequence of signal bi-partitions
(b1, ..., bT ) ∈ PT such that λ = Pr (H|λ1; b1, ..., bT )

¾
⊂ (0, 1) .

Value of information

The next question of interest is whether the monopolist benefits from charging a price that

reveals information to future buyers. We start by examining the static model. A key property is

11



that the monopolist’s expected static profit is convex in the prior belief. This implies that the

monopolist benefits from making publicly available as much information as possible, provided

that information is free.

Proposition 3 Expected static profits πk (λ) obtained by targeting the buyer with signal sk at

price pk (λ) are strictly convex in the prior belief λ for k ∈ {0, ...,K − 1} and linear for k = K.

Given the important role of this convexity property, we now further investigate the intuition

behind it. The first step is to analyze the functional dependence of the posterior beliefs (1) on

the prior belief. Clearly, the posterior λk for any signal sk is monotonically increasing in the prior

λ. In addition, the posterior λk is either concave or convex in λ depending on the magnitude of

the corresponding likelihood ratio αk

βk
.

Lemma 1 The posterior belief λk is convex in the prior belief λ whenever sk is bad news (i.e.,
αk

βk
< 1), and concave whenever the signal is good news (i.e., α

k

βk
> 1) for v = H.

To understand this property of Bayesian updating, consider the posterior corresponding to

the worst possible signal, s0. Clearly, we have α0

β0
< 1 so that λ0 is strictly convex in λ.18 The

marginal impact of an increase in the prior on the posterior resulting from bad news is higher,

the more optimistic the prior belief. Intuitively, the higher the prior belief, the more it dominates

an unfavorable signal.

More generally, the posterior belief conditional on bad news is convex in the prior. Starting

with a low prior, a further reduction in the prior makes little difference to the posterior belief

conditional on a bad signal. When the prior is low, this bad signal results in a posterior that is

relatively unresponsive to the exact magnitude of the prior, because the bad signal contains little

information in addition to that already contained in the prior. The posterior is more responsive

to changes in the prior, when the prior is instead higher. Analogously, the posterior conditional

on good news is concave in the prior because good news contradicts the prior when it is low.

Returning now to the intuition for Proposition 3, the second step is to consider how the

convexity and concavity of λk (λ) combined with the linearity of ψk (λ) result in a convex πk (λ).

Focus first on the extreme case in which the monopolist targets the buyer with the lowest signal

by posting the pooling price p0 (λ). In this case, ψ0 (λ) = 1 and so the profit is

π0 (λ) = p0 (λ)− c = λ0 (λ) + [L− c] . (8)

The convexity of π0 (λ) is due to the convexity of λ0 (λ) shown in Lemma 1. This reflects the

fact that an increase in the prior results in an increasingly higher effect on the posterior belief of

18 α0

β0
< 1 follows from K

i=0 α
i = K

i=0 β
i = 1 and αk

βk
strictly increasing in k.
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receiving an unfavorable signal. Second, consider the case in which the monopolist targets the

buyer with the highest signal sK by posting pK (λ) = λK (λ)+L. Even though λK (λ) is concave

in λ (by Lemma 1, since αK

βK
> 1), the profit for k = K is equal to

πK (λ) = λαK + [L− c]
¡
λαK + (1− λ)βK

¢
(9)

and so is linear in λ. This is due to the fact that when targeting the buyer with the highest signal,

the probability of selling ψK (λ) (cf. (2)) is equal to the probability that signal sk is observed,

and so cancels out with the denominator in the expression for the posterior belief λK (λ) (cf. (1)).

Intuitively, the expected static profit πk (λ) becomes “less and less convex” in the prior belief

λ when we move from the lowest price, p0 (λ), to the highest one, pK (λ). Since even at the

highest price, pK (λ), the expected static profit πK (λ) is still (weakly) convex, it is intuitive

that the expected static profit is also convex for all intermediate prices pk (λ), corresponding to

intermediate signals sk, k ∈ {1, ...,K − 1}.
As an immediate corollary of Proposition 3, we have the following result.

Corollary 1 The maximal expected static profit π (λ) is convex in λ.

Overall, in this model profits are convex for two reasons. The first source of convexity is the

buyer’s pre-existing private information, as identified by Proposition 3. With K ≥ 1, each πk (λ)
is strictly convex for k < K, regardless of whether c is above or below L. The second source of

convexity is the seller’s option of targeting different types of buyers depending on the prior belief.

This second effect is present also in the absence of private information, provided that c > L.19

The convexity of profit in beliefs plays a key role in our analysis, when combined with the

well-known martingale property of beliefs. Using the definitions (2), (6), and (7), it is immediate

to verify that the belief process {λt}∞t=0 is a martingale, i.e., the expected posterior belief is equal
to the prior belief:

E (λt+1|λt) = ψk (λt)λ
≥k + [1− ψk (λt)]λ

<k = λt

KX
i=k

αi + λt

k−1X
i=0

αi = λt. (10)

Revelation of public information then induces a mean preserving spread in the belief distribution.

By the convexity of Corollary 1, Jensen’s inequality guarantees that the monopolist’s static

profits increase in the amount of public information revealed. The monopolist then benefits from

revelation of public information and is therefore willing to subsidize information revelation in the

19To see this, with K = 0 the seller obtains π (λ) = L+ λ− c for λ ≥ c−L, while it exercises the option of not
selling for λ < c−L, in which case π (λ) = 0. Convexity in models of public learning à la Bergemann and Välimäki
(1996) is based on this second effect. In those models, experience is revealed ex post after the buyer purchases the
good. Rather than depending on the good purchased, in our model the information revealed depends on the price
at which the good is purchased.
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static model. This result can also be seen as a corollary of a more general result on the value of

public information proven by Ottaviani and Prat (2001).20

Turning to the dynamic problem, we now compare different pricing strategies {pτ = p (λτ )}∞τ=t
in terms of the expected future profits E[

P∞
τ=t+1 δ

τ−(t+1) (pτ − c) aτ |λt] they generate from period
t + 1 onwards, conditional on the initial belief λt.21 This allows us to isolate the informational

effect of prices. Assuming that it is not optimal to exit the market, in period t the seller chooses

either an uninformative price p0(λt) or some informative price pt ∈
©
p1 (λt) , ..., p

K (λt)
ª
. If

the seller optimally charges pτ = p0 (λτ ) in period t, no information is revealed. Then, p0 (λτ )

continues to be optimal forever after, so that this strategy generates an expected payoff of π
0(λt)
1−δ .

The following proposition shows that the seller’s expected future profits are strictly higher when

charging an informative price pt ∈
©
p1 (λt) , ..., p

K (λt)
ª
in period t and following the optimal

strategy thereafter. Consequently, demanding an informative price generates higher expected

future profits.

Proposition 4 In any period t in which exit is not optimal, the seller obtains strictly higher

expected future profits from period t + 1 onwards by charging any informative price pt ∈
{p1 (λt) , ..., pK (λt)} in period t and the optimal price in every period τ ≥ t + 1 rather than

charging p0 (λτ ) = p0 (λt) in every period τ ≥ t.

To understand this result, note that the seller can always demand an informative price in

period t and then charge p0 (λt+1) for all τ ≥ t. Due to the convexity of π0 (λ) and the martin-

gale property of beliefs, E (λt+1|λt) = λt, this strategy results in higher expected future profits

compared to the uninformative price p0 (λt) in period t.22

Unless it is optimal to exit the market, the seller’s expected future payoff is maximized at a

price that reveals some information to future buyers. As expected future payoffs are larger when

revealing some information rather than none, the seller has an incentive to charge a price at which

only buyers with sufficiently high signals purchase the good. However, general results about the

relative value of different informative prices cannot be derived because different informative prices

reveal different information for which a ranking in the sense of Blackwell is not possible in general.

Although information revelation benefits the seller in the future, often it is not without cost.

Whenever the expected immediate profit from charging the pooling price p0 (λt) exceeds that

20This result holds with more than two states provided that the MLRP is satisfied, but there are examples in
which it does not hold if the MLRP is violated. We refer to that paper for a discussion of the connection with
Milgrom and Weber’s (1982) linkage principle.
21Since the public belief λt is informationally equivalent to the history ht−1, we can consider the monopolist’s

(pricing) strategies as functions that map every public belief λt into a price pt rather than as functions that map
every history ht−1 into a price pt.
22The result is reinforced by the seller’s option to exit the market by demanding pτ = pE (λt+1) for all τ ≥ t if

p0(λt+1)−c
1−δ < 0. Overall, we have E max

π0(λt+1)
1−δ , 0 |λt ≥ E

π0(λt+1)
1−δ |λt >

π0(λt+1)
1−δ .
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generated by the price pk (λt) , demanding the price pk (λt) has the cost π0 (λt) − πk (λt) > 0

in period t. Therefore, if the price p0 (λt) strictly maximizes the expected immediate profit of

period t, i.e., if π0 (λt) > maxk∈{1,...,K} πk (λt) , there is a trade-off in period t between expected

immediate profit on the one hand, and expected future profits, on the other.

6 Dynamically optimal pricing

Typically, the expected immediate profit and the expected future profits are maximized at differ-

ent prices. Thus, the seller may face a trade-off between immediate rent extraction and informa-

tion revelation. In this section, we first show how this trade-off is solved in two important cases.

In one case, we consider a seller so patient that the benefit of revealing information to future

buyers swamps the cost of deviating from the myopically optimal price. In the second case, we

consider what happens when the belief is very optimistic or pessimistic. With such beliefs, there

is little benefit from revealing information to future buyers and the monopolist’s dynamically

optimal price equals the myopically optimal one. We then examine the overall implications for

long-run behavior and learning, and we show that in all but one case herding almost surely occurs

before the good’s true value is learned. Finally, we conclude the section by describing short-run

behavior when the signal has only two, rather than many realizations

Patience

Consider first a seller who is sufficiently patient, so that there are large potential returns

from revealing information to future buyers. We now establish that a sufficiently patient seller

prefers to charge an informative price today and a pooling price p0(λt+1) thereafter, rather than

a pooling price p0 (λt) today and forever thereafter.23

Proposition 5 For every λ ∈ (0, 1) there exists a threshold δ̄ ∈ (0, 1), such that whenever the
monopolist’s discount factor is higher than that threshold, δ > δ̄, the pooling price p0 (λ) is not

optimal for the seller.

A patient enough seller cares mostly about expected future profits, and by Proposition 4, we

know that expected future profits cannot be maximized by a pooling price. Regardless of the

(fixed) belief λ ∈ (0, 1) the pooling price p0 (λ) is never optimal for an infinitely patient seller
(δ → 1).

Extreme beliefs

Next, consider the resolution of the trade-off when the beliefs are extreme. Given any dis-

count factor, the benefit of revealing information to future buyers goes to zero when the belief

23Provided the seller does not want to exit.
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becomes very optimistic or pessimistic. Starting with belief λ, the benefit of information revela-

tion associated to price pk is given by

Bk (λ) ≡
h
ψk (λ)V

³
λ≥k (λ)

´
+
³
1− ψk (λ)

´
V
³
λ<k (λ)

´i
− V (λ) ,

where V (·) denotes the value function of the seller’s dynamic optimization problem. The term
within the brackets denotes the seller’s expected future payoff when charging pk and using the

subsequent purchase decision to update λ, whereas V (λ) denotes the seller’s expected payoff

absent the information revealed by the price pk. Thus, the difference is the increase in the seller’s

expected payoff due to the information revelation associated with pk.24 As shown in the following

lemma, the expected present value of the seller’s revenues and hence V (·) is bounded for any
given δ < 1. Thus, we conclude that Bk (λ) → 0 when λ → 0 or λ → 1, since limλ→0 λ≥k (λ) =

limλ→0 λ<k (λ) = 0 and limλ→1 λ≥k (λ) = limλ→1 λ<k (λ) = 1.

Lemma 2 In any period τ ∈ {1, 2, ...} , the expected revenues of the seller in this period are
bounded by λτ + L, i.e., E (pτaτ | λτ ) ≤ λτ + L; and conditional on λt, the expected present

value of the seller’s revenues from period t onwards is bounded by 1
1−δ [λt + L].

Since for extreme priors the benefit of deviating from a myopically optimal price goes to zero,

while the cost is bounded away from zero (see Propositions 1 and 2), the seller will choose the

myopically optimal price.

There are two cases to examine. First, consider what happens when λ is high enough.

From Proposition 1, we know that the pooling price is myopically optimal. Consequently, the

monopolist triggers a purchase cascade whenever the public prior belief that v = H is sufficiently

high:

Proposition 6 For every discount factor δ ∈ [0, 1), there exists an εδ > 0 such that the seller

charges the pooling price p0 (λt) whenever λt > 1− εδ.

Second, consider what happens when λ is small enough. From Proposition 2, we know that

the pooling price is myopically optimal if c < L, the non-selling price is optimal if c > L, and a

selling price is optimal if c = L.

Start by examining the case in which the low value exceeds the unit cost:

Proposition 7 Assume that c < L. For every discount factor δ ∈ [0, 1), there exists an ε0δ > 0

such that the seller charges the pooling price p0 (λt) whenever λt < ε0δ.

24Note that Bk (λ) = 0 at the two uninformative prices (p0 and pE) because no information is revealed. Because
of Proposition 4, Bk (λ) > 0 for all other prices, and consequently Bk (λ) ≥ 0 for all prices.
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According to Proposition 6 and Proposition 7, when the low value of the good exceeds the

cost, the monopolist triggers a purchase cascade both when the public prior belief of v = H is

high and when it is low.

Consider next a seller for which the low value of the object is below the unit cost. In this

case, the seller will eventually decide to exit when the public belief that v = H is sufficiently low.

Proposition 8 Assume that c > L. For every discount factor δ ∈ [0, 1), there exists a positive
threshold for the belief λE ∈ Λ (λ1), such that the seller exits the market whenever λt < λE and

stays in the market whenever λt > λE.

When the low value of the good lies below the cost, the monopolist triggers a purchase cascade

at high λ and an exit cascade for low λ. Interestingly, the dynamically optimal price for the seller

may be one which lies below the myopically optimal one. The reason is that while it is never

myopically optimal to charge a price below cost it may be dynamically optimal to do so because

the monopolist benefits from buyers’ learning. Another interesting result in this case is that,

regardless of the discount factor δ, it is uniquely optimal for the seller to stay in the market and

charge a price above the pooling price for some attainable values of the public prior belief that

the good’s value is high. The reason is that there exist attainable values of λ ∈ Λ (λ1) that satisfy
p0 (λ) ≤ c < pk (λ) since pk (λ) > p0 (λ) for all k > 0 and all λ ∈ (0, 1). For such beliefs, staying
in the market and demanding some information-revealing price is optimal since it generates a

positive payoff, in contrast to charging the pooling price p0 (λ).

Finally, consider the borderline case c = L. In this case, buyers are always willing to pay

more than the cost, and hence it is optimal for the monopolist to charge a price at which sales

may occur, rather than to exit the market. If in addition the prior belief that v = H is sufficiently

low, a purchase cascade is not triggered either.

Proposition 9 Assume that c = L. The seller never exits the market. If there exists a λ̂ > 0 such

that for each λ ∈
³
0, λ̂

´
there exists a price pk (λ), k ≥ 1, that satisfies £pk (λ)− c

¤
ψk (λ) ≥

p0 (λ)−c, then the seller charges an intermediate price at each λ ∈
³
0, λ̂

´
, and a purchase cascade

will not arise.

Long-run outcomes

We now examine the implications for the long-run learning outcomes. In all but one special

case, the seller’s optimal price is such that an informational cascade eventually arises and the

true state is never learnt.

Consider first the exception which occurs in the borderline case, where c = L. While the

seller’s optimal strategy prevents the buyers from learning that the good is of high value, it may
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enable them to eventually learn that the value is low.

Proposition 10 Assume that c = L. If αK > α0

β0
, there exists a λ̂ > 0 such that at each λ < λ̂ the

seller charges an information-revealing price.

If c = L and αK > α0

β0
, at sufficiently low probabilities of v = H the seller does not trigger

an informational cascade. In this case, if the prior λ1 is sufficiently low and the true value is

low (v = L), there is a positive probability that the buyers asymptotically learn that the true

value is low. When c = L, there are then two possible long-run outcomes: either a purchase

cascade occurs, or it is learnt asymptotically that the value is low.

Next, consider the non-borderline cases. For these cases we know that a cascade necessarily

occurs whenever prior beliefs λ are extreme enough. As can be shown by example, a cascade

could also occur at some interior prior belief, in which case extreme beliefs are never reached.

This opens the question of whether it is possible that the belief never settles, so that neither a

cascade occurs nor extreme prior beliefs are ever reached. The martingale convergence theorem

implies that this is not possible. Since the prior belief λt converges almost surely, a cascade and

herding will occur almost surely.

Proposition 11 If c 6= L, an informational cascade eventually occurs almost surely. If c = L

and there exist a λ̂ > 0 and a price pk (λ), k ≥ 1, such that for each λ ∈
³
0, λ̂

´
it holds that£

pk (λ)− c
¤
ψk (λ) ≥ p0 (λ)− c, then either an informational cascade occurs almost surely or the

seller and the buyers asymptotically learn that the true value is low, v = L. Finally, if c = L and

the value is high (v = H), a cascade eventually occurs almost surely.25

Despite the ability to freely change prices and the positive effect of information revelation on

the seller’s payoff, if c 6= L it is optimal for the seller to eventually settle on the pooling price or

exit the market, thereby stopping the process of information aggregation. Only in the borderline

case and only if the value of the good is actually low, may buyers asymptotically learn the good’s

true value. In all other cases, learning is incomplete.

Short-run outcomes

Further restrictions must be imposed on the signal structure in order to obtain sharper results

on the seller’s optimal pricing policy in the short run. In a version of this model in which the signal

has two realizations and a symmetric distribution (i.e., with K = 1 and α0 = β1 ≡ α ∈ (1/2, 1)),
25Whenever αK > α0

β0
, the condition that there exist a λ̂ > 0 and a price pk (λ), k ≥ 1, such that

pk (λ)− c ψk (λ) ≥ p0 (λ) − c for each λ ∈ 0, λ̂ , is satisfied for c = L (see the proof of Proposition 10).

Thus, if c = L and αK > α0

β0
, either an informational cascade occurs almost surely or the seller and the buyers

asymptotically learn that the true value is low.
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Bose, Orosel, Ottaviani, and Vesterlund (2005) have fully characterized the perfect Bayesian

equilibria. Since the analysis is involved, here we only briefly summarize the main findings.

In the symmetric binary signal model, at any given public belief the seller only needs to

consider two possible prices–the pooling price and the separating price–and exit. As only the

separating price reveals information to future buyers, Proposition 4 guarantees that expected

future profits are maximized by charging the separating price, provided that exit is not optimal.

The expected immediate profit from the pooling and the separating prices are therefore crucial

for determining which price is charged. Specifically, the separating price is uniquely optimal

when it also maximizes the expected immediate profit, and the pooling price can only be optimal

(but need not be) when it maximizes that profit.

The properties of the equilibrium depend on α, the precision of the buyers’ signals. We

distinguish two cases. First, when signals are sufficiently precise (given the other parameters), it

is optimal for the seller to charge the separating price if and only if the public belief belongs to a

connected interval. When the separating price is charged, the buyer purchases the good if only

if the signal realization is high. Observing this action, the seller and future buyers revise their

beliefs about the good’s value. The seller then continues to charge the separating price as long

as the belief stays within this interval, and demands the pooling price or exits the market when

the belief exits this interval.

Second, when signals are instead sufficiently noisy, the properties of the equilibrium become

sensitive to the interplay between the discount factor and the cost of production. When c ≤ L,

a sufficiently impatient seller triggers herding immediately for all priors. In contrast, a more

patient seller charges the separating price for some initial priors (and updated public beliefs).

In this case, the separating price is optimal in a connected, but possibly empty, set of beliefs.

Instead, when the signals are sufficiently noisy and c > L, additional complications can arise. In

this case, it is possible that the separating and the pooling prices are each uniquely optimal for

two disjoint intervals of public beliefs. As λ increases from λ = 0, exit is initially optimal for the

seller, then the separating price is optimal, then the pooling price is optimal, then the separating

price is again optimal, and finally the pooling price becomes again optimal for sufficiently high

public beliefs.

7 Conclusion

The prototypical model presented in this paper is highly stylized, in that a simple sequential

structure is imposed and perfect observation of past prices and decisions of all previous decision

makers is assumed. Nevertheless, we have gained insights on how the monopolist affects the

aggregation of private information in markets.
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We have shown that the monopolist has an incentive to charge a price higher than the

pooling price, in order to allow subsequent buyers to infer the information of the current buyer.

As information is revealed, the value of learning is reduced and eventually the seller may stop

the learning process and induce an informational cascade.26 When inducing a purchase cascade,

the price is reduced to the pooling price. If the price were reduced to the pooling price before the

good had become either popular or unpopular, all buyers would purchase the good in any case

so that their decisions would not reveal their information.27

We conclude by first comparing our results with those obtained with fixed (rather than path-

dependent) prices, and second by examining the welfare effect of having monopolistic rather than

competitive pricing.

Fixed vs. variable prices

It is worth comparing the prediction of our dynamic pricing model with those obtained by

Welch (1995) for the case in which the monopolist is constrained to post a constant price to all

buyers, pt = p for all t ∈ {1, 2, ...}. Welch found that it is optimal for the seller to induce an
immediate purchase cascade by charging a price low enough so that all buyers purchase. With

flexible prices instead, we show that the seller is willing to delay the informational cascade and

allow buyers to learn.

The sharp contrast in the predictions of these two models is due to the different value the

monopolist places on private and public information. In Welch’s model, the monopolist cannot

condition the price on the information revealed during the social learning process. In this situa-

tion, social learning essentially increases the private information possessed by the buyers. Giving

private information to the buyers results in a spread in the distribution of valuation around the

initial valuation of each type. Welch assumed that the seller’s opportunity cost is lower than

the low value of the good (i.e., c < L) and that the signal of each individual buyer is relatively

uninformative, so that it is optimal for the monopolist to charge a price that attracts all buyers

regardless of their signals. In such a mass market, social learning would cause a reduction in

the rent that the monopolist can extract (Lewis and Sappington, 1994 and Johnson and Myatt,

2004). In our model instead, the seller is allowed to condition future prices on the information

revealed by the buyers’ purchase decisions. As a consequence, social learning provides public

information which is beneficial to the seller (Ottaviani and Prat, 2001).

26This is always true except when the cost c equals the low value of the good, L, and the good’s value is low, in
this case there is a positive probability that the belief λ will converge to zero.
27Social learning may explain why young independent professionals, such as doctors and lawyers, are willing

to be underemployed and charge high fees relative to their perceived quality, rather than reduce the price for
their services. The observed discounts given on books once they are listed as best sellers are consistent with the
prediction that the price should be reduced only after the good becomes popular.
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Monopoly vs. competition

If there are at least two sellers competing à la Bertrand in each period, the price would be

equal to the marginal cost, pt = c for all t ∈ {1, 2, ...}. This competitive benchmark corresponds
to BHW’s model with fixed price pt = c. We will use this benchmark to determine how the con-

sumer surplus, producer surplus, and social welfare compare under monopolistic and competitive

pricing.

Consider the case where the seller’s cost of production is below the low value, i.e., c < L.

Here, the socially optimal allocation requires that all buyers purchase the good, regardless of the

realizations of their private signals. Hence the buyers’ private information has no social value.

While competitive pricing instantly triggers a purchase cascade, the monopolist may choose to

postpone a cascade until more information on the good’s value has been gathered. Though

long-run behavior is efficient under both monopoly and competition, that need not be the case

initially. When the monopolist postpones the purchase cascade to induce social learning and

extract more rents in the future, she inefficiently excludes some buyers. This exclusion and

learning is socially inefficient, and the monopolist is effectively causing too much learning. As in

the textbook treatment of static monopoly, we see that going from competitive to monopolistic

pricing increases producer surplus and decreases consumer surplus, and that the increase in

producer surplus is lower than the reduction in consumer surplus.

Consider next the case with c > L, i.e., when information is socially valuable. Now, the

monopolist’s incentive to generate learning is partially aligned with the social value of learning.

Interestingly, in this case a monopoly can deliver higher social welfare than competition. To

illustrate this, focus on a special case in which c = L+λK (λ1)+ ε, with ε > 0 small. That is, in

the initial period the cost exceeds (slightly) the willingness to pay of the most optimistic buyer.

In this case, an exit cascade occurs immediately in the competitive environment. Information

being a public good among competitors, no seller would invest in learning by posting a price

below the non-selling price, since there would be no way to subsequently recoup this short-term

loss. Consumer, producer, and total surplus would all equal zero. In contrast, a sufficiently

patient monopolist would be willing to bear short-term losses to induce learning in the market.

In the long run, a purchase or exit cascade will result.28 As a result, the consumer surplus of all

buyers is higher under monopoly than under competition. Since the expected producer surplus

is also increased, in this example monopoly Pareto dominates (ex ante) competition!

28There are also implications for the occurrence of incorrect cascades, in which all but possibly a finite number of
buyers purchase a low-quality good, or do not purchase a high-quality good. In this example with c > L+λK (λ1),
the probability of an incorrect cascade is lower under monopoly than competition.
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Appendix

Proofs of Propositions 1—11 follow.

Proof of Proposition 1. Consider the limit of πk−1 (λ)−πk (λ) as λ tends to 1. The first term (4)
goes to [L+ 1− c]αk−1 = [H − c]αk−1 > 0. The second term (5) goes to 0 for λ large enough.

By continuity, we conclude that πk−1 (λ) > πk (λ) for all k for large enough λ, hence the pooling

price p0 (λ) is optimal. Q.E.D.

Proof of Proposition 2. In the limit as λ goes to 0, the second term (5) goes to zero. The sign

of the first term (4), which converges to [L− c]βk−1 for λ→ 0, depends on the sign of L− c. If

L−c > 0, the first term is positive, so that πk−1 (λ) > πk (λ) for all k and the pooling price p0 (λ)

is optimal. If instead L− c < 0, the first term is negative, so that πk−1 (λ) < πk (λ) for all k and

the non-selling price pE (λ) is optimal when λ is small enough. For L − c = 0, it holds for all

k = 0, ...,K that pk(λ) > c for all λ > 0, and thus part (ii) of the proposition follows. Q.E.D.

Proof of Proposition 3. When targeting the buyer with signal realization sk, the monopolist

obtains static profit equal to
£
pk (λ)− c

¤
ψk (λ). The second derivative of the profit with respect

to the prior belief is equal to

∂2πk (λ)

∂2λ
=

2αkβk¡
αkλ+ βk (1− λ)

¢3 KX
i=k

³
αiβk − αkβi

´
,

where the second factor

KX
i=k

³
αiβk − αkβi

´
= βk

KX
i=k

βi
µ
αi

βi
− αk

βk

¶
is always strictly positive by the MLRP whenever k < K and equal to zero for k = K, showing

the result. Q.E.D.

Proof of Lemma 1. From

∂2
¡
λk
¢

∂2λ
= −

2α
k

βk

³
αk

βk
− 1
´

¡
αkλ+ βk (1− λ)

¢3 ,
we see that the posterior beliefs of signals with αk

βk
< 1 (respectively αk

βk
> 1) are convex (respec-

tively concave) in the prior. Q.E.D.

Proof of Corollary 1. This follows immediately from Proposition 3 and the fact that the maximum

of convex functions is convex. Q.E.D.

Proof of Proposition 4. When following the first strategy of charging the informative price

pt = pk (λt) ∈
©
p1 (λt) , ..., p

K (λt)
ª
, in period t there is a sale with probability ψk (λt) and no
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sale with probability 1− ψk (λt). The posterior belief in period t+ 1 is λ≥k (λt) after a sale and

λ<k (λt) after no sale. By charging price pk (λt) in period t and the optimal price thereafter, the

monopolist obtains ψk (λt) V
£
λ≥k (λt)

¤
+ [1 − ψk (λt)]V

£
λ<k (λt)

¤
in period t + 1, where V (·)

denotes the monopolist’s value function.

The second strategy of charging the pooling price p0 (λτ ) = p0 (λt) in every period τ ≥ t yields

π0 (λt) = p0 (λt)− c in each period. In this case, expected future profits are π0(λt)
1−δ .

The result follows from

ψk (λt) V
h
λ≥k (λt)

i
+ [1− ψk (λt)]V

h
λ<k (λt)

i
≥ ψk (λt)max

(
π0
£
λ≥k (λt)

¤
1− δ

, 0

)
+ [1− ψk (λt)] max

(
π0
£
λ<k (λt)

¤
1− δ

, 0

)

≥ ψk (λt)
π0
£
λ≥k (λt)

¤
1− δ

+ [1− ψk (λt)]
π0
£
λ<k (λt)

¤
1− δ

>
π0 (λt)

1− δ
,

where the first inequality follows from V (λt) ≥ max
n
π0(λt)
1−δ , 0

o
, the second frommax

n
π0(λt)
1−δ , 0

o
≥

π0(λt)
1−δ , and the third inequality is due to the strictly convexity of π

0 (λt) (Proposition 3) and the

martingale property of beliefs (10). Q.E.D.

Proof of Proposition 5. For every k ∈ {1, ...,K} define Fk (λ) as the difference in the seller’s

expected payoff from t onwards for λt = λ between the following two strategies: (i) set an

informative price, pt = pk (λt) with k 6= 0, E, in period t and the pooling price p0 (λt+1) from

period t+ 1 onwards; (ii) set the pooling price pt = p0 (λt) from period t onwards. Thus,

Fk (λ) = πk (λ)− π0 (λ) + (11)
δ

1− δ

n
ψk (λ)π0

h
λ≥k (λ)

i
+
³
1− ψk (λ)

´
π0
h
λ<k (λ)

i
− π0 (λ)

o
. (12)

The term (12) is positive because p0 (λ) is strictly convex and {λt}∞t=0 is a martingale. Since
this term is positive and the term (11) is independent of δ and finite, Fk (λ) > 0 whenever δ is

sufficiently close to 1. Q.E.D.

Proof of Lemma 2. First, since
PK

i=k α
i ≤ 1 and βk

αk
≥ βi

αi
for i ≥ k, we have ψk (λτ ) =

λτ
PK

i=k α
i + (1− λτ )

PK
i=k β

i =
PK

i=k α
i

·
λτ + (1− λτ )

PK
i=k

αi
K
j=k αj

βi

αi

¸
≤ λτ +

βk

αk
(1− λτ ),

so that ψk(λτ )

λτ+
βk

αk
(1−λτ )

≤ 1. In any period τ , if the seller demands the price pτ = pk (λτ ),

then E (pτaτ | λτ ) = E
£
pk (λτ ) aτ | λτ

¤
= pk (λτ )ψ

k (λτ ) = λτ
ψk(λτ )

λτ+
βk

αk
(1−λτ )

+ Lψk (λτ ) ≤ λτ +

Lψk (λτ ) ≤ λτ + L. Exit in any period τ implies zero revenues in that period: pτaτ =

pk (λτ ) aτ = 0. Since {λt}∞t=0 is martingale, E (λt+τ | λt) = λt for all τ ∈ {1, 2, ...} , and thus
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E (pt+τat+τ | λt) ≤ E (λt+τ + L | λt) = λt + L for all τ ∈ {1, 2, ...}. Consequently, we have
0 ≤ E (

P∞
τ=0 δ

τpt+τat+τ | λt) ≤ 1
1−δ [λt + L]. Q.E.D.

Proof of Proposition 6. If pτ = p0 (λt) for all τ ≥ t, the seller’s payoff from t onwards is p0(λt)−c
1−δ .

If pt = pk (λt) , k ≥ 1, it is less than
£
pk (λt)− c

¤
ψk (λt) +

δ
1−δ [H − c], regardless of the prices

the seller charges in the periods after period t, since pτaτ < H for all τ . The difference between

these two expressions is, after rearranging,

p0 (λt)− pk (λt)ψ
k (λt)−

h
1− ψk (λt)

i
c+ δ

p0 (λt)−H

1− δ
.

Taking the limit λt → 1 and using limλt→1 p0 (λt) = H and ψk (λt) +
Pk−1

i=0 α
i, we obtain

lim
λt→1

½
p0 (λt)− pk (λt)ψ

k (λt)−
h
1− ψk (λt)

i
c+ δ

p0 (λt)−H

1− δ

¾
= lim

λt→1

h
1− ψk (λt)

i
[H − c] = [H − c]

k−1X
i=0

αi > 0,

where the last equality follows from H > c and k ≥ 1. Thus, only p0 (λt) maximizes the seller’s

expected payoff if λt is sufficiently close to 1. Q.E.D.

Proof of Proposition 7. Since pt ≥ L > c for all t, the seller never exits the market. When

charging pk (λτ ) , k ∈ {0, ...,K} in period τ , the seller’s expected immediate profits satisfy

E
£¡
pk (λτ )− c

¢
aτ | λτ

¤ ≤ λτ + [L− c]ψk (λτ ) ≤ λτ + L − c by Lemma 2 and L − c > 0. If

pτ = p0 (λt) for all τ ≥ t, the seller’s payoff from t onwards is p0(λt)−c
1−δ . If pt = pk (λt) with k ≥ 1

the seller’s payoff from t onwards cannot exceed
£
pk (λt)− c

¤
ψk (λt)+

δ
1−δ [λt + L− c] , regardless

of the prices the seller charges in the periods after period t, because of E
£¡
pk (λτ )− c

¢
aτ | λt

¤ ≤
E [λτ + L− c | λt] = λt +L− c for all k ∈ {0, ...,K} and all τ ≥ t. The difference between these

two expressions is

p0 (λt)− pk (λt)ψ
k (λt)−

h
1− ψk (λt)

i
c+ δ

p0 (λt)− [λt + L]

1− δ
.

Taking the limit λt → 0 and using limλt→0 pk (λt) = L and limλt→0 ψ
k (λt) =

Pk−1
i=0 β

i, we obtain

lim
λt→0

½
p0 (λt)− pk (λt)ψ

k (λt)−
h
1− ψk (λt)

i
c+ δ

p0 (λt)− [λt + L]

1− δ

¾
= lim

λt→0

n
[L− c]

h
1− ψk (λt)

io
= [L− c]

k−1X
i=0

βi > 0,

where the inequality follows from L > c and k ≥ 1. Thus, only p0 (λt) maximizes the seller’s

expected payoff if λt is sufficiently close to 0. Q.E.D.

Proof of Proposition 8. We begin by showing that the seller’s expected payoff increases in λ. This

holds because the seller can always adopt the optimal strategy associated with a lower initial λ.
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More precisely, suppose that contingent on any history of past sales the seller targets the same

buyer types prescribed by the optimal strategy associated with the lower λ. As long as the optimal

strategy associated to the lower initial λ does not prescribe immediate exit (implying V (λ) = 0),

this imitating strategy results in strictly higher revenues. This follows from the the following

two properties: (i) prices pk (λ) strictly increase in λ for all k ∈ {0, ...,K} and (ii) probabilities
of sale ψk (λ) are positive for all k ∈ {0, ...,K} and non-decreasing in λ. Consequently, whenever
at some λ̄ immediate exit is not uniquely optimal, V (λ) is strictly increasing in λ for all λ > λ̄.

By Lemma 2, maxk E
£¡
pk (λτ )− c

¢
aτ | λτ

¤ ≤ λτ+L−c, i.e., the seller’s expected immediate
return in any period τ , conditional on λτ , is bounded by λτ +L− c. By the martingale property

of the belief process {λτ}∞τ=t, this implies that the seller’s expected payoff conditional on λt is

bounded by λt−[c−L]
1−δ , provided that the seller never exits the market. Consequently, whenever

λt < c−L the seller is better off exiting the market than staying in the market forever. Since by

assumption c < H, immediate exit is not optimal for all λ ∈ (0, 1). Because the seller’s expected
payoff strictly increases in λ unless immediate exit is uniquely optimal, there must exist a critical

λE ∈ Λ (λ1) such that exit is optimal for λ = λE and uniquely optimal for all λ ∈ ¡0, λE¢,
whereas for all λ ∈ ¡λE , 1¢ it is uniquely optimal for the seller to stay in the market. Since exit
is optimal for λ = λE, it must hold that p0

¡
λE
¢ ≤ c. Q.E.D.

Proof of Proposition 9. Since pt > L = c for all t, the seller never exits the market. If the

seller charges pτ = p0 (λt) for all τ ≥ t, the seller’s payoff from t onwards is p0(λt)−c
1−δ . By charging

pt = pk (λt) , k ≥ 1, in period t and p0 (λt+1) from period t+1 onwards, the seller’s expected payoff
from t onwards is

£
pk (λt)− c

¤
ψk (λt)+δ

·
ψk (λt)

p0[λ≥k(λt)]−c
1−δ +

¡
1− ψk (λt)

¢ p0[λ<k(λt)]−c
1−δ

¸
. The

payoff difference between the second and the first strategy is

Fk (λt) ≡
h
pk (λt)− c

i
ψk (λt)−

£
p0 (λt)− c

¤
+ (13)

δ

1− δ

n
ψk (λt) p

0
h
λ≥k (λt)

i
+
³
1− ψk (λt)

´
p0
h
λ<k (λt)

i
− p0 (λt)

o
. (14)

By assumption there exists a k ≥ 1 such that the term (13) is non-negative. The term (14)

is positive because p0 (λt) is strictly convex and λt is a martingale. Hence, Fk (λt) > 0 and it

cannot be optimal to charge pt = p0 (λt). Q.E.D.

Proof of Proposition 10. For λt = 0, E
£¡
p0 (λt)− c

¢
at | λt

¤
= p0 (0)− c = L− c = 0 and

E
£¡
pK (λt)− c

¢
at | λt

¤
= αKλt + [L− c]ψK (λt) = αKλt = 0.

Since E
£¡
p0 (λt)− c

¢
at | λt

¤
= p0 (λt)− c = α0λt

α0λt+β
0(1−λt) + L− c = α0λt

α0λt+β
0(1−λt) , the slope at

λt = 0 is
dE[p0(λt)at|λt=0]

dλt
= α0

β0
. For E

£
pK (λ) at | λ

¤
= αKλ the slope at λ = 0 is αK . Since by

assumption αK > α0

β0
, pk (λt)ψK (λt) = αKλt ≥ p0 (λt) whenever λt is small but positive. The

result follows from this and Proposition 9. Q.E.D.

25



Proof of Proposition 11. The stochastic process {λt}∞t=1 is a martingale by (10). Since λt

is bounded, the martingale convergence theorem (see, e.g., Doob 1953, p. 319) implies that

limt→∞ λt = λ∞ exists with probability 1. If λ∞ ∈ (0, 1) , it must be that for some finite T it

holds that λt = λ∞ for all t ≥ T, since Λ (λ1)∩(ε, 1− �) is a finite set for all ε > 0 and λ∞ ∈ (0, 1)
implies λ∞ ∈ (ε, 1− �) for some sufficiently small ε. But this implies that for t ≥ T we have a

cascade. Thus, the claim follows from Propositions 6-8 for the case c 6= L, and from Proposi-

tions 6 and 9 for the case c = L. Specifically, the last sentence of the proposition follows from

Proposition 6 and the fact that if v = H the public belief λt cannot converge to 0. Q.E.D.
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