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Abstract

Recent progress in the large scale mapping of social networks is opening new quantitative
windows into the structure of human societies. These networks are largely the result of how we
access and utilize information. Here I show that a universal decision mechanism under uncer-
tainty, where we base our choices on the actions of others, can explain much of their structure.
Such collective social arrangements emerge from successful strategies to handle information flow
at the individual level. They include the formation of closely-knit communities and the emer-
gence of well-connected individuals. The latter can command the following of others while only
exercising ordinary judgment.



In recent years there has been growing interest in the quantitative structure of human soci-
eties. It has emerged that we are part of heterogeneous networks or graphs [1, 2, 3, 4], sets of
links that connect each one of us to all our acquaintances. Not all people are alike: some live
almost isolated, most belong to distinguishable communities [1, 5] and a small fraction of the
population is made up of exceptionally well connected individuals [6]. Social networks have the
remarkable property that one can reach anyone else through a very small number of connections
- the famous six degrees of separation [7, 8].

These findings beg important questions: Why are social networks invariably clustered in
communities? Why are there individuals with such different connectivity? Answering these
puzzles requires tying the morphology of social networks to their function [2, 9, 10]. Similar
problems occur in the study of other complex networks, for example, dealing with gene and
protein-protein interactions [11, 12, 13], metabolism [14, 15], ecosystems [16, 17] (foodwebs)
and neural activity. Thus understanding the simultaneous robustness and adaptability of these
complex systems in the light of their function is a general problem at the forefront of the current
scientific agenda across many disciplines [9].

The difficulty of this approach consists in defining the function of each of these complex
networks in a way that captures their essence and simultaneously permits quantitative progress.
Clearly many details of social behavior, in particular, appear too rich and our understanding of
them remains too qualitative to fall in this class. There are however important well documented
exceptions.

A familiar situation is having to choose between seemingly equivalent options, at least given
the amount of information and time at our disposal [18]. In practice many of our decisions
fall in this class. This leads to a degeneracy of choice, typical also of situations when relevant
information is difficult to discriminate from too much noise, or when it cannot be trusted. In
these situations we often rely on the observation of the actions of others we know, as the basis
for our decisions [19, 20, 21, 22, 23|. This strategy has two important advantages: we can be
sure not to do worse than most of the people we know and, in addition, we may actually join a
winning trend early and profit from it.

Recently this type of discriminating imitation has become the focus of an extensive empirical
literature in economy [19] and the social sciences. Bikhchandani, Hirshleifer and Welch [20, 21]
collected a vast amount of empirical evidence that establishes the universal importance of the
choices of others in influencing our own and were able to model this phenomenon in simple
terms. They dubbed the formation of the trend or fad that often results an information cascade;
a process whereby sequential individual choices propagate a piece of information through the
entire population [22]. This phenomenon is also often liked (qualitatively) to the spread of an
epidemic [10, 22]. Interestingly, information cascades lead to the spontaneous formation of large
consensus where there are a priori no individual preferences.

Here I use an implementation of these ideas [23] consisting of a population of N agents,
facing a choice among L labels. These numbers can be varied arbitrarily. At each time step
individuals compare the relative growth rate of their label to that of one of their immediate
acquaintances’, chosen at random. If the latter’s growth rate (the trend’s relative momentum)
is greater the agent switches to his neighbor’s trend; otherwise he keeps his. The model has one
additional ingredient: if a trend’s growth slows down individuals may decide to take a risk in
something new (an empty label). This effect is modeled by peit, the relative growth rate below
which non-conformism sets in. Here peiy < 1/N, which results in population wide trends or
cascades [23]. References to other related dynamical implementations [22] (including models of
herding) and additional discussion are given elsewhere [23].

Typical dynamics [23] are characterized by cycles alternating population disorder, when
many different trends coexist, and order, when most of the population falls into the same label.
Both collective states of order and disorder are dynamically unstable making the evolution very
sensitive to chance events [20, 21, 23]. As a result it becomes very difficult in practice for an
external observer to profit from the reckoning that agents are following trends, especially when
the number of choices becomes large.

To explore the effects of the underlying network morphology on the dynamics I generate
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Figure 1: The correlation between two halves of the same community (green), halves of distinct
communities (blue) and a set of individuals with random connections (red) for N = 256, L = 1000,
z = 8, divided in 4 communities (see text). The correlation inside a community is always close to 1.
The correlation and synchronization of choices between distinct communities is low for small zgyt,
becoming higher as the number of connections between them increases. Individuals with random
connections display intermediate correlation. For high z,, the original communities merge together.
Error bars denote standard deviations over a set of 20 network realizations and many cascade cycles.

directed, binary artificial social networks as small world graphs [1, 24]. These are random
graphs with clustering: N individuals are represented as nodes, each with an an expected
number of connections z given in terms of a distribution P(z). Clustering is produced by
dividing the population into communities, each characterized by an average higher degree of
internal connections per node zj, than external z,, connections (z = zin + Zout)-

In addition to measure choice correlations between parts of the population it is useful to
define a label state vector

U = (NT,N5,...,Ni) /A, A=

where N¢ denotes the number of individuals in label ¢ belonging to group c. The natural inner
product

L

(T]Ty) = (AaAs) "> (NENYD) (2)

i=1

is a (positive definite) measure of the correlation between different groups, see Fig.1.
Fig. 1 shows the correlation of choices between several subsets of the population, within a
community, between two distinct communities and for a control set of individuals with random
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Figure 2: The success rate of several criteria for predicting the next winning trend at the time when
the dominant movement decays. The next winning trend is not easily determined as the largest
secondary trend (blue), the fastest growing (orange) or even the trend with the largest product of
size and momentum (green). The best predictor is the choice of the hub (red), particularly as the
number of choices L becomes large. The upper panel refers to lower hub visibility (his input is
considered on average by each individual with probability pn., = 1/8, each time), the lower panel
to higher visibility (ppup = 1/2). Error bars are as in Fig. 1.

connections. It is clear why it is a good defensive strategy to belong to a tightly knit collective:
communities are islands of coherence in choice space. Thanks to the large redundancy of personal
connections inside the community the coherence of local information is preserved over time and
personal deviations inside the group are small compared to those to the outside. This remains
true even if a few individuals or connections are lost.

Comforting as it may be to keep up with our neighbors it may actually be better to be a step
ahead. As we discussed above this is a tall order, even if one is fully informed of the state of
the whole population. Figure 2 shows the success rate of several criteria attempting to predict
the emerging new trend at the particularly important time when a former dominant movement,
collapses, i.e. when it becomes as large as the largest secondary trend. All criteria based on the
full knowledge of the state of population at this particular time (the largest secondary trend,
the fastest growing one or the trend with the largest product of momentum and size) are far
from good and become very poor for large number of competing choices L.

Interestingly there is a simple alternative solution - it relies on connections, not reasoning
or information about the specific merits of a given choice. First I examine this scenario by
introducing a new well-connected individual into the population, a network hub, as in Fig. 3.
The hub bases his/her decisions, like any other agent, on the state of an average number of
other individuals Z, but his choices can be seen by everybody else. More explicitly we construct
the hub as an individual with typical out-connectivity (the individuals that influence his/her
choice), but with very large in-connectivity. What is particular about the evolution is illustrated
in Figs. 2 and 4: the hub is exceptionally good at picking the next winning trend early, before
it becomes dominant.

However the hub is, by construction, neither better informed nor animated by superior
decision making. This apparent paradox is easily dispelled: the hub’s actions are very visible



Figure 3: An example of a (binary) social network with N = 128, z = 4, divided into 4 communities
(red, blue, green, orange) and with a hub (central node). Here the state of the hub is seen by all
individuals with probability pp,, = 0.25 each time, but has input from z = 4 individuals. As such
the actions of the hub are very visible but not better informed.
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Figure 4: Fig. 4 Evolution of the dominant trend (solid line) and the hub’s trend (red circles)
for L = 10. The hub invariably picks the next dominant trend correctly and early, qualities that
reinforce his social role as a bellwether.

to others. Any reasonable decision on his/her part (the adoption of any growing label) has a
large probability of being immediately followed by many and thus to make the winning trend.
Specifically if the average out-connectivity of any node is z, and the hub has connections to Nyyp
individuals, then the probability that the hub’s choice is considered directly by any individual is

Phub = N 7 (3)

In practice the pull that the largest hub exerts on the population is larger as the influence of its
choice is also felt indirectly, through the propagation of its choices through its neighbors.

The strong influence exerted by nodes with large in-connectivity on the choice of the collective
is independent of the underlying community structure and is enhanced for larger populations
(larger N), as long as ppub(INV) is such that d(Nppyb)/dN > 0. Thus, it is popularity (in
degree), not knowledge or reasoning, that leads to the most successful strategy in an environment
characterized by strong choice degeneracy.

Given memory the hub’s successes reinforce his position and (apparent) foresight. Each
correct 'prediction’ encourages others to heed his/her choices and follow at the next opportunity.
This reinforces the hub’s popularity, allowing him/her to pick the next winning trend with
greater certainty and so on: the process is self-reinforcing. It also naturally leads to a specific
form of preferential attachment [25], where the most connected node - the best trend predictor -
is preferred. Thus, under choice degeneracy, one should expect the appearance of well-connected,
very visible individuals as a social network evolves.

The statements above about the coherence of choice, resulting from community structure,
and of predictability, due to the presence of nodes with large in-degree, were so far illustrated
for a particular class of networks. More general networks, with qualitatively different degree
distributions, give similar results. Figure shows the probability that the choice of the largest
hub (highest in-degree) corresponds to the largest trend, compared to the prediction from the
label of the largest, fastest moving trend, and that of the fastest trend. It also shows how the
effects of tighter community structure, captured by the clustering coefficient of a given node,
imply greater choice coherence between that node and its neighbors.
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Figure 5: The probability of coincidence between the largest trend and the choice of the largest
hub (top left), the largest, fastest moving trend (top right) and the fastest label (bottom left), for a
network with a power law (exponent o = 2) in-degree distribution. Different delays correspond to
varying shifts in time, so that e.g. a delay of -1, indicates the probability that the trend predicts the
largest trend in the next time step. The most connected hub continues to be the best predictor of
the largest trend, even in spite of a smaller probability (here py,p, = 0.09). The value of ph,p gives
a lower bound on its prediction capability, for delay < 0. The positive correlation (bottom right)
between clustering coefficient (a measure of tightness of community structure) and the probability
of equal choice between a node and its neighbors, for a network with power law distributed in-degree
with exponent a = 3.



Nodes with an exceptionally large connectivity are a common property of other complex
networks, including scale-free graphs [26] describing e.g. WWW, power-grids and the large
scale features of protein-protein interactions in vivo. It has been pointed [27, 28] out that such
networks’ utmost fragility is due to the loss of these key nodes. Trend dynamics shows how this
fragility may only be apparent in social networks. Hubs are common nodes, only its in-degree is
exceptionally large. T argued above that there is a fundamental instability for a common individ-
ual to be promoted to this position. Because social connections are rearranged on much faster
time scales than nodes [29], upon loss of a hub a new one can quickly develop from another node
and the structural integrity of the network will be preserved after a short transient. Moreover
the addition of a second well-connected node dealing with the same information reduces the
predictability of emerging trends, unless the two hubs work in tandem (as would happen under
specific types of assortative mixing [29], another property of social networks) and so forth. It is
however perfectly natural for separate hubs to coexist if they relate to different social dimensions
[30], i.e. if they deal with different types of information. In this way the large scale structure of
human societies, when averaged over time and social dimensions may be characterized by many
hubs with varying reaches and interdependencies. These properties may lead to the emergence
of interesting scale-invariances in large social networks associated with decision making and
information flow.

Observing the actions of others is a universal simple mechanism that allows us to handle
imperfect information in our complex social environment to make difficult decisions. We can
protect ourselves from the tyranny of fashions by associating into tightly knit communities or we
may try to set trends by influencing the choices of others through our social connections. Here I
showed that these successful individual strategies lead to dynamically stable social arrangements,
which coincide with some of the most notable observed structures of social networks. Trend
dynamics breaks the degeneracy of our individual choices and leads to the spontaneous formation
of collective movements. Whenever concerted social action is more productive than the sum
of individual efforts hubs may become the social mechanism that facilitates the creation of
consensus most promptly and predictably.
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