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Abstract

It is well documented that people do not always behave as rational agents. Par-
ticularly when making choices under limited information, or large uncertainty, certain
general coping strategies emerge that involve the observation and qualified imitation
of the choices of others. These strategies can lead to spontaneous herding, i.e. to the
formation of social trends, large consensus that emerge out of self-interested individual
choices. Social trends or fashions are spontaneous collective decisions made by large
portions of a community, often without an apparent good reason. The spontaneous for-
mation of trends provides a well documented mechanism for the spread of information
across a population, the creation of culture and the self-regulation of social behavior.
Here T introduce a dynamical model that captures the essence of trend formation and
collapse. The resulting population dynamics alternates states of great diversity (large
configurational entropy) with spontaneous herding, i.e. the dominance by a few trends.
This behavior displays a kind of self-organized criticality, measurable through cumulants
analogous to those used to study percolation. I also analyze the robustness of trend
dynamics subject to external influences, such as population growth or contraction and
in the presence of explicit information biases. The resulting population response gives
insights about the fragility of public opinion in specific circumstances and suggests how
it may be driven to produce social consensus or dissonance.



1 Introduction

Making choices about which social circles to join or evade is one of the most ubiquitous,
important and difficult decisions facing each one of us every day. The basis for this
difficulty is that our social environment is too complex for us to predict the detailed
outcome of our actions. It is also a dynamical environment so that past experience may
be a poor indicator of future events. As a result many of our most important choices
must be made within a limited timespan and without full information.

These practical limitations make many different courses of action seem equally vi-
able. This degeneracy can be described mathematically as a symmetry among all
equally good choices at the individual level. This choice degeneracy is also familiar
from information saturated environments, where useful information is not easily dis-
criminated from noise, of times when information is accessible but not reliable, or may
simply result from a choice not to form our own opinions.

How do we actually make choices in these difficult environments? In many cases
we rely on the actions of others we know as the basis for our decisions. If their choices
appear successful to us we may adopt them as our own. Whether this is a good or
bad strategy depends then on how well informed our acquaintances are. In any case
we are guaranteed not to do worse than most of the people that surround us, which
may be all that matters. In this light the spontaneous emergence of collective behavior
corresponds to a particular choice, made simultaneously by many agents, among others
that are equally good - a spontaneous breaking of individual choice symmetry by the
state of the population as a whole.

The strategy to base our decisions on the actions of others is very universal. The
natural languages, for example, are rich in related aphorisms. Recently this decision
making strategy has become the focus of a sizable literature in economics [1| and the
social sciences [2]. Bikhchandani, Hirshleifer and Welch [3] (BHW) were, to my knowl-
edge, the first to stress the universal nature of trends and fashions [4]. They also
proposed a simple model of sequential choice in which they can develop [3, 5]. BHW
called the widespread adoption of a particular decision an information cascade. The
term refers to how a piece of information can spread quickly through the whole popula-
tion as a trend. They also collected a vast literature, across many scientific disciplines
in support of trend dynamics as an important social mechanism |2, 4].

In financial markets for example, where collecting quantitative data a posteriori is
relatively easy, analysts [6] and mutual fund managers [7] are observed to follow each
other’s choices and recommendations. In elections it is well documented that opinion
poles influence the decision process [8|. Cycles of innovation in industrial production
[9] are determined in part by the success of one’s industrial peers and/or by the fear of
lagging behind or losing market share. Television programming displays similar patters
[10]. The incidence of crime or fraud [11], e.g. tax evasion, depends in part on the
observation of others who may have gotten away with it.

There has also been a growing interest in related ideas [12, 13] in the literature of
complex systems and critical phenomena. Close relatives of trend dynamics are models
of flocking [14] and herd behavior [5, 15, 16]. The latter have been developed to model
financial markets, the former to describe how groups of animals may coordinate their
movements to form a flock and, more generally, the collective dynamics of self-propelled
particles. Flocking requires the spontaneous breaking of rotational symmetry, which
happens when the velocity of most moving agents aligns to form the familiar pattern



of organized collective motion.

In financial models of herd behavior agents are grouped together by given rules.
Each of these groups or herds then makes collective decisions (buy/sell) in unison.
Trend dynamics is somewhat different: each agent actually tries to stay ahead of the
crowd, trading his position for another only if the latter offers greater promise. As
we shall see below trend dynamics leads to spontaneous consensus even as all agents
exercise free will. In this sense the class of models considered here will differ from those
describing herd behavior, although some aspects of the emergent collective behavior
may be similar.

Trend setting and trend following can often be thought of as a game, to be played
many times by a large number of participants. For maximal advantage one would like
to join a winning trend at the earliest possible opportunity, ride it to the height of its
popularity, and leave before it collapses. However, because this strategy is shared by
all players, it leads to some choices becoming very widespread. Once it is apparent that
the same state is shared by all social advantage is lost and some agents are tempted
to leave. At this point dominant trends become unstable to decay due to competition
from new faster movements.

Thus we see qualitatively the two most important features of trend dynamics: the
faster a trend is growing the greater its promise i.e. the more attractive it feels. Con-
sequently, when a trend becomes widespread and cannot sustain its pace of growth, it
looses its appeal. Then agents begin to look elsewhere for the next 'hot thing’. The
purpose of the present paper is to capture the essence of trend formation and decay,
starting at the individual level, in a population facing many competing choices. To do
that I will construct simple models of agents interacting with each other and acting
according to their (perceived) individual best interest.

Beyond analyzing the genesis of trends I will show that social behavior under trend
dynamics is a prototypical complex system. A unifying property common to many
complex systems is the interesting way in which their dynamics samples large dimen-
sional configuration spaces. Here too we will see that the population is driven back and
forth between states of order, or large configurational information, and disorder. Both
these extremes are unstable so that the system spends a long time in between. This
cycling between order and disorder, once time averaged, shows interesting analogies
with ensemble averages of statistical systems in the vicinity of a critical point. Thus
trend dynamics can display a specific sort of self-organized criticality [17].

Another interesting aspect of trend dynamics is its susceptibility to external influ-
ences. Because, as we shall see below, the system has no global stable fixed points its
dynamics are extremely sensitive to the introduction or subtraction of new agents with
particular preferences. These properties produce insights into the fragility or robust-
ness of ’public opinion’ in specific circumstances and tell us how it may be driven to
generate social consensus or dissonance.

The remaining of this paper is organized as follows. In sec. 2 I describe the basic
agent based model and several of its possible variations. In sec. 3 I construct quantities
that give a global characterization of the dynamics. Firstly I will define an information
(Shannon) entropy over population configurations. Secondly it is natural to define
cumulants analogous to a percolation strength and susceptibility [18]. These quantities
allow a comparison between time averages of population configurations and typical
properties of critical phenomena. Section 4 is devoted to a more detailed analysis of



the dynamics. There I show how several macroscopic properties can be understood by
simpler analytical expressions, without requiring knowledge of the whole population.
Sec. 5 is devoted to some of the properties of the driven system where individuals are
added to or subtracted from the population with specific trend preferences. This will
show how trend dynamics can be driven by external influences. Finally in Sec. 6 I
summarize the results and discuss other related problems and applications.

2 The model and its global dynamics

In this section I define the agent based model used in the remaining of this paper. I will
also give a first characterization of the resulting dynamics by constructing quantities
that capture their most important global properties.

2.1 Definition of the model and possible variants

I consider a population with N agents and L trends or labels. Every agent is character-
ized by a single label, denoting the group or trend he/she belongs to at a given time.
All labels are equally good from the point of view of an isolated agent. For a discrete
set of L labels this is a Z;, symmetry. This prescription implements the basic individual
choice degeneracy discussed in the Introduction. Nevertheless, as we shall see, sponta-
neous collective choices will be generated and subsequently destroyed dynamically. The
specification of a single label per agent can be easily relaxed, but would lead to more
complicated (and arbitrary) dynamical rules.

At each time every agent ¢ contacts another j at random in his social circle. He
compares the relative growth (or momentum) of their labels p;(t) = AN;(t)/N;(t),
where N;(t) is the number of agents in label 7 at time ¢ and AN;(t) = N;(t) — N;(t —1).
If his label’s momentum p; is smaller that p; he adopts the other agent’s trend; otherwise
he keeps his [19].

Moreover if the momentum of a given trend is smaller than a given value pe,it, agents
leave their label for a brand new (empty) one. Thus pei; parameterizes conformism; the
threshold momentum below which staying in a slow moving trend becomes unbearable
and taking the risk on a brand new thing is preferred. This parameter will play an
important role in trend dynamics, as we shall see below. Here, I will assume, for
simplicity, that all agents share the same value of pcyit.

A few extra remarks are in order:

i) the values of N and L can be made functions of time, reflecting population growth
or decrease and the change in their realm of choices. Some of these scenarios will be
explored in sec. 5.

ii) Each agent’s social circle can be limited to subsets of the population; as it
happens in reality in social networks [20]. These restrictions effectively condition the
flow of information and make the choices of certain individuals more influential that
those of others. These properties lead to fascinating dynamical effects, which can
depend sensitively on the morphology of the network. Such issues require an adequate
discussion of social networks and a parametric exploration of some of their structural
freedoms. For this reason the influence of the structure of social networks on the
dynamics of trends will be presented in a separate publication [21]. Below I shall
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Figure 1: Snapshots of trend occupation numbers for an evolution with N = 10°, L = 103
and pei; = 107°. The system cycles between ordered states, characterized by the dominance
of a few trends (a)-(b), their decay (c), and the emergence of many small competing labels
(d), from which a few dominant ones emerge again and so on.

use an unstructured population, where each agent can contact any other with equal
probability.

iii) The individual choice to change label can be made according to a more sophis-
ticated probabilistic transition amplitude. This becomes essential if more parameters
condition the choice or if agents do not act deterministically on the facts. Although
these refinements may be necessary to model complex situations I shall not consider
them in the context of the present paper.

iv) The value of peit is taken below as an input, a property shared by all agents. An
interesting possibility is that its value may reflect a global sentiment that can change in
time with the state of the population. Then p..; should be computed self-consistently
in time, e.g. conformism may decrease as agents perceive that most others belong to
their trend or may rise during difficult times of population decrease.

Fig. 1 shows a typical evolution for a low value of pei; = 107°. Clearly dominant
trends alternate with periods of coexistence of many competing labels from which one
eventually emerges to dominate and so on. The spontaneous formation of a large
trend corresponds qualitatively to the phenomenon that BHW coined an information
cascade as a label becomes widespread in the whole population. Here, however, the
realm of choices is arbitrarily large and the population is not organized in a queue
making sequential choices. This will allow us richer dynamics and closer similarities
to systems familiar from statistical mechanics. Moreover the agents in the present
model do not know about the previous choices of all others before them; they can
merely compare the progress of their labels to those of their neighbors. Technically



the implementation used here is a Markov chain, where the state of the system at one
time (its occupation numbers and their momenta) is determined (stochastically) from
its state at the previous time. In this sense agents are not aware that they may be
joining a large scale movement, they are just searching for the most promising choice
in their realm of observation. The degeneracy of choice, built in at the individual level,
persists as collective movements emerge dynamically because the winning trend can
assume any of the L labels [22| with equal probability.

The dynamical structure of the system implies that there is no global stable fixed
point. Demanding that a configuration be static implies p; = p; = p. If we insist that all
p; = p are the same then p = 0 because of the overall conservation of individuals. This is
a trivial static point. It can be realized in many ways (any arrangement of N individuals
in L labels); most of which are close to the flat distribution, the most disordered state of
the population. This fixed point is clearly unstable to any perturbation: if a single trend
acquires positive momentum (and another negative from agent number conservation)
the system will move away from the original configuration as all agents try to join the
former and exit the latter.

A very particular instance of this fixed point is the asymptotic situation where
N; — N, p; — 07 and N; — 0, p; — 07 V,;, which corresponds to the growth of a
single dominant trend at the expense of all others. This situation can be realized for
each one of the L labels. A single fully occupied trend is the most ordered state the
system can take. For it not to be stable it is necessary that pet > 0 - this is the first
crucial role of peit. Otherwise, if periy < 0, agents have no desire to leave a static (or
decaying) trend in the absence of faster growing competitors and the evolution freezes
when the first dominant trend is formed.

2.2 Global characterization of trend dynamics

As we have already seen one of the features of the evolution at small peit is the forma-
tion of widespread trends, i.e. situations where one of the labels is substantially more
populated than all the others. However, as it does so, the dominant trend must slow
down and will eventually collapse into many small, fast moving trends, which proceed
to compete for dominance, see Fig. 1. The instability of these states leads to character-
istic cyclic (but aperiodic) dynamics. This section is dedicated to constructing global
quantities inspired by analogies to statistical physics that capture these properties.

First, the qualitative sense that the population is alternatively in states of disorder
(when many trends coexist) and order (where one emerges as dominant) can be captured
by defining a Shannon entropy S, over the discrete set of labels

L
S:—Znilnni, (1)
i=1

where 0 < n; < 1 is the probability of finding an individual in label . Thus by knowing
n; as a function of time we can measure the evolution of the total entropy of the system.
S is not conserved because the evolution is not Hamiltonian.

The value of n; leading to the highest entropy Spax is the flat distribution
, Vi. (2)

n; =

1
L
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Figure 2: The behavior of the total entropy S, through several cycles of trend formation and
decay, for a population with N = 10° agents, L = 10° labels and pgi = 107°. The dashed
line shows the maximal entropy Spax = In(L) ~ 6.91, corresponding to the flat distribution.

Then the entropy Smax = In(L). In contrast for one single trend containing the whole
population Sy, = 0. Dynamically we expect the system to alternate between these
two asymptotic states, at least at low pei¢. Fig. 2 shows several cycles of growth and
decay in the entropy S, for pei; = 107°, N = 10° and L = 103.

We have already anticipated that the dynamics of trends, in analogy with many
other complex systems, may display certain forms of self-organized criticality. I now
define quantities that allow us to diagnose such behavior. The simplest and most
paradigmatic critical phenomenon is percolation [18]. As in other second order transi-
tions the critical point is associated with the the divergence of a characteristic macro-
scopic length, together with several other susceptibilities, associated with the system’s
response to mMacroscopic stresses.

Statistical distributions in the vicinity of the critical point can be defined by two
critical exponents (and by dimensionality). For percolation these two exponents can
be obtained from the behavior of two independent ensemble averages, usually the per-
colation strength P. (the "size" of the largest correlated cluster) and a percolation
susceptibility S., defined by the sum of squares of the cluster sizes with the largest
cluster subtracted. Criticality is the onset of the formation of a spanning cluster and is
associated with a sharp increase of P. and a peak (in the finite volume) in S.. In the
thermodynamic limit, where the number of degrees of freedom tends to infinity (the
infinite volume limit), S, usually diverges with some characteristic critical exponent.

In the context of our model each agent can exist in one of L states. Thus a perco-
lation strength P, can be defined as the fraction of the population in the largest trend
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Figure 3: The behavior of the percolation strength P. (upper panel) divided by N, and the
percolation susceptibility S. (lower panel), divided by N2, for the evolution of Fig. 1. P.
cycles through states of maximal occupancy P. = 1 and very low occupancy P, ~ 0. The
intermediate state, at the onset of the formation of a dominant term, is characterized by a
sharp maximum of S, signaling critical behavior.
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P. = max(N;). The percolation susceptibility S. is then defined as

L
S, = <Z NE) - P2 (3)
i=1

A limit analogous to the thermodynamic limit in statistical systems can be taken by
letting the number of agents N tend to infinity while also increasing the number of
labels L such that the ratio of agents to labels N/L stays constant.

Fig. 3 show the evolution of P, and S, for the example of Fig. 2. We see that when
a label emerges as the dominant trend P, grows rapidly, and S, goes through a sharp
maximum. Fig. 4 shows the variation of the peak of S, with N, at fixed N/L = 100.
The behavior of S.’s peak vs. N shows a divergence as N — oo, making a good case for
the analogy between the dynamical spontaneous symmetry breaking of choice symmetry
described here and critical phenomena.

3 Boom and bust: the rise and fall of trends

As we have seen in the previous section the global motion of the system can be char-
acterized by a few simple quantities for which we have some intuition from statistical
physics. In this section I analyze trend dynamics in more detail and derive semi-analytic
reduced descriptions for some of their properties.

I start with the decay of a dominant trend. This is a simple process because it
involves the transfer of agents from the main label to all others and, at least initially,
can be understood without taking into account the detailed dynamics of the latter.
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Figure 5: The early decay of the dominant trend for an evolution with N = 10* and L = 103.
Initially the decay proceeds by agents spontaneously seeking new, empty labels and is given
approximately by n.(t + 1) = n.(t) — (L — 1), shown as the solid line (see text).

As discussed in sec. 2 the dominant cluster will only decay if some individuals choose
to leave it, even though there may not be any alternative faster growing label available
at that time. For the detailed implementation I choose that the decision to abandon a
trend is made when its momentum becomes smaller than a certain value p¢it. When
i < Perit €ach agent makes a trial search of label space at random; if an empty label is
found it is adopted. Then the first few steps in the decay of the main cluster result in
ne(t +1) = ne(t) — (L — 1), see Fig. 5.

As labels become filled many small fast growing trends are formed and the usual
momentum comparison between agents becomes the dominant dynamical force. Then
the occupation number distribution will be characterized by the dominant trend with
negative momentum and all other much smaller trends, initially with large positive
momentum. In these circumstances the decay of the main cluster is dictated by the
probability of an individual belonging to it to find another individual outside. This
process it is approximately described by n.(t + 1) = n¢(t) — poutnc(t), where poyy is the
probability of finding an individual outside the main cluster, pous = > 2o Nk

Figure 6 shows that this expectation fits the decay of the main cluster extremely
well, even at relatively late times. This description breaks down as other trends become
similar in size to the original dominant one.

The subsequent growth of trends is more difficult to analyze because it involves
the comparison between many different competitors. Note, however, that as dominant
trends emerge the system undergoes an effective reduction of its phase space. This is
because many labels become empty. The evolution of the probability to find an empty

10
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Figure 6: The decay of the largest cluster for N = 10° agents and L = 10. The line shows
the initial prediction given by n.(t + 1) = n.(t) — pousne(t). The last point shows a new
cluster that has overtaken the former dominant one in size

label Py is reasonably well described by

A1) = ro + <50 e, ()

see fig. 7 for a comparison to data. Eq. (4) is based on the simple expectation that
at each time step half of the filled trends become empty. Because of this dynamical
thinning of the number of available labels the late evolution of trend formation becomes
fairly simple as it is characterized only by a few choices.

It is useful to consider some very simple cases. If only two trends are present, a
typical endgame situation, the outcome is invariably that the faster growing one always
wins, even if it is initially smaller. In fact, because of the total agent number is conserved
they cannot both grow. This may not always reflect the real world of e.g. brand or
political party competition, situations that can in many instances be dominated by
choosing between two alternatives. In reality in these cases the relative growth of
mutual competitors has become closely monitored. Intervention in the form of e.g.
publicity campaigns is used to change agents perceptions leading to more complicated
decision making processes, beyond the scope of the present model.

If three or more trends are present more interesting situations are possible. A typical
situation that we explored above is that one of the labels is decaying and feeding the
growth of others. In this situation the decaying cluster functions as a source that allows
other trends to grow simultaneously. The fate of the latter is largely determined at the
time when this source is extinguished, and the remaining labels need to start competing
for population.

11



[any

o
)

o
o

0

P

o
N

I
N

P PRI B AR AR
80 100

120 140 160

(=}
C\\\\‘\\\\‘\\\\‘\\\\‘\\\\
N
o
N
o

=
o)
o

time [iterations]

Figure 7: The evolution of the probability of a label being empty P, (data points), through
several dynamical cycles with N = 10%, L = 103 and pi; = 107°. As dominant trends emerge
the number of competing labels decreases, resulting in an effective dynamical reduction of
label choices. All labels are subsequently temporarily re-populated as large clusters collapse.
The evolution of Fy is well described by Eq. (4) (solid line).
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Figure 8: The probability that the largest secondary cluster (squares), the fastest cluster
(triangles) or the cluster with the highest product of momentum and size (circles) at the
particular time when a dominant trend disappears becomes the new dominant trend, for a
population with N = 103, pess = 107° and varying number of labels. As the number of labels
increases calling the next winning trend with confidence becomes nearly impossible by any
of these criteria.

Is it possible, at this particular, time to predict the next winning trend? There is
a delicate balance between the visibility of a trend and its momentum. For example
it is not true that the fastest growing trend becomes dominant and neither does the
largest (secondary) cluster. In most cases the fastest moving trends are the smallest,
which suffer from lack of visibility (i.e. it is unlikely to find an agent belonging to it).
On the other hand a secondary large trend will not become dominant if the result of
many inquires find it the laggard. Thus becoming the next winner requires being both
relatively large, being fast and some good portion of luck. Fig. 8 shows how well several
of these criteria fare at predicting the winner.

The results of Fig. 8 show that even if one is aware that a whole population is
following trends it is difficult to call a winner early enough to profit from the realization.
In fact, the most successful criterion shown in fig. 8, picking the trend with the largest
product of size and momentum at the critical time, offers odds comparable to tossing
a coin when L becomes large. Moreover this strategy requires precise knowledge of the
state of the whole population at a very particular time, which is in general difficult
(and expensive) to obtain.

13
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Figure 9: The dependence of the time evolution of the total entropy S on p.i the conformist
parameter for N = 10° and L = 10%. peji controls the amplitude and regularity of the
trend cycling. For low enough p.i, ~ 1/N the motion is clearly cyclic alternating totally
dominant trends with quasi-random distributions. As p.; is increased the extremes become
less pronounced and the motion less cyclic.

4 Time averages and distributions: analogies to
critical phenomena

I have up to this point analyzed some of the general dynamical properties of the model
introduced in sec. 2. As we have seen there are no static stable solutions, and the pop-
ulation cycles between ordered states, where there is one dominant trend, and periods
where many similar sized trends coexist and compete for dominance. In this section I
discuss some of the time-averaged properties of these distributions, over many cycles of
growth and collapse. Much like microcanonical time averages can coincide with canon-
ical ensemble expectation values, time averages of complex systems give us a statistical
measure of their most likely states. It is usually these averages that are compared to
analogous quantities (over ensembles) in critical phenomena in order to demonstrate
that the system displays self-organized criticality [17].

Before analyzing time averages of distributions it is important to understand better
another role of the conformism parameter pei. Fig. 9 shows how peit determines the
amplitude of the motion between order and disorder. Evolutions with low values of
Pait < N1 reach absolute order (where one single trend engulfs the whole population)
alternating with very disordered states. As pei¢ is increased the amplitude decreases
and the system spends more and more time in intermediate states. These are neither
extremely ordered nor disordered but rather somewhere in between, as can be seen in

14
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Figure 10: The time-averaged trend size distribution for N = 10°, L = 10® and two values
of Perit = 1071, 1075, peie controls the relative times spent by the system in each extreme
configuration (trend dominance or disorder). For high enough values of p.; the distribution
becomes a power law with a small exponent, here o ~ 0.4. For small p.,;; the distribution is
distorted by an abundance of both small and large trends.

an entropy plot, Fig. 9.

From these considerations about the role of p.i we expect that time averages of
distributions with small p.; will include regions of configuration space with both more
ordered and disordered states, those with higher peit will be peaked in between. This
potentially leads to different time averaged distributions, as seen in Fig. 10, which shows
the number distribution of trend sizes.

Another interesting quantity is the size distribution of population fluxes, defined as
the number of individuals leaving or joining a trend per unit time. This is shown in
Fig. 11. The flux size distribution is essentially a dynamical process and shows much
more robustness against changes of peit. A related quantity is the number distribution
of individuals entering or leaving a trend after a test agent.

The number of individuals that join or leave after a given agent is a quantity that
carries an important meaning. Think again of trend dynamics as a race, a game among
agents. Ideally an agent wants to join a winning trend early in its development and
ride it until it is dominant; he also wants to leave before it starts decaying and start off
the next winner.

This strategy is simply that of being followed by the maximum number of others and
follow the least. This is desirable in many circumstances e.g. in (speculative) financial
markets. Here, however, the cost of joining a trend does not increase with the number
of agents already in it. Thus the present model can only hope to describe speculative
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Figure 11: The size distribution of population fluxes for the example of Fig. 10. The flux
distributions shows significantly more robust power law behavior against variation of pe
than the size distribution of trends.

bubbles in financial markets as long as price is no object for most agents.

Fig. 12 shows that over many cycles of trend growth and decay an individual is
on average followed by as many others as those he follows. More interestingly the
second moment of the distribution measures the possible fluctuations around zero gain
or loss. If the game of following trends is played only a few times it will give a measure
of the possible losses or gains incurred by a typical agent. Fig. 13 shows a detail of
the distribution of gains. Although displaying finite population effects for very large
numbers it is clear that the main distribution is very flat, making it possible for an
individual playing the game only a few times to experience spectacular gains and/or
losses.

5 Trend dynamics of open systems: changing pop-
ulations and external information biases

So far I have considered the dynamics of trends over closed populations, characterized
by a fixed number of agents N and trends L. It is interesting to generalize this closed
system to an open one, and examine the effects of adding or subtracting new individuals
with particular preferences. This is the subject of this section.

For purposes of illustration I consider a linear population growth law, i.e.

N(t+1) = N(t) +R, (5)
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Figure 12: The number distribution of individuals entering (positive) and leaving (negative)
a trend after an agent has joined it for N = 10%, p,i = 107> and several L. On average an
agent is followed by as many agents as those he follows. See also Fig. 13.

where R is the number of individuals joining the populations at each time step. The
exact form of Eq. (5) is not particularly important for our discussion.

The influence of the new individuals on a population undergoing trend dynamics
depends sensitively on their trend preferences. First I investigate the effect of letting
the new agents enter the population at a random trend, an "open minded youth". Note
that this type of driving force, once time averaged, does not break the choice symmetry
of the closed system (any trend may still become dominant). It does however introduce
a disordering external effect on the dynamics, much like driving a statistical system
with white noise.

Fig. 14 shows the evolution of the total entropy under these circumstances, for
several values of R. The introduction of new agents at random, even in a population
with small peic = 107° and at small rates, leads to dramatic results. The distinctive
cycling between order and disorder becomes less well defined even for the smallest R = 1.
The lifetime of the largest trends is reduced as they suffer from stiffer competition from
smaller movements. These receive the strongest enhancement of their relative numbers
and momentum due to the injection of new agents. Curiously the highest entropy states
of the population are also suppressed, at least for small R. These states were formerly
produced in the early decay of a very dominant trend. For large R the average state
of the population remains fairly disordered, but still far from the random distribution,
which is presumably reached as R — oo.

If after a period of growth the population ceases to increase, i.e. if the drive is
switched off at some late time, the dynamics quickly resumes its cyclic pattern of
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Figure 13: Detail of Fig. 12 for agents entering a trend. The tail of the distribution is fat,
leading to large higher moments. The distribution is eventually cutoff for large numbers by
finite N effects.

dominant trend formation and decay, see Fig 15, although now involving many more
agents

Alternatively new agents may not be introduced at random. This constitutes a
systematic ordering effect that explicitly breaks trend choice symmetry. Because the
evolution is characterized by a sequence of instabilities the dynamics are extremely
sensitive to the preferences of the new agents. If new agents are introduced in a specific
label then it becomes invariably the dominant trend, even at the smallest R = 1.
Similarly if the new agents prefer a subset of the total labels, these become all the
dominant trends. Remaining trends gather at best a small fraction of the population
and only at times when a dominant trend decays.

Finally I consider the effects of a decreasing population. The simplest and most
natural situation is that individuals are eliminated from the population at random,
according to Eq. (5), now with R < 0. This operation actually has no effect on most
aspects of the dynamics. This is because the change in momentum of each trend due
to population losses is on average proportional to trend size (the probability that the
individual is in that trend). Thus the change in momentum of a trend i due to random
population loss is Ap; = Rn;/(Nn;) = R/N, the same for all trends. We conclude (and
observe explicitly in the dynamics) that eliminating individuals at random preserves the
momentum hierarchy among trends and consequently does not change the dynamics.

The exception to this rule is the decay of the single dominant trend. I postulated
that only if the trend momentum is slow enough (but still positive) will agents leave
it to start something new. However, due to population loss, the largest trend may
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Figure 15: The evolution of the total entropy for the growing population of Fig. 14 with
R = 100. The motion returns to its cyclic characteristic pattern once the inflow of new
agents ceases (here at ¢t = 500).

never come sufficiently close to p = 0 (it would in a continuous time approximation).
Then it is possible that all remaining agents become stuck in a single decaying trend.
This happens at a characteristic time t ~ N/R — p(;ilt, obtained from comparing the
momentum due to population losses alone to pcit, starting at £ = 0 with IV agents. For
small pqi the evolution freezes as the first large trend is formed.

We see that random population growth or decay have quite different consequences.
A growing population with no particular preference at birth makes spontaneous con-
sensus rarer, more unstable and encompassing fewer agents. Population growth with
particular preferences, on the other hand, explicitly breaks the spontaneous choice
symmetry of the closed model and reduces the space of possible large trends to those
preferred by the new agents. To combat this tendency the existing (older) elements
of the population must not follow trends. Finally the effects of population decrease
are generally more benign. The important exception is that if a consensus occurs at
a time of population decrease in a conformist population agents may become stuck in
a sinking trend. The same effect can take place if conformism rose with population
loss and would have devastating consequences if diversity were necessary for eventual
population recovery.

6 Conclusions and outlook

In this paper I introduced a simple agent based model describing how coherent social
choices - trends - arise spontaneously and how these movements eventually slow down
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and disappear. Trends, fashions, fads are all well documented mechanisms for the
creation of shared knowledge (culture) and triggers for behavior change and its self-
regulation in human societies. Examples range from the most mundane (fads in popular
culture) to the most important (setting cultural norms, fraud/crime control).

The dynamical pattern of trend formation and decay developed in this paper is
particularly clear in populations with a high degree of conformism (small peit), where
individuals are slow to leave sluggish trends in order to start something new. Then
the population goes through cycles alternating states of order, dominated by a single
label, and disorder where many small trends compete for population. If conformism
is lower the size and frequency of occurrence of dominant trends becomes smaller. As
a result the state of the population remains somewhere halfway in between order and
disorder and is characterized by scale invariant (power law) distributions - the dynamics
oscillates about a state of criticality. The amplitude of fluctuations around this state
is also determined by the conformism parameter p.it. The passage through criticality
is made apparent by the construction of familiar quantities from statistical mechanics,
analogous to percolation cumulants.

The fundamental instabilities characteristic of both asymptotic states of absolute
order and absolute disorder make the dynamics extremely susceptible to external in-
fluences, such as the preferences of new individuals. Simple as the model is it suggests
that variety can be sustained in an open population following trends only if new agents
(youth) remain unprejudiced. On the other hand diversity of choices will be quenched
if their attention spans only a subset of all pre-existing possibilities. To prevent this
loss of diversity it is then necessary that older agents stick to their own preferences and
do not follow trends. Population loss at random on the other hand does not affect most
aspects of trend dynamics but may lead to a scenario where the state of the popula-
tion is frozen in a single decaying trend if conformism is too high. The maintenance
of diversity in this situation requires that agents continue to take risks in the face of
adversity.

The spontaneous breaking of choice symmetry inherent to trend dynamics illustrates
a simple but important point about decision making strategies. In the present model
there is no extremum principle that makes the choice of a winning trend predictable.
Instead a consensus is built out of accidental elements of the dynamics and, paradoxi-
cally, the desire of individual agents to stay ahead of the crowd. Thus a trend that finds
itself large and fast growing at the right moment will have a sort of first striker’s ad-
vantage. This leads to accidental winners that may not be optimal solutions in the long
run, a phenomenon familiar to technological and (presumably) biological development.

The most important consequence of the difficulty to predict winning trends is that,
although it may be apparent to an external observer that everyone is following trends,
it is extremely difficult to take advantage of the phenomenon for individual profit.
This interesting aspect of the problem will be discussed further in a future publication
[21]. There I will consider how trend dynamics can be formulated as a game played
for social advantage over a typical social network. It will then become apparent that
some of morphological characteristics of social networks are not accidental, but rather
may follow from our collective desire to access socially relevant information as early as
possible and from the necessity to keep up with our friends and neighbors.
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