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1. Introduction

Since Sargent and Wallace (1975) showed that an interest rate peg rendered the price-level
indeterminate in a rational expectations IS-LM-AS model, there has been a lot of research
in the issue of designing monetary policy in order to secure determinate rational expec-
tations equilibria. This has recently been witnessed in the new line of research in models
of the type dubbed “The New Neo-Classical Synthesis” (Goodfriend and King, 1997).!
These models feature micro-founded, forward-looking private-sector behavior and nominal
rigidities, and the latter feature often turns the issue into one of real indeterminacy. IL.e.,
existence of an infinity of well-behaved rational expectations equilibria for, say, inflation
and output.

To ensure real determinacy (and thus exclude the potential for inefficient, self-fulfilling
fluctuations — sunspot equilibria), some restrictions are typically required on the nominal
interest rate. In this strand of literature, it usually involves having the nominal interest rate
satisfy what Woodford (1999c) has labelled the “Taylor principle.” This principle states
that a central bank following a policy rule in conformity with the celebrated Taylor (1993)
rule, should respond sufficiently aggressive towards inflation and /or output. This will imply
that any sunspot-driven increase in inflation will be met by a contractive policy, which
depresses output and, through the inflation adjustment mechanism, also inflation. The
self-fulfilling nature of the inflation increase is then avoided, and determinacy is secured.?

A current disagreement in the literature is how to appropriately model monetary pol-
icymaking (both from a prescriptive and descriptive point of view). One strand of the
literature considers the performance of instrument rules for the nominal interest rate, e.g.,
of the Taylor-type, and assumes that the central bank commits to following the instrument
rule (this is the case for most of the contributions in Taylor, 1999). Another strand views
the monetary policymaking process as one where the central bank is optimizing, typically
by minimizing some well-defined loss function (e.g., defined over inflation and output).
This is a situation that Svensson (1999, 2001b) characterizes as a central bank adhering to
a targeting rule (see also Rogoff, 1985, and Walsh, 1998, Chapter 8). Many pros and cons
of either model framework have been put forth (see Svensson, 2001b, for a discussion), and
it is the purpose of this paper to contribute to this debate by comparing instrument and
targeting rules in terms of their stability properties; i.e., in terms of their ability to ensure

real determinacy.

1See, e.g., several contributions in the volume edited by Taylor (1999).

’In a Taylor-type rule where only inflation, or inflation expectations, is the argument, the sufficient
restriction is usually that the coefficient on inflation exceeds one; this amount to an “active” Taylor rule
in the language of Leeper (1991).



In a simple “prototype” model of monetary policymaking within the “Synthesis” paradigm,

I therefore examine the issue of real equilibrium determinacy under either monetary pol-
icy framework. It is found — as is well known — that instrument rules only lead to
determinacy under certain conditions, but it turns out that the targeting rule under con-
sideration always secure determinacy (this holds irrespective of whether the central bank
is optimizing under discretion or commitment). The general intuition behind this better
performance of targeting rules is that they circumvent a problem that instrument rules
suffer from. By being mechanical behavioral rules, they are subject to what one could
label a “reverse Lucas critique,” in the sense that any change in private sector behavior
(say, a sunspot-driven increase in inflation) is not triggering a change in policy behavior.
This seems, from a methodologically point of view, somewhat odd, as great care is usually
put into securing that private sector behavior is micro-founded and thus not subject to
the Lucas (1976) critique. The targeting rule framework, on the other hand, treats the
central bank as an optimizing entity just as the rest of the economy’s agents, and this
implies that changes in private sector behavior will lead to changes in policymaking. In
the model I examine, it is precisely this immunity to a “reverse Lucas critique,” that drives
the determinacy results under targeting rules. If, e.g., a sunspot-driven change in inflation
was to occur, an optimizing central bank aiming at inflation stability, would react to this
change in order to minimize its loss function. As a consequence, such non-fundamental
equilibria are ruled out.?

As a by-product of the above analysis, it is found that equilibrium relationships be-
tween the nominal interest rate and macroeconomic variables may tell little about the
economy’s stability properties. This is further demonstrated within an extended model
from which “data” are extracted from stochastic simulations of determinate equilibria. Es-
timations of conventional Taylor-type rules then turn out to sometimes suggest equilibrium
indeterminacy by revealing interest rate functions, which are not in conformity with the
Taylor principle.* This is particularly prevalent when monetary policy is conducted under
commitment. While econometric estimations of nominal interest rate response functions

thus may be uninformative regarding the determinacy issue, they may provide information

3My results are thus supportive of the following statement by Svensson (2001b): “Macroeconomics
long ago stopped modelling private economic agents as following mechanical rules for consumption, saving,
production and investment decisions; instead they are now normally modeled as optimizing agents (...)
It is long overdue to acknowledge that modern central banks are, as least when it comes to the inflation
targeters, optimizing to at least the same extent as private economic agents” (p. 51).

4Recently, Clarida et al. (2000) have argued, based on estimated Taylor rules, that lack of conformity
with the Taylor principle in the pre-Volcker /Greenspan period, suggests that the US economy was subject
to expectations-driven fluctuations (Orphanides, 2001, and Perez, 2001, question the identified lack of
Taylor principle using real-time data).



on whether optimization-based policy is performed under discretion or commitment.

It should be emphasized that the results presented here are cast within a particular
class of economic models (which, however, it is fair to say have had significant impact
in recent literature). Other models of monetary policymaking, e.g., do not necessarily
endorse active Taylor instrument rules as ones securing determinacy. E.g., models with
money in the production function, models with loans constraints, limited participation
models, or models of the fiscal theory of the price level determination. On examples of
determinacy issues with Taylor-type instrument rules in such models, see, e.g., Benhabib
et al. (2001), Carlstrom and Fuerst (1999), Christiano and Gust (1999) and Woodford
(1996), respectively. An interesting avenue for future research would be to examine the
properties of targeting rules within these models.

The remainder of the paper is structured as follows. Subsection 2.1 presents the simple
model, and Subsection 2.2 defines the monetary policy frameworks under consideration.
Subsections 2.3 and 2.4, respectively, considers determinacy under discretionary and com-
mitment targeting rules. Section 3 exemplifies, in an extended model, how estimations
of interest rate response functions may give misleading answers regarding an economy’s

stability properties. Section 4 summarizes and the Appendix contains various proofs.

2. Real equilibrium determinacy and policy rules in a simple model

2.1. The model

This section presents a stripped-down version of a model belonging to the “The New Neo-
Classical Synthesis” class. The present version corresponds closely to that used by, e.g.,
Clarida et al. (1999) and Woodford (1999b). Time is discrete, and aggregate demand in

the closed economy in periods ¢t = 1, 2, ..., 0o is represented by an intertemporal “IS curve:”
=By — o (e — Eymen) + 1y, 0 >0, (1)

where z; is the output gap measured as the log deviation of output, 1, from the natural
rate (flex-price level), yi*. The (short) nominal interest rate, i, is taken to be the monetary
policy instrument. The inflation rate is 7 (the log difference of prices between ¢t — 1 and t).
E; is the expectations operator conditional upon all information up to, and including, pe-
riod t. This expression approximates the Euler equation characterizing optimal aggregate
consumption choices. Parameter ¢ can thus be interpreted as the rate of intertemporal

substitution (times the steady-state ratio of real interest rate sensitive demand to total de-



mand). The variable u, comprises interest-insensitive spending and expected (log) changes
in the natural rate of output. Aggregate supply is modelled by an expectations-augmented
“Phillips curve:”

Wt:ﬁEtﬂt_A,_l‘l—lﬁl't—FEt, I€>0, 0<ﬁ<1, (2)

The structure of (2) resembles what Roberts (1995) has labelled the “New Keynesian
Phillips Curve” and it can be derived from a variety of supply-side models.” Inflation is
increasing with the output gap as prices are set as a mark-up over real marginal costs,
which are increasing with the output gap. Higher expected future inflation raises current
inflation, as price setters under this sticky-price formulation cannot fully adjust to current
shocks; hence, to protect the discounted stream of real profits, expected future prices
become important — to an extent determined by the discount factor 3. The term ¢, is a
shock, often labelled a “cost-push” shock, cf. Clarida et al. (1999), and it comprises any
variation in m; unexplained by the output gap and expected future inflation. It is assumed
to follow an AR(1) process, i.e., e; = per_1 + &,;, where 0 < p < 1 and &, is a white-noise
innovation.

This model is one where an interest rate peg would lead to an indeterminate equilibrium
(this will be formally seen below). To understand this, consider a sunspot-driven increase
in inflation expectations. As this does not affect the nominal interest rate, the real interest
rate falls. This stimulates demand and the output gap. Through the interaction of the
IS- and Phillips-curves, this implies an increase in current inflation that is larger than
the increase in expected inflation. The increase in expected inflation therefore initiates an
increase in output and inflation, which is followed by the variables’ gradual return to steady
state. As the increase in inflation expectations is of arbitrary size, one cannot pin down
a unique non-explosive rational expectations equilibrium. The economy is consequently
vulnerable to expectations-driven fluctuations, i.e., sunspot fluctuations.

The description of the model ends with a characterization of the preferences of society.

These are captured by the loss function

L=Ey) A" Maf 47|, A>0, (3)

t=1

reflecting the conventional idea that variations in inflation as well as the output gap are
disliked.®

3For example, it approximates the aggregate pricing equation emerging from monopolistically competi-
tive firms’ optimal behavior in Calvo’s (1983) model of staggered price determination (see, e.g., Rotemberg
and Woodford, 1998, for a derivation).

SWith the model (1)-(2), L may represent a second-order approximation to the (negative of the) utility



2.2. Monetary policy frameworks

In defining the monetary policy frameworks to be considered, I follow the terminol-
ogy of Svensson (1999, 2001b). First, a targeting rule is a framework there the cen-
tral bank chooses the path of interest rates {i;},~, so as to minimize a loss function
S, Ly (wig, wag, -y wye) subject to (1) and (2), where wiy, woy, ..., wy are goal variables.
More specifically, this rule is what Svensson labels a general targeting rule; i.e., a full
commitment to a loss function. This corresponds to the establishment of a monetary pol-
icy regime with clearly defined constitutional mandates about which goal variables should
be stabilized, at which values they are stabilized around, and how much relative weight
each goal variable should receive in policy conduct. Svensson also defines a specific tar-
geting rule as an explicit description of conditions for the relationships between (target)
variables, which policymaking should aim to satisfy. Typically, these conditions are first-
order conditions associated with the minimization of an appropriate loss function (see also
Svensson and Woodford, 1999, for more discussion of taxonomy). For my purpose, it does
not matter whether a general or specific targeting rule is examined, when it is the relevant
first-order condition(s), which must be satisfied under either definition. This is because it
is such conditions, which are crucial for the results on real determinacy; see below.
Secondly, an instrument rule is a framework where the central bank’s path of interest
rates is given by a commitment to {ry (¢, Yo, .o, Y) } 1oy, Where 7 is some function,
and 1y, Vo, ..., Y, are variables to which the interest rate responds in period ¢; these
may represent any lags or expected leads of variables. Associated with these distinct

frameworks, I define rational expectations equilibria for the current example by:

Definition 1 (Targeting rule equilibrium). A targeting rule equilibrium (TRE) is a
rational expectations equilibrium satisfying

a) The necessary and sufficient conditions determining the optimal choice of {i;}, .,
where optimization may be conducted either under commitment or discretion

b) Equations (1) and (2)

Definition 2 (Instrument rule equilibrium). An instrument rule equilibrium (IRE)
is a rational expectations equilibrium satisfying equations (1) and (2), with s (1, Vop, <o Ypnt)

substituted for i;, t = 1,2, ..., c0.

of a representative agent in the economy. See Woodford (1999c¢), where it is subsumed that some fiscal (tax)
policy keeps the natural rate at the efficient level (by counteracting the distortion caused by monopolistic
competition). With this assumption, the appropriate target value for the output gap is zero.



2.3. Real determinacy with a targeting rule under discretionary policy

A natural targeting rule framework within this model, is the case where the loss function
to be minimized is simply L. This is often referred to as “flexible” inflation targeting; cf.
Svensson (1999). Focusing here on the case of discretionary policymaking, I consider the

case where the central bank solves

min E; [Z [ (/\xf + 7'('?)] , st (1) and (2), (4)
{it}gil t=1

and where minimization is performed on a period-by-period basis. The resulting equilib-
rium outcomes for inflation and the output gap are summarized by the following proposi-

tion:
Proposition 1. The targeting rule described by the problem (4) under discretion, results

in a unique, non-explosive TRE, characterized by

A K
REad—pp) " T TR A Bp) "

(5)

Ty =

Proof. Since the only predetermined variables in period t are u, and ¢, it follows that
a time-consistent equilibrium must satisfy the recursion f; (ji,,€;) = ming, {\x? + 72 +
GE, {Et (ut +1,€t+1)]}, where ¢, is the associated ‘“value” function, and where the mini-
mization is performed subject to (1) and (2). In a time-consistent equilibrium, m; and
x; will be therefore be (potentially time-varying and non-unique) functions of p, and &;.
Deciding on iy, Eymyq and E;x, .1 can therefore be taken as parametrically given. Sub-
stituting (1) and (2) into the per-period loss function, one recovers the necessary (and

sufficient) first-order condition for optimal policy:
)\.I't + KT = 0. (6)

Use (6) in (2) to obtain the following expectational difference equation for inflation: m, =
B (14 k2/A) By +(1+ £2/X) " e, Sincem, is free and the eigenvalue, (1 + k2/)) /8, is
strictly greater than one, it follows by use of Blanchard and Kahn (1980) that 7, given by
(5) is the unique, non-explosive rational expectations solution to this difference equation.

By (6), the unique solution for x, follows. B

Proposition 1 demonstrates that under a targeting rule, the economy exhibits real equi-
librium determinacy. I.e., the rational expectations solutions for output gap and inflation

are unique functions of the fundamentals of the economy, here just represented by the

6



predetermined variable ;. The first-order condition for optimal policy under the targeting
rule gives a mathematical clue as to why this is so.

Consider the situation where a sunspot driven increase in inflation and the output gap
was occurring. Obviously, a central bank operating with the aim of price and output gap
stability — as implied by the envisaged targeting rule — would immediately raise the
interest rate in order to bring inflation and output towards their targets. In consequence,
the imagined increase in inflation and the output gap cannot be a rational expectations
equilibrium. The first-order condition (6) simply precludes such equilibria. The condition
shows that the central bank sets the interest rate so as to equate the marginal loss in
terms of output gap and inflation to zero. Note that this implies that in equilibrium
any co-movement between the output gap and inflation is negative. Consider then a
candidate equilibrium, where the relationship between inflation and the output gap is
given by x; = (w/k) 7, where w is some parameter. Inserting this relationship into (2)
yields the difference equation 7, = (1 — w)_lEﬂrtH + (1 - w)_l g;. This to leads to
infinitely many solutions for m; only if 5 (1 — w)fl is numerically greater than one. A
necessary condition for this is w > 0. l.e., in a sunspot equilibrium in the model, the
co-movement between inflation and the output gap is positive. This, however, contradicts
the first-order condition guiding optimal monetary policy under the targeting rule; hence,
equilibrium determinacy prevails.”

In terms of the policy instrument, the explanation for the determinacy of the TRE is
somewhat more involved. Note, however, first that the equilibrium value of the nominal
interest rate can be expressed as a function of the predetermined variables according to

the following lemma:

Lemma 1. The targeting rule described by the problem (4) under discretion, results in
an equilibrium path for the nominal interest rate, which is a unique function of the prede-

termined variables:
 k(l=p)t+arp 1

o [R2HA(1— ﬁﬂ)]gt ot g

"One may claim that it is unrealistic that the central bank can assure that (6) holds in any period, since
it does not control x; or m, but rather 7;. First note that (6) is in principle not different from any other
first-order condition arising from optimal public policy, e.g., optimal tax policy in a simple public finance
problem equating the marginal loss of taxes in terms of of private consumption with the gains of public
consumption (this condition will not involve the tax rate). Hence, (6) appears not less realistic than such
conditions. Secondly, if one acknowledges imperfect control explicitly (by, say, introducing a stochastic
control error in policy), the condition (6) would hold in expected value. It is easy to show, analogously to
the proof of Proposition 1, that the expected values of inflation and the output gap would be determinate.
Actual values would thus differ from these to an extent determined by the exogenous imperfect control.



Proof. Lead m; and x; as given by (5) and take period t expectations to get

Ap .
K2+ A(1—8p) "

Eies) = i 8)

E = _
t7Tt+1 ,{/2 + A (1 — ﬂp) €ty

which together with z; inserted into (1) yields (7). R

The expression for i, as given by (7) reflects that under discretion, it is feasible (and
obviously, optimal) to offset any impact of the u,-shock upon the economy. This shock
does not present a trade-off in policy, and this explains why the equilibrium values of the
output gap and inflation are independent of this shock. An e;-shock, however, induces
such a trade-off, implying an interest rate response that “spreads out” the impact upon
the output gap and inflation (to an extent determined, among other parameters, by the
preference for output stability relative to inflation stability, \).

Now, to facilitate an understanding about why indeterminacy is ruled out under a
targeting rule, it is instructive to consider the case where the monetary framework is one
of an instrument rule, and the instrument is set exactly according to (7). The case is

described in the following lemma:

Lemma 2. An instrument rule characterized by (7), results in infinitely many non-explosive
IRE.
Proof. See Appendix A.

Lemma 2 is a standard example of real equilibrium indeterminacy in models of this
type, when the interest rate rule is “passive.” By not instructing the central bank to
respond to, say, inflation appropriately, self-fulfilling equilibria can occur. The intuition
for this phenomenon is well known, and corresponds to the one provided in Subsection 2.1
for the case of a pure interest rate peg. This reflects that interest rate responses towards
exogenous variables (here, the shocks) have no consequences for determinacy analysis (cf.
Svensson and Woodford, 1999).

The question is then why such equilibrium indeterminacy does not prevail under the
targeting rule framework where the interest rate follows precisely the same path? To answer
the question informally, the reason is that the passivity imbedded in the instrument rule
characterized by (7), which leads to indeterminacy in an IRE (with a non-optimizing central
bank), is absent under a targeting rule where the central bank acts actively to achieve
its goals by inducing (6) and thus inducing determinacy. Clearly, a central bank with
mandates for inflation and output stability would change its behavior from (7), if suddenly,

e.g., inflation and output gap expectations rose for no fundamental reason. Otherwise, one
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would have a case of a “reverse Lucas critique,” where changes in private sector behavior
is associated with unchanged policymaker behavior. Nevertheless, the described activism
under a targeting rule may very well lead to an interest rate path, which in equilibrium
looks passive [as (7) surely does].

This last observation suggests that examining an equilibrium relationship between the
nominal interest rate and macroeconomic variables may not yield the appropriate answer
to if and why determinacy prevails under a targeting rule. Indeed, before presenting
the more formal argument for determinacy in terms of the nominal interest rate setting,
it is instructive first to present an argument, which at first glance may seem to offer an
answer for determinacy, but after closer scrutiny does not.® For this purpose, the following
lemma on the equilibrium relationship(s) between the nominal interest rate and the model’s

endogenous variables is useful:

Lemma 3. The targeting rule described by the problem (4) under discretion, results in
infinitely many equilibrium relations between the nominal interest rate and the predeter-

mined and endogenous variables:

i =Y biEmy i — Y a;iFxy 4 ce + et 9)

i=0 i=0
where the only restriction on the coefficients {a;};-, {b; }iy and c is
oA bip' + 0k aip’ + co [52 +A(1— ﬁp)} =k (1—p)+orp. (10)
=0 i=0

Proof. In order for the nominal interest rate to be consistent with the TRE values of
current and expected future variables, it follows by (9) and Lemma 1 that the following

relation must be satisfied:

ad ad k(1 —p)+orp
b; i — B D = .
i:ZO Emy ;a tLe4i + CEL A= ﬁp)]gt

One can then substitute in the TRE values of the contemporaneous and expected future

variables [i.e., use (5)], in order to rewrite this relation as

S A > K k(1 —p)+orp
bip* + i’ +cey = :
2 A & e T T S A Ao

$While firstly presenting an inadequate answer may rightfully appear odd, it will serve to highlight
the issue of (potential) inferences about the determinacy issue from estimated interest rate relations
investigated further in Section 3.



If this is to hold for every realization of e, it follows that the coefficients {a;};, {bi}iy

and ¢ must satistfy (10). &

The lemma shows that one can represent the unique TRE as equilibrium relations between
the nominal interest rate, the predetermined variables and any current or expected leads of
the endogenous variables. However, as there is only one restriction on this representation,
(10), one can only express the nominal interest rate as a unique function of one endogenous
variable (note that all representations involve the same unique response to the p,-shock).

One of these representations is the one presented by Clarida et al. (1999). It expresses
the nominal interest rate as a function of the one-period ahead inflation expectations, and
thus depicts a forward-looking Taylor rule where there is no response towards the output
gap. In the terminology of Lemma 3, this corresponds to a case where a; = 0, all i, by = 0,
b; =0, all i > 1, ¢ = 0, and where b; is determined by (10). This results in the following

expression for the nominal interest rate:

k(1 —p)

¢ l‘l‘ a)\p

] Emi + é,ut. (11)
Note that the coefficient on expected inflation is strictly greater than one, implying that any
increase in expected inflation is associated with an increase in the real interest rate. The
nominal interest rate is thus in conformity with the “Taylor principle” (or, alternatively, it
is an “active” Taylor rule). This implies that the explanation for indeterminacy of an IRE
under the interest rate rule (7) does not apply. Immediately, one could therefore think that
since the nominal interest rate can be expressed as (11), uniqueness of the TRE has been
explained. Indeed, as shown in Appendix B, b; > 1 is a necessary condition for an IRE
with an interest rate rule of the form i; = b1 E¢my 1 + (1/0) u, to be determinate. However,
the appendix also shows that if by > 1+ 2 (1 + )/ (0k), then the IRE is indeterminate.
This is a reflection of the well-known phenomenon that an interest rate rule can be “too
active.” In that case, the economy is vulnerable to expectation-driven fluctuations. E.g.,
an arbitrary increase in E;m;,; can be self-fulfilling, as it implies a huge fall in demand
and output and, hence, current inflation, because of the strong increase in the real interest
rate. The economy will then “zig-zag” back to steady state (e.g., E;mi12 would be below
steady state, which is consistent with E;m;,; being above, as the real interest rate in ¢ 4 1

would fall strongly thereby pushing up output and inflation above steady state in ¢ + 1).°

9In accordance with the discussion following Proposition 1, the co-movement of inflation and the output
gap will be positive on this path towards steady state.

10



In terms of (11), it means that whenever s (1 — p)/(Ap) > 1+ 2(1+ ) /k (which
cannot be ruled out) an IRE would be indeterminate. Hence, the fact that the value
of the nominal interest rate can be expressed as (11) is not the explanation for the
uniqueness of the TRE (as uniqueness did not require any restrictions on the parame-
ters of the model). To further see that looking at a particular equilibrium representa-
tion may give misleading information about the economy’s stability properties, consider
the case where i; is formulated as a function of current inflation only [i.e., all param-
eters {a;}oog, {bi}icy and c in (10) except by are zero]. Then, by Lemma 3, it follows
that iy = [p+K(1—p)/(6N)] 7 + (1/0) ;. As evident, the coefficient on m; can be
greater or smaller than one, which implies that an IRE associated with this interest
rule would be indeterminate for some parameter constellations (e.g., for those imply-
ing by being sufficiently lower than one). Finally, note that one might as well express
1; as a function of the one-period ahead expectation of the output gap. It immediately
follows by (6) and (11) that the interest rate expression in this format would become
ir=— [N+ (1—p)/(6p) Exiz1+ (1/0) p,. Appendix C shows that an IRE under this
interest rule is always indeterminate.

The above demonstrates that an examination of the equilibrium relationship(s) between
the nominal interest rate and macroeconomic variables could not provide information about
the economy’s stability properties; as such empirical investigations of interest rate functions
may reveal little about stability properties. Yet, Proposition 1 has shown that the rational
expectations equilibrium under the examined targeting rule is always determinate. The
explanation, in terms of the policy instrument 7, is that underlying the first-order condition
(6) is a reaction function which expresses then nominal interest rate as a unique function

of the shocks and any private sector expectations.

Lemma 4. Let 7f,, and zf, ,, respectively, denote the private sector’s subjective expec-
tations about the period t + 1 inflation rate and output gap (formed in period t). The
targeting rule described by the problem (4) under discretion, results in a unique expression
for the nominal interest rate, which holds for any values of 7§, and xf_,:

o oA+ K2 +KB 1., K 1
1 = > ()\ n ,%2) T4 + ;ItJrl + mgt + ;,ut. (12)

Proof. Substitute x, and m, as given by (1) and (2), respectively (with 7§ _, replacing
Eymy1 and xf,, replacing Eyx, 1), into the first-order condition (6). As (1) and (2) hold for
any values of n{, | and w7, it follows that the interest rate resulting from the substitution

will be uniquely given by (12) for any values of 7§, | and x7,,, when (6) applies, i.e., when

11



the targeting rule is described by the problem (4) under discretion. B

This lemma shows why there is determinacy under the considered targeting rule with
reference to the policy instrument ;. It follows from (12) that optimal behavior of the
central bank implies responses towards expectations which render any other expectations
than those depending on fundamentals only [i.e., (8)] for non-rational or inconsistent with
a non-explosive rational expectations equilibrium.

Consider, first the case where output gap expectations, e.g., exceed those given by
fundamentals only. Le., the case where a7, > Eyxq, with E;z,14 given by (8). By (12),
any such divergence between zf,; and E;z;,; results in an increase of the interest rate
by 1/o, which neutralizes the impact on x; entirely. The value of x; will thus remain
at its value dependent on fundamentals only, i.e., (5).1 Moving one period forward, it
follows that the central bank again through (12) secures x;.; to be consistent with its
value dependent on fundamentals only. Hence, any divergence between zf,, and E;z,
given by (8) cannot be a rational expectations equilibrium.

Consider then the case where inflation expectations, e.g., exceed those given by fun-
damentals only. ILe., the case where nf , > Eym,q with E;meq given by (8). By (12),
any such divergence between 7f ; and E;m;1; results in an increase of the interest rate
by [0 (A + K%) + k8] / [0 (A + K*)]. As this increase is greater than one, the real interest
rate increases; in particular, by k3 /[0 (X + x?)].}* This lowers the current output gap by
k03 / (A + £?); cf. (1). The net effect on current inflation is therefore, cf. (2), 8 — %5/
(A + %) = BN/ (A + K?) < 1. Hence, the effect is an increase in current inflation above
its fundamental value, which is smaller than the increase in inflation expectations. Pro-
ceeding forwards in time, it follows that if the increase in inflation expectations, above
those given by fundamentals only, is to be a rational expectations equilibrium, it will be
one where inflation in increasing through time (and the output gap is decreasing through
time). However, such explosive rational expectations equilibria are ruled out in this model.
Hence, the targeting rule secures equilibrium determinacy by the implicit reaction of the
interest rate to deviations from non-fundamental based expectations.

In equilibrium, the nominal interest rate will evolve according to (7) which in an IRE
yields indeterminacy, but the associated TRE will be determinate due to the “threat” to

fight non-fundamental changes in expectations, which is imbedded in the decision making

10Such a change in expectations thus works analogously to a u-shock, i.e., it presents no trade-off for
the central bank.

INote that the coefficient on 7§ 11 in (12) thus conforms with the Taylor principle, but also that it is
smaller than the upper limit identified on b; in the determinacy analysis of the forward-looking Taylor
rule i; = b1 E¢miyq + (1/0) i, above.
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of an optimizing central bank.'?

The expression for the nominal interest rate (12), is mathematically equivalent (up to
unimportant constants) to the instrument rule recently proposed by Evans and Honkapohja
(2001). They consider the stability properties of adaptive learning rules within a non-
rational expectations version of the model used here. They do not make the distinction
between targeting and instrument rules, and focus essentially on the latter (they, however,
do not use this terminology), and show that (7) leads to indeterminacy (and instability
under adaptive learning). They argue that this results from all agents having rational
expectations (p. 11), and that departure from rational expectations and implementation
of (12) as an interest rate rule leads to determinacy (and stability under adaptive learning).

The difference between their paper and mine arises in terms of interpretation. I argue
that optimization by a central bank (i.e., adherence to a targeting rule) implies determi-
nacy, because the associated first-order condition implies a reaction function like (12) for
any expectations. In the associated unique rational expectations equilibrium, however, one
can express the nominal interest rate as (7) (or in infinitely many other ways, cf. Lemma
3). In contrast, when analyzing the stability properties of (7) in a rational expectations
context, Evans and Honkapohja do not explicitly use the first-order condition (6) [although
they use it, together with the assumption of a unique rational expectations equilibrium,
to derive (7)]. Indeed, of the infinitely many rational expectations equilibria they then
show exist when the central bank adopts (7), just one satisfies the first-order condition;
namely the equilibrium depending on fundamentals only. Hence, I emphasize that it is the
first-order condition, reflecting the central bank’s reactions to non-fundamentals-based-
equilibrium expectations, that secures a unique rational expectations equilibrium.

In a similar vein, Svensson and Woodford (1999) advocate that in order to ensure a
unique rational expectations equilibrium (in a model related to that of Subsection 2.1,
but with transmission lags), one must specify an instrument rule that responds to out-
of-equilibrium behavior. They also consider targeting rules, but perform determinacy
analyses within an IRE (in my terminology). They suggest a type of instrument rule,

which “punishes” deviations from the specific targeting rule (i.e., the optimality condition).

12An analogy with the well-known Barro and Gordon (1983) set-up may be enlightening. In this
type of model, the central bank chooses m; to minimize (3), subject to a Lucas-style supply equation,
ry =m—Tg—ax*, 2* > 0, taking as given subjective inflation expectations, w§. In the rational expectations
equilibrium, i.e., where 7§ = E,_;m, one has that m; = Az*. It would from this expression, of course,
be erroneous to conclude that monetary policy is passive towards a (non-rational) change in inflation
expectations, as this would ignore the reaction function, m; = [A/ (1 4+ A)] (7§ + 2*), which is crucial in
the derivation of the rational expectations equilibrium.
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Within the model considered here, such an instrument rule would be the equivalent of

o A k(1—p)+orp 1
It =W <7Tt + K)xt> + 0_[1%2 —I—)\(l —ﬁp)]€t+ O_,Ut, (13)

where w is an arbitrary constant [this is consistent with Lemma 3, when one constrains
c to equal [k (1 —p)+oXp] / {o[k*+ (1 —Bp)]} and uses (10) to identify the linear
equilibrium relation between 7; and z;|. In equilibrium, 7, + (A/k) z; = 0 by (6), and
the interest rate becomes identical to (7). By suitable choice of w (typically w > 1),
determinacy of the associated IRE — implementing the discretionary equilibrium — is
assured. I believe that implementation of (13) for determinacy is unnecessary, as the
optimization imbedded in the targeting rule approach delivers determinacy through its
implicit commitment to fight non-fundamentals-based-equilibrium expectations as argued
above [since (13) directly incorporates the first-order condition, Svensson and Woodford

note that their analogous specification is “somewhat in the spirit of a targeting rule” (p.
43)].13

2.4. Real determinacy with a targeting rule under commitment policy

This sub-section considers the case where the central bank under the targeting rule has
the ability to commit to a policy plan for the future. I.e., the assumption of discretionary,
period-by-period optimization is now abandoned in favor of an assumption that the bank
acts in accordance with commitment under a “timeless perspective” (Woodford, 1999b).*
It turns out that the issue of determinacy is not qualitatively affected by this assumption,
but that the resulting equilibrium relationships between the nominal interest rate and
endogenous variables even more strongly demonstrate that inference about equilibrium
determinacy from these can be misleading.

First, the following proposition characterizes the equilibrium outcomes under the tar-
geting rule (4), and where policy is conducted according to commitment under the timeless

perspective:

13Note that, as argued by Svensson (2001b), an instrument rule like (13) is more complicated than the
associated specific targeting rule, m; + (A\/k) 2y = 0, as the former involves e; (which could correspond to
what Svensson interprets as “judgement in monetary policy”), p, as well as more parameters. It could
therefore be more difficult to verify by the private sector whether the central bank has lived up to its
intentions under (13) than under the targeting rule.

14This concept elegantly circumvent the arbitrariness of the initial date in the optimization problem,
which would otherwise imply that the bank in the next period would have the incentive to “re-commit”
(as this date is then an arbitrary initial date). The timeless perspective involves commitment to a policy
pattern that the central bank “would have wished to commit itself to at a date far in the past” (Woodford,
1999b, p. 293), implying that the initial date has no meaning. See McCallum and Nelson (2000) for further
discussion.
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Proposition 2. The targeting rule described by the problem (4) under commitment, re-

sults in a unique, non-explosive TRE, characterized by

A A
To= XTa e, = (1—x)zi1 + a2 (14)
1+ 67 (1 4+ k2N — \/(1 +871 (1 + mQ/)\)>2 — 467"
0 < x= 5 <1,
KX
= — > 0.
i A(1—x0Bp)

Proof. In solving for the commitment policy, set up the Lagrangian (cf. Currie and
Levine, 1993; Woodford, 1999a):

L=F [Zﬁt_l (Aflf? + ﬂ'f) + 20; (7 — BET1 — Koy — &) |
t=1

where ¥, is (half the) multiplier on (2). [There is no need to include the constraint (1),
as the multiplier on this will be zero.] From the first-order conditions \x; — ¥k = 0 and

m + ¥ — ¥:_1 = 0 one obtains the optimality condition
A
T+ E (.I't — th,l) =0. (15)

[Under a “non-timeless perspective” this condition would not hold in period 1, where
instead (6) would apply. This has no implications for determinacy, as under (6) equilibrium
is also unique if future values are; cf. Proposition 1.] Use (15) together with (2) to obtain
a second-order difference equation in x;, By, 1 = (1 + /(1 + fo/)\)> z — B i +

(6’% / A) €¢, which can be written in matrix form as

Etr1 p 0 0 £t §i1
Tt == 0 0 1 L1 + 0
Bz BN =7 (1487 (14 2/N)) y 0

The real and positive roots of the system are p and

4 ) (17 (/) - 457!
2 .

This implies that two roots are smaller that 1 and one is above. As the system involves
two predetermined variables (¢, and x;_,) and one jump variable (x;), this implies by use

of Blanchard and Kahn (1980) that the system identifies a unique, non-explosive rational
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expectations equilibrium solution for x;. The solution is easily recovered by the method of
undetermined coefficients. Combining this solution with (15), the unique solution for m;

follows. &

This proposition mirrors Proposition 1 for the case of discretionary policymaking by show-
ing that a targeting rule with commitment policy also leads to a determinate rational
expectations equilibrium, where inflation and the output gap are unique functions of fun-
damentals only (here, z; _; and &;).

Note the difference of the solution with the one under discretion. In contrast with (5),
the solution under commitment, (14), differs because the lagged value of the output gap
appears. This reflects the optimality of “history dependent” policy, or “inertial policy,”
as stressed by Woodford (1999a.,b). In this model, such behavior induces a more favorable
inflation-output gap trade-off in the following sense. Consider the case where the economy
is hit by a temporary (positive) cost-push shock. By letting the associated contractive pol-
icy persist into the future, the central bank lowers inflation expectations, which dampens
current inflation and thus helps to stabilize the cost-push shock. Hence, a given reduction
in inflation can be attained at a lower cost in terms of the current output gap; if the
reduction in the output gap persists. This is indeed reflected by the solution (14), where a
temporary &; > 0 lowers z;, but also all z;,; and 7, 7 > 0 (to a decaying extent). Albeit
optimal, the solution is time-inconsistent, as the central bank in period ¢t + 1 (absent the
ability of sticking to its commitment), has the incentive to stop contracting the economy
from then on.

As under discretion, one can characterize the path of the nominal interest rate as

function of the predetermined variables:

Lemma 5. The targeting rule described by the problem (4) under commitment, results
in an equilibrium path for the nominal interest rate, which is a unique function of the

predetermined variables x;_1, €, and ji;:

) Ao A
zt:—x(l—x)<1——>$t1+f(1—X_P) <1__>5t+_'ut' (16)
o K g K g

Proof. Lead 7, and z; as given by (14), apply the value of x;, and take period t expecta-

tions to get

A A
Emy = ;(1—X)X$t—1—EW(1_X—P>5t;

Exi1 = Xmo1— e (X +p)e
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which together with x; inserted into (1) yields (16). R

One sees again that the u,-shock is completely neutralized, thus explaining its absence
in the solutions for inflation and the output gap. As the ;-shock entails an inflation-
output gap trade-off, it is not fully neutralized, and (16) compared with (7), shows how
the nominal interest rate under commitment depends upon history in order to induce the
optimal inertia in policymaking.

Paralleling Lemma 2, which describes the case of discretion, consider what happens if

the monetary framework is one of an instrument rule, and 4, is set according to (16):

Lemma 6. An instrument rule characterized by (16), may result in infinitely many non-
explosive IRE.
Proof. See Appendix D. R

This lemma reflects once more that instrument rules that are “passive” may induce real
equilibrium indeterminacy of IRE.'® In order to address why there, in contrast, always
is determinacy under a targeting rule (implying the same instrument path), it is again
instructive first to look at the relationship between the nominal interest rate and the
endogenous variables of the model. One will then — more clearer than under discretion —
see that such relationships, which may appear in data, say little, if any, about the stability

properties of the economy. The following lemma applies:

Lemma 7. The targeting rule described by the problem (4) under commitment, results
in infinitely many equilibrium relations between the nominal interest rate and the prede-

termined and endogenous variables:
=Y bEmy — Y aiFr. .+ —duy g + et (17)
i=0 i=0

o)
%

where the only restrictions on the coefficients {@,}.,, {E} o C and d are

D bhi—(1—x)x' — Z_ZXZH —d=-=(1-x) (1 - —) , (18)
i—0 K i=0 K
© _ A\ i—1 i1 ; 00 B i—1 i B %) \o
i A=) X7 —p | +edmd X +e==(1-x—p) 1-—].
i—0 N =0 i=0 =0 o K

15 Although, as explained in the proof, determinacy may be possible for parameter configurations securing
that the coefficient on the lagged output gap is not negative. If the coefficient is sufficiently positive,
determinacy prevails as the interest rate increase in response to a higher lagged output gap, invokes a
sufficiently contractionary policy stance such that self-fulfilling inflationary booms are ruled out.
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Proof. In order for the nominal interest rate to be consistent with the TRE values of
current and expected future variables, it follows by (17) and Lemma 5 that the following

relation must be satisfied:

Bz’EtTrtJri — ZaiEtﬂft+i + Cey — dl’t,1 (20)
=0 =0
Ao Ao
- 20 (1-2) e Zamx-p (1-2) e
o K o K

One can then successively forward the TRE expressions for inflation and the output gap,
(14), in order to find

A . A Lt S .
Emeyy = - (I=x)x'me1— ESD ((1 - X) ZXZ g 1P] - PZ> Et,
Exy, = X o —e) X e,

which inserted into (20) yields

=0 | M §=0

> b, [é (1—x)xX'w1 — 290 ((1 - X) Zixi*jflpf _ pi> 5t]

i—1

— Zaz' [Xiﬂflftl —p Z X pe
i=0

J=0

= —%(1—)()<1—A—:>It—1+§(1—x—p) <1—)\—:>5t-

+ Cey — dl't,1

e e}

If this is to hold for every value of x, 1 and e, it follows that the coeflicients {@;},,

{Ei}(')io’ ¢ and d must satisty (18) and (19). &

This lemma shows that, just as under discretion, the unique TRE nominal interest rate
can be represented as infinitely many equilibrium relationships between the predetermined
variables and current or expected leads of the endogenous variable. In contrast with
discretion, the difference is that two restrictions on the relationships must be satisfied
since there are two predetermined variables (apart from p,, which does not play a role; cf.
above). In consequence, one can express the nominal interest rate as a unique function of
two endogenous variables.

As the purpose of this exercise is to show that equilibrium relationships tell little about
determinacy, consider the representation which most closely corresponds to (11); i.e., the

often presented equilibrium representation under discretion. This would now be a case
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of iy = biEymey1 + @ox: + (1/0) iy, and where by and @y are identified by (18) and (19).
In other words, a forward-looking Taylor rule where the output gap now matters. The

following expression emerges by applying Lemma 7:

. K 1
1t = <1 — )\—) Etﬂ-tJrl + — - (21)
g g

Hence, @y = 0, b; < 1 and one cannot rule out that b; < 0. That is, in equilibrium — in
a determinate equilibrium — there may be a negative relationship between the nominal
interest rate and inflation expectations, and it is always the case that the Taylor principle
fails as also Clarida et al. (1999) emphasize [it thus follows trivially by Appendix B that
an IRE under (21) is always indeterminate]. A reason is that under a history-dependent
policy, a contraction today (say, towards a positive and temporary ¢;) is expected to
be followed by a contractive stance in the future. This reduces inflation expectations.
If equilibrium policy indeed is to be contractive in period ¢, the real interest rate must
increase, so the nominal interest rate must either increase (in which case the correlation
between i, and E;7, 1 is negative), or decrease less than inflation expectations do (in which
case the correlation between 4; and Eym;; is positive but less than one-for-one).'¢

Therefore, an equilibrium representation like (11) which could seem to explain determi-
nacy under the discretionary targeting rule (as the Taylor principle was satisfied), clearly
offers no clue about determinacy under a targeting rule with commitment policy.!” More-
over, this example emphasizes further that observed relationships between the nominal
interest rate and macroeconomic variables offer little insights about determinacy.

Like with the case of discretion, the intuition for determinacy with a targeting rule
under commitment, is found by expressing the implied interest rate reaction function
towards any expectations. The analogue of Lemma 4 is under the case of commitment

given by

Lemma 8. The targeting rule described by the problem (4) under commitment, results

16Remark the reverse analogy when a deflationary shock occurs. Omne would then have that a com-
mitment policy could be consistent with an increase in the nominal interest rate, as the future expected
continued expansion leads to an even higher increase in the inflation expectations thus reducing the real
interest rate. This way one can get an economy out of a deflationary situation while not violating the
zero bound on nominal interest rates, as is indeed contained in Svensson’s (2001a) proposal to save (open)
economies from a liquidity trap.

17T have recently received Nakornthab (2000), which shows that the Taylor principle also fails in this
type of model under price-level targeting and nominal income growth targeting; regimes considered by,
respectively, Vestin (2000) and Jensen (2001). The analogy arises as these regimes offer ways of approach-
ing the commitment solution even under discretionary policymaking. Nakornthab (2000) argues, with
reference to this particular equilibrium relationship, that those regimes are vulnerable to indeterminacy.
This is confirmed by Appendix B, if the equilibrium relationship is interpreted as an instrument rule.
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in a unique expression for the nominal interest rate, which holds for any values of the

expected future inflation and output gap:

o AN+R) 4R, 1 K 1 1 A

iy = T+ —al . + €1+ =y — ———1y 1.
! oc(A+rK2) T gL g RIS W

) (22)

Proof. Substitute (1) and (2) (with 7, replacing F;m¢,1 and x%,, replacing Fyxy, 1) into
the optimality condition (15). As (1) and (2) hold for any ©¢,, and xf, ,, it follows that
the nominal interest rate resulting from the substitution will be uniquely given by (22) for
any values of w§, | and xf,_, when (15) applies; i.e., when the targeting rule is described by

(4) under commitment. B

As evident this presents the nominal interest rate as an implied reaction function
similar to the one under discretionary policymaking (12), with the only difference being
the appearance of the lagged output gap. In terms of explaining the determinacy result,

the arguments following Lemma 4 thus apply under commitment as well.

3. Estimated interest rate response functions under targeting rules

Clearly, the model used in the previous section is too simple to portray a realistic scenario
for monetary policymaking. In this section, the model of Section 2.1 is therefore amended
in a number of directions so as to further stress how estimated interest rate functions
may not convey information about the economy’s stability properties. First, it is assumed
that the output gap is predetermined one period ahead, and inflation is predetermined
two periods ahead. In consequence, monetary policy affects the output gap with a one-
period lag, and inflation with a two-period lag. This seems to be broadly consistent with
empirical findings, which show that the effects of monetary policy are first present in
output (after some time) and then later in the inflation rate; see Walsh (1998, Chapter 1)
and the references provided there. Secondly, I introduce endogenous persistence in both
the output gap and inflation equations. Again, this is mainly empirically motivated; it is
easy to reject empirically that output and inflation does not depend on their past values.
See, e.g., Fuhrer (2000) or Rudebusch and Svensson (1999) on demand persistence in US
data, and, e.g., Fuhrer and Moore (1995), Roberts (1997, 1998) or Gali and Gertler (1999)
on inflation persistence in US data.

With these alterations, the equations for the output gap and inflation becomes, respec-

tively,

L1 = 91',5 + (1 — 9) Etxt+2 — 0 (EtitJrl — EtTFtJrQ) + gII:Jrl, 0 S 0 < 1, (23)
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T2 = ¢m + (1 — @) PEms + kE@e0 + 60, 0< ¢ <1, (24)

with
Gi1 = 0Y7 + g1 — Yt + (1 —0) Eyllyy,

and where gi11 = v,9: + £1,4,0< vy < 1, is a demand shock, and ¥\, = 7,4 + &L,
0 <1, < 1, is the stochastic (log of ) natural rate (thus capturing technology shocks). The
innovations &7, and &7, (and &,,,) are i.i.d. and white noise. Note that the parameters
0 and ¢, respectively, quantifies the degree of endogenous persistence in demand and
inflation. Furthermore, remark that the described transmission lags of monetary policy is
achieved as demand in period t+1 is decided in period ¢ (through the period ¢ expectation
of the real interest rate in period t + 1), and prices in period t + 2 are set in period ¢
(through the period ¢ expectation of the inflation rate in period ¢ + 3 and the expectation
of the period t + 2 output gap). An interest rate decision in period ¢ thus cannot affect
demand in period ¢, but only demand period t 4 1 (given, of course, that the decision has
implications for the period ¢ + 1 interest rate) and thus inflation in period ¢ + 2.

In this more elaborate version, the model cannot be solved analytically. Instead, I
follow standard practice and express the model in state-space form and adopt conventional
numerical solution algorithms under discretionary and commitment policies, i.e., targeting
rules. See, e.g., Backus and Driffill (1986), Currie and Levine (1993) and Svensson (1994,
Appendix) on these methods. These algorithms generally perform very well, but for the
current model, convergence (under discretion) requires that the control variable enters
the loss function. Such convergence problems are also reported by Svensson (2000), who
therefore adds a small loss of interest changes to the loss function. The loss function is

therefore amended to
L=E, S gt {)\az? + 72+ vi? + ¢ (i — it,l)z} , v>0, ¢>0, (25)
=1

which allows for losses of either nominal interest rate variability per se or losses from

interest rate changes. In state-space form, the model is then written as

Xy

Xt

+ B2Eyiyy o + B'Eyiyq + Big +

£ ] )

03x1

where A is a 10 x 10 matrix, B2, B!, B are 10 x 1 vectors, and X; is the column vector
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of the seven predetermined variables
X = [§t y? E Ty Ty Etﬂ't+1 it—l]l )
X; 1s the column vector of the three forward-looking variables

— /
Xt = [Et$t+1 | D% P Etﬂ't+2] )

and
£t+1:|:§g+1 i & S —&n & (0+p)&n 0}/’

is the column vector of innovations. Details on the solution procedures of the model (and
matrix A and vectors B?, B!, and B), are available in a supplementary appendix upon
request.'®

The model is, as mentioned, solved under the assumption of either discretionary or
commitment policymaking. From each case, one recovers expressions for the dynamic

evolution of the economy of the form

X1
EiXii1

X
Xt

=0 +

s > 1, (27)
03><1

with X; given and x; = HX;, where 2 and H are matrices found by the solution algo-
rithms (differing, of course, between discretion and commitment). It is important to note
that, by implication of the solution algorithms, (27) represents a case where only funda-
mentals matter for the dynamics of the economy (endogenous variables are a function of
predetermined variables only). Hence, the TRE under discretion and commitment are de-
terminate by construction. Under both forms of policy, the model is then used to provide
600 periods of data by applying (27) in a stochastic simulation. From these simulations,
time series for i;, xy, Eymerq, Eymo are extracted and used for subsequent estimations of
interest rate response functions.

As these estimations merely are meant to serve as rough illustrations of what can,
and what cannot, be concluded from these, the model as given by (23)-(24) has not been
calibrated so as to match business cycle properties accurately. The model is interpreted
as quarterly, with inflation and the nominal interest rate measured at annual rates. The

adopted parameter values have been chosen so as not to be grossly inconsistent with

¥ This appendix also shows how to amend the solution algorithms in order to handle the presence of
the expected future controls in (25); this procedure follows Svensson (2000) closely.
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=05 ¢=03, 0=025 k=01,
A=05 v=005 ¢=0 B=0.99,
o, =0.02, o,=0.007, o.=0.02
v, =025, 7, =098 p=0.00.

Table 1: Parameter configuration for simulations

existing estimates of demand and inflation equations,' and so as not to give unreasonable
unconditional standard deviations of the output gap and inflation under either form of
policy. The parameter values, which to a large extent are similar to those in Jensen
(2001), are summarized in Table 1, where o,, 0,, and o., respectively, represent the
standard deviations of the innovations &7, &7,, and &,,, (under this parameterization,
the standard deviations of inflation and the output gap are between 2 and 2.5 percent).
Note that concerning the loss function, convergence of the solution algorithm is secured
by putting a small weight on interest rate variability per se, while not attaching any loss
to interest rate changes. If one does this, i.e., sets ¢ > 0, the result is an implausible high
degree of interest rate smoothing under discretion even for values of ¢ around 0.005.2°

The estimated interest rate equations are of the general form
it = boﬂ't —+ blEtﬂ't_;,_l -+ bQEtﬂ't_;,_Q -+ apt -+ ait_l,

but each estimation only uses a subset of the right-hand side variables.?! Table 2 shows
estimation results on data when the central bank is optimizing under discretion. It is
seen that a simple Taylor-type rule of the form i; = bym; 4+ agx; is identified in the data,
although the central bank is not adhering to one. Also, note that the table shows that the
estimated coefficients are such that an associated IRE would be indeterminate. Hence, if
one infers that the central bank has been following a mechanical Taylor rule, one would
(knowing the underlying economic structure) conclude that the economy is vulnerable to
sunspot fluctuations. Nevertheless, the economy has actually been in a determinate TRE

in 600 periods. Estimating a Taylor rule depending upon the one-period ahead inflation

19Note that in the empirical literature there is in particular disagreement about the degree of persistence
in the inflation adjustment equation.

20In this case, the solution for the interest rate, when expressed as a function of the predetermined
variables, exhibits an equilibrium response coeflicient of i; towards ¢; 1 of around 0.3. This is surprisingly
high given that interest rate changes give only a negligible loss.

2LAll estimations presented here are simple OLS regressions. In all the cases not involving E;mio
the right-hand side variables are predetermined and independent. OLS is problematic when estimations
involve E;m; 12, which is endogenous. Future work will address this problem.

23



Variables in estimated interest rate functions, i; = ....% Stability of
T Eimii Eimipo T i1 associated IRE?
0.26* — — 2.23* — I
0.28* — — 2.34* -0.10* I
— 0.63* — 2.20* — I
— 0.89* — 2.34* -0.13* I
— — 1.81* 2.06* — D
— — 2.24* 2.17* -0.12* D
a sk

denotes significance at the 5% level
b4I” denotes indeterminacy of the IRE under the interest rate rule; “D” denotes determinacy

Table 2: Coeflicients in estimated interest rate functions. Discretion data

Variables in estimated interest rate functions, i; = ....% Stability of
T Eimii Eimipo T i1 associated IRE?
-0.00 — — 0.79* — I
0.05 — — 0.70* 0.42* I
— -0.45* — 0.79* — I
— -0.00 — 0.71* 0.41* I
— — -3.52* 0.69* — I
— — -1.92* 0.67* 0.33* I

@@ denotes significance at the 5% level

°4I” denotes indeterminacy of the IRE under the interest rate rule; “D” denotes determinacy

Table 3: Coeflicients in estimated interest rate functions. Commitment data

expectations gives the same result, although the estimated coefficients are “closer” to
render the associated IRE determinate. In the case of a Taylor rule depending upon
the two-period ahead inflation expectations (the time horizon at which policy can affect
inflation), then one gets estimates which suggest that policy has been conducted according
to an “active” Taylor rule (even though it has not).??

Turning to the case where policy is conducted under commitment, Table 3 shows es-
timation results which never portray a Taylor-type rule behavior. In fact, the signs on
inflation measures are often negative (consistent with what was shown to be possible in
Subsection 2.4 for the simple model). The associated IRE are always indeterminate, and
an economist believing that policy has been conducted within an instrument rule frame-
work would in all likelihood call for a revision in policymaking advising that the central

bank should respond more aggressively towards inflation. This would be unwarranted,

22In all cases, the lagged interest rate is significant but of small magnitude.
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as the economy is in the optimal, and determinate, equilibrium.?® This illustrates that
identification of interest rate relationships in data reflecting a behavior not in conformity
with the Taylor principle, need not be a reflection of disastrous monetary policymaking.
In fact, it might as well reflect the performance of a central bank acting optimal and with

an ability to commit.

4. Concluding remarks

In this paper, I have investigated the issue of real equilibrium determinacy within a simple
model of the “New Neo-Classical Synthesis” style. It turns out that when the central bank
is adhering to a targeting rule of the kind associated with minimization of the social loss
function, there is always real determinacy. This may, as is well known, not be the case if
the bank is adhering to an instrument rule, where restrictions on the response coefficients
are needed.

Moreover, the analysis emphasized that the equilibrium relationships between the nom-
inal interest rate and macroeconomic variables arising under a targeting rule reveal little

about the economy’s stability properties.

Appendix
A. Proof of Lemma 2

When i, = {[k (1 —p) +oXp|/ (o[> + X (1 = Bp)])} e + (1)) ,, the system (1)-(2) can

be written in matrix form as

Ei+1 (1p ) n A\ 0 0 &t §t+1
_ K - g _ _
B | =] 087"+ K2+ A?l — ﬁﬂ? L+ofn —of I
Etﬂ'tJrl _671 —ﬁil,‘ﬂj ﬁfl Ty 0

The real and positive roots of the system are p and

148 (1t o57w) £/ (1457 (14 057n)) — 45
203 '

23Note that the coefficient on the lagged interest rate is now of considerably magnitude; not because
the central bank has an objective to “smooth” interest rates per se, but because of the history dependent
policy it follows under commitment.
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Tedious algebra shows that one root is greater than 1, and two are below 1. As there
are two jump variables, this means there is one unstable root too few in order to ensure
determinacy; cf. Blanchard and Kahn (1980).

B. IRE and determinacy when i; = bjE;m1 + (1/0) 1,

Using 4 = byEymiq1 + (1/0) y, the system (1)-(2) can be written in matrix form as

Etr1 p 0 0 £t ii1
By | =| o8 1—0'k(by—1) —of7' (b —1) xe | + 0
Etﬂ—t—i-l —ﬂ_l —ﬂ_lli ﬂ_l ¢ O

The roots of the system are p and

1B ok~ 1) (1B —or(b— 1)’ — 48
_ 5 .

(B.1)

14

As 0 < p < 1 and there are two jump variables, both values of v as given by (B.1) must
have modulus greater than one to ensure determinacy of the IRE. In the case the roots
are real, a sufficient condition is that the lower value of (B.1) is numerically greater than

1. This is equivalent to the condition

B—14/(1+8—ok(b —1))* —48 <0,

which is satisfied whenever

0<bl—1<w. (B.2)
OR

One can show that whenever (B.2) fails, the roots as given by (B.1) are real. Moreover, one
can show that whenever the roots are complex, then they have modulus strictly greater

than 1. Hence, (B.2) is a necessary and sufficient condition on b; for determinacy of the
IRE.

C. IRE and indeterminacy when i, = —a1E;z1 + (1/0) p,

To prove the assertion made in the main text that an IRE under i, = — [A\/k + (1 — p) / (op)]
Eizip1 + (1/0) p, is always indeterminate, it obviously suffices to prove it for any i, =

—a By + (1/0) py with a; > 0. In that case, the system (1)-(2) can be written in
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matrix form as

€41 P " 05—1 06_1 &t i1
E = | o8t oF k@ +1 0
s o 1+o0aq 14+om ¢
Et7Tt+1 _/671 —/Billi /871 Tt 0

The real and positive roots of the system are p and

1+ 8+0(k+a) £/ (1+8+0(rk+a1)’ —48(1+ob)
26 (1 + ob)

Tedious algebra shows that one root is greater than 1, and two are below 1. As there
are two jump variables, this means there is one unstable root too few in order to ensure

determinacy.

D. Proof of Lemma 6

When i, is given by (22), the system the system (1)-(2) can be written in matrix form as

Et+1 1% 0 0 0 Et €t+1
Xy 0 0 1 0 Ty_1 0
- | a1 -1 -1 - ’
| D o (c + 3 ) od 1+08 'k —0of Ty 0
i Eimea | i —5_1 0 _5_1’1 5_1 | Tt i 0

where

ol
Il
SHES
—
|
>0
|
S
/N
—
|
|>/
Q
N—

The associated IRE is indeterminate if the matrix

0 1 0
od 14+08 'k —cB™*
0 —7 'k gt

has more than one characteristic root with modulus less than one. This is not generally
the case, but note that when d is zero, the system becomes the one examined in Appendix

A, and the IRE is indeterminate. By continuity, the IRE is indeterminate when the
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parameters imply a value of d in the neighborhood of zero. Numerical investigations,
however, demonstrate that indeterminacy of the IRE prevails for a wide range of plausible
parameter values. Keeping # = 0.99 fixed and varying ¢ from 0.1 to 5 with a grid of
0.1, varying « from 0.1 to 1.0 with a grid of 0.1, and varying A from 0.025 to 2.0 with
a grid of 0.025, yield 76,000 parameter combinations. Of these, 88.45% rendered the
IRE indeterminate. It is noteworthy that in the remaining cases where the IRE was

determinate, d > 0 is always the case.?

This reflects that parameter configurations
implying d < 0 can never imply determinacy, because the Taylor principle (in its general
form stating that expansionary pressures in the economy either in form of inflation or a
high output gap will be met by a sufficient increase in the nominal interest rate) is always
violated when a higher output gap in last period is met by a decrease in the nominal

interest rate.

References

Backus, D. B. and J. Driffill, 1986, The Consistency of Optimal Policy in Stochastic
Rational Expectations Models, CEPR Discussion Paper No. 124.

Barro, R. J. and D. B. Gordon, 1983, A Positive Theory of Monetary Policy in a Natural
Rate Model, Journal of Political Economy 91, 589-610.

Benhabib, J., S. Schmitt-Grohé and M. Uribe, 2001, Monetary Policy and Multiple Equi-
libria, American Economic Review 91, 167-186.

Blanchard, O. J. and C. M. Kahn, 1980, The Solution of Linear Difference Models under
Rational Expectations, Econometrica 48, 1305-1311.

Calvo, G., 1983, Staggered Prices in a Utility-Maximizing Framework, Journal of Monetary
Economics 12, 383-98.

Carlstrom, C. T. and T. S. Fuerst, 1999, Optimal Monetary Policy in a Small Open
Economy: A General Equilibrium Analysis, Federal Reserve Bank of Cleveland,
Working Paper 9911.

Christiano, L. and C. J. Gust, 1999, Taylor Rules in a Limited Participation Model, NBER
Working Paper No. 7017.

Clarida, R., J. Gali and M. Gertler, 1999, The Science of Monetary Policy: A New Key-
nesian Perspective, Journal of Economic Literature 27, 1661-1707.

Clarida, R., J. Gali and M. Gertler, 2000, Monetary Policy Rules and Macroeconomic
Stability: Evidence and Some Theory, Quarterly Journal of Economics 115, 147-80.

24Thus, a necessary (but not sufficient) condition for determinacy is Ao/k > 1.

28



Currie, D. and P. Levine, 1993, Rules, Reputation and Macroeconomic Policy Coordination
(Cambridge: Cambridge University Press).

Evans, G. W. and S. Honkapohja, 2001, Expectations and the Stability Problem for Op-
timal Monetary Policies, CEPR Discussion Paper No. 2805, London.

Fuhrer, J. C., 1997, The (Un)Importance of Forward-Looking Behavior in Price Specifica-
tions, Journal of Money, Credit, and Banking 29, 338-50.

Fuhrer, J. C., 2000, Habit Formation in Consumption and its Implications for Monetary-
Policy Models, American Economic Review 90, 367-390.

Fuhrer, J. and G. Moore, 1995, Inflation Persistence, Quarterly Journal of Economics 110,
127-159.

Gali, J. and M. Gertler, 1999, Inflation Dynamics: A Structural Econometric Analysis,
Journal of Monetary Economics 44, 195-222.

Goodfriend, M. and R. G. King, 1997, The New Neoclassical Synthesis and the Role of
Monetary Policy, in B. S. Bernanke and J. J. Rotemberg (eds.), NBER Macroeco-
nomics Annual 1997 (Cambridge, MA: The MIT Press), 231-283.

Jensen, H., 2001, Targeting Nominal Income Growth or Inflation? American Economic
Review, forthcoming.

Leeper, E. M., 1991, Equilibria under ‘Active’ and ‘Passive’ Monetary and Fiscal Policies,
Journal of Monetary Economics 27, 129-47.

Lucas, R. E., 1976, Econometric Policy Evaluation: A Critique, Journal of Monetary
Economics 1, Supplementary Series, 19-46.

McCallum, B. T. and E. Nelson, 2000, Timeless Perspective vs. Discretionary Monetary
Policy in Forward-Looking Models, NBER Working Paper No. 7915.

Nakornthab, D., 2000, The Advantage of Inflation Targeting in a Forward-Looking Econ-
omy, mimeo, Harvard University.

Orphanides, A., 2001, Monetary Policy Rules Based on Real-Time Data, American Eco-
nomic Review 91, 964-985.

Perez, S. J., 2001, Looking Back at Forward-Looking Monetary Policy, Journal of Eco-
nomics and Business 53, 509-521.

Roberts, J. M., 1995, New Keynesian Economics and the Phillips Curve, Journal of Money,
Credit, and Banking 27, 975-984.

Roberts, J. M., 1997, Is Inflation Sticky? Journal of Monetary Economics 39, 173-96.

Roberts, J. M., 1998, Inflation Expectations and the Transmission of Monetary Policy,
mimeo, Board of Governors of the Federal Reserve System.

Rogoft, K., 1985, The Optimal Degree of Commitment to an Intermediate Monetary Tar-

29



get, Quarterly Journal of Economics 100, 1169-89.

Rotemberg, J. J. and M. Woodford, 1998, An Optimization-Based Econometric Framework
for the Evaluation of Monetary Policy: Expanded Version, NBER Technical Working
Paper No. 233.

Rudebusch, G. D. and L. E. O. Svensson, 1999, Policy Rules for Inflation Targeting, in
Taylor (1999), 203-53.

Sargent, T. J. and N. Wallace, 1975, “Rational” Expectations, the Optimal Monetary
Instrument, and the Optimal Money Supply Rule, Journal of Political Economy 83,
241-254.

Svensson, L. E. O., 1994, Why Exchange Bands? Monetary Independence in Spite of
Fixed Exchange Rates, Journal of Monetary Economics 33, 157-199.

Svensson, L. E. O., 1999, Inflation Targeting as a Monetary Policy Rule, Journal of Mon-
etary Economics 43, 607-54.

Svensson, L. E. O., 2000, Open-Economy Inflation Targeting, Journal of International
Economics 50, 155-83.

Svensson, L. E. O., 2001a, The Zero Bound in an Open Economy: A Foolproof Way of
Escaping from a Liquidity Trap, Monetary and Economic Studies 19(S-1), 277-312.

Svensson, L. E. O., 2001b, What Is Wrong with Taylor Rules? Using Judgement in
Monetary Policy through Targeting Rules, mimeo, November, Princeton University.

Svensson, L. E. O., and M. Woodford, 1999, Implementing Optimal Policy through
Inflation-Forecast Targeting, mimeo, Stockholm University and Princeton Univer-
sity.

Taylor, J. B., 1993, Discretion versus Rules in Practice, Carnegie-Rochester Series on
Public Policy 39, 195-214.

Taylor, J. B. (ed.), 1999, Monetary Policy Rules (University of Chicago Press).

Vestin, D., 2000, Price-Level Targeting versus Inflation Targeting in a Forward-Looking
Model, mimeo, Institute for International Economic Studies, Stockholm University.

Walsh, C. E., 1998, Monetary Theory and Policy (Cambridge, MA: The MIT Press).

Woodford, M., 1996, Control of the Public Debt: A Requirement for Price Stability?,
NBER Working Paper No. 5684.

Woodford, M., 1999a, Optimal Monetary Policy Inertia, NBER Working Paper No. 7261.

Woodford, M., 1999b, Commentary: How Should Monetary Policy Be Conducted in an Era
of Price Stability?, in New Challenges for Monetary Policy, A symposium sponsored
by the Federal Reserve Bank of Kansas City, 277-316.

Woodford, M., 1999c, Interest and Prices, Book Manuscript, Princeton University.

30



