1 Conventions for Scalar Functions

Let $\beta = (\beta_1, ..., \beta_k)'$ be a $k \times 1$ vector and let $f(\beta) = f(\beta_1, ..., \beta_k)$ be a real-valued function that depends on β, i.e. $f(\cdot): \mathbb{R}^k \rightarrow \mathbb{R}$ maps the vector β into a single number, $f(\beta)$. Then the derivative of $f(\cdot)$ with respect to β is defined as

$$
\frac{\partial f(\beta)}{\partial \beta} = \begin{pmatrix}
\frac{\partial f(\beta)}{\partial \beta_1} \\
\vdots \\
\frac{\partial f(\beta)}{\partial \beta_k}
\end{pmatrix}.
$$

This is a $k \times 1$ column vector with typical elements given by the partial derivative $\frac{\partial f(\beta)}{\partial \beta_i}$. Sometimes this vector is referred to as the gradient. It is useful to remember that the derivative of a scalar function with respect to a column vector gives a column vector as the result.1

1We can note that Wooldridge (2003, p.783) does not follow this convention, and let $\frac{\partial f(\beta)}{\partial \beta}$ be a $1 \times k$ row vector.
Similarly, the derivative of a scalar function with respect to a row vector yields the \(1 \times k\) row vector
\[
\frac{\partial f(\beta)}{\partial \beta} = \left(\frac{\partial f(\beta)}{\partial \beta_1} \cdots \frac{\partial f(\beta)}{\partial \beta_k} \right).
\]

2 Conventions for Vector Functions

Now let
\[g(\beta) = \left(\begin{array}{c} g_1(\beta) \\ \vdots \\ g_n(\beta) \end{array} \right)\]
be a vector function depending on \(\beta = (\beta_1, \ldots, \beta_k)^T\), i.e. \(g(\cdot) : \mathbb{R}^k \rightarrow \mathbb{R}^n\) maps the \(k \times 1\) vector into a \(n \times 1\) vector, where \(g_i(\beta) = g_i(\beta_1, \ldots, \beta_k)\), \(i = 1, 2, \ldots, n\), is a real-valued function.

Since \(g(\cdot)\) is a column vector it is natural to consider the derivatives with respect to a row vector, \(\beta^T\), i.e.
\[
\frac{\partial g(\beta)}{\partial \beta^T} = \left(\begin{array}{ccc} \frac{\partial g_1(\beta)}{\partial \beta_1} & \cdots & \frac{\partial g_1(\beta)}{\partial \beta_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial g_n(\beta)}{\partial \beta_1} & \cdots & \frac{\partial g_n(\beta)}{\partial \beta_k} \end{array} \right),
\]
where each row, \(i = 1, 2, \ldots, n\), contains the derivative of the scalar function \(g_i(\cdot)\) with respect to the elements in \(\beta\). The result is therefore a \(n \times k\) matrix of derivatives with typical element \((i, j)\) given by \(\frac{\partial g_i(\beta)}{\partial \beta_j}\). If the vector function is defined as a row vector, it is natural to take the derivative with respect to the column vector, \(\beta\).

We can note that it holds in general that
\[
\frac{\partial (g(\beta)^T)}{\partial \beta} = \left(\frac{\partial g(\beta)}{\partial \beta^T} \right)^T,
\]
which in the case above is a \(k \times n\) matrix.

Applying the conventions in (1) and (2) we can define the Hessian matrix of second derivatives of a scalar function \(f(\beta)\) as
\[
\frac{\partial^2 f(\beta)}{\partial \beta \partial \beta^T} = \frac{\partial^2 f(\beta)}{\partial \beta^T \partial \beta} = \left(\begin{array}{ccc} \frac{\partial^2 f(\beta)}{\partial \beta_1 \partial \beta_1} & \cdots & \frac{\partial^2 f(\beta)}{\partial \beta_1 \partial \beta_k} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f(\beta)}{\partial \beta_k \partial \beta_1} & \cdots & \frac{\partial^2 f(\beta)}{\partial \beta_k \partial \beta_k} \end{array} \right),
\]
which is a \(k \times k\) matrix with typical elements \((i, j)\) given by the second derivative \(\frac{\partial^2 f(\beta)}{\partial \beta_i \partial \beta_j}\). Note that it does not matter if we first take the derivative with respect to the column or the row.
3 SOME SPECIAL FUNCTIONS

First, let c be a $k \times 1$ vector and let β be a $k \times 1$ vector of parameters. Next define the scalar function $f(\beta) = c^T \beta$, which maps the k parameters into a single number. It holds that

$$\frac{\partial (c^T \beta)}{\partial \beta} = c.$$ (*)

To see this, we can write the function as

$$f(\beta) = c^T \beta = c_1 \beta_1 + c_2 \beta_2 + \ldots + c_k \beta_k.$$

Taking the derivative with respect to β yields

$$\frac{\partial f(\beta)}{\partial \beta} = \begin{pmatrix} \frac{\partial (c_1 \beta_1 + \ldots + c_k \beta_k)}{\partial \beta_1} \\ \vdots \\ \frac{\partial (c_1 \beta_1 + \ldots + c_k \beta_k)}{\partial \beta_k} \end{pmatrix} = \begin{pmatrix} c_1 \\ \vdots \\ c_k \end{pmatrix} = c,$$

which is a $k \times 1$ vector as expected. Also note that since $\beta^T c = c^T \beta$, it holds that

$$\frac{\partial (\beta^T c)}{\partial \beta} = c.$$ (*)

Now, let A be an $n \times k$ matrix and let β be a $k \times 1$ vector of parameters. Furthermore define the vector function $g(\beta) = A\beta$, which maps the k parameters into n function values. $g(\beta)$ is an $n \times 1$ vector and the derivative with respect to β' is a $n \times k$ matrix given by

$$\frac{\partial (A\beta)}{\partial \beta'} = A.$$ (*)

To see this, write the function as

$$g(\beta) = A\beta = \begin{pmatrix} A_{11} \beta_1 + A_{12} \beta_2 + \ldots + A_{1k} \beta_k \\ \vdots \\ A_{n1} \beta_1 + A_{n2} \beta_2 + \ldots + A_{nk} \beta_k \end{pmatrix},$$

and find the derivative

$$\frac{\partial g(\beta)}{\partial \beta'} = \begin{pmatrix} \frac{\partial (A_{11} \beta_1 + \ldots + A_{1k} \beta_k)}{\partial \beta_1} \\ \vdots \\ \frac{\partial (A_{n1} \beta_1 + \ldots + A_{nk} \beta_k)}{\partial \beta_k} \end{pmatrix} = \begin{pmatrix} A_{11} & \cdots & A_{1k} \\ \vdots & \ddots & \vdots \\ A_{n1} & \cdots & A_{nk} \end{pmatrix} = A.$$

Similarly, if we consider the transposed function, $g(\beta) = \beta' A'$, which is a $1 \times n$ row vector, we can find the $k \times n$ matrix of derivatives as

$$\frac{\partial (\beta' A')}{\partial \beta} = A'.$$ (*)

This is just an application of the result in (3).
Now consider a quadratic function \(f(\beta) = \beta' V \beta \) for some \(k \times k \) matrix \(V \). This function maps the \(k \) parameters into a single number. Here we find the derivatives as the \(k \times 1 \) column vector
\[
\frac{\partial (\beta' V \beta)}{\partial \beta} = (V + V') \beta,
\]
or the row variant
\[
\frac{\partial (\beta' V \beta)}{\partial \beta'} = \beta' (V + V').
\]
If \(V \) is symmetric this reduces to \(2V \beta \) and \(2\beta' V \), respectively. To see how this works, consider the simple case \(k = 3 \) and write the function as
\[
\beta' V \beta = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} \begin{pmatrix} V_{11} & V_{12} & V_{13} \\ V_{21} & V_{22} & V_{23} \\ V_{31} & V_{32} & V_{33} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}
= V_{11} \beta_1^2 + V_{22} \beta_2^2 + V_{33} \beta_3^2 + (V_{12} + V_{21}) \beta_1 \beta_2 + (V_{13} + V_{31}) \beta_1 \beta_3 + (V_{23} + V_{32}) \beta_2 \beta_3.
\]
Taking the derivative with respect to \(\beta \), we get
\[
\frac{\partial (\beta' V \beta)}{\partial \beta} = \begin{pmatrix} \frac{\partial (\beta' V \beta)}{\partial \beta_1} \\ \frac{\partial (\beta' V \beta)}{\partial \beta_2} \\ \frac{\partial (\beta' V \beta)}{\partial \beta_3} \end{pmatrix}
= \begin{pmatrix} 2V_{11} \beta_1 + (V_{12} + V_{21}) \beta_2 + (V_{13} + V_{31}) \beta_3 \\ 2V_{22} \beta_2 + (V_{12} + V_{21}) \beta_1 + (V_{23} + V_{32}) \beta_3 \\ 2V_{33} \beta_3 + (V_{13} + V_{31}) \beta_1 + (V_{23} + V_{32}) \beta_2 \end{pmatrix}
= \begin{pmatrix} V_{11} + V_{12} + V_{13} \\ V_{21} + V_{22} + V_{23} \\ V_{31} + V_{32} + V_{33} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix}
= (V + V') \beta.
\]

4 The Linear Regression Model

To illustrate the use of matrix differentiation consider the linear regression model in matrix notation,
\[
Y = X \beta + \epsilon,
\]
where \(Y \) is a \(T \times 1 \) vector of stacked left-hand-side variables, \(X \) is a \(T \times k \) matrix of explanatory variables, \(\beta \) is a \(k \times 1 \) vector of parameters to be estimated, and \(\epsilon \) is a \(T \times 1 \) vector of error terms. Here \(k \) is the number of explanatory variables and \(T \) is the number of observations.
One way to motivate the ordinary least squares (OLS) principle is to choose the estimator, $\hat{\beta}_{OLS}$ of β, as the value that minimizes the sum of squared residuals, i.e.

$$\hat{\beta}_{OLS} = \arg \min_{\beta} \sum_{t=1}^{T} \hat{\epsilon}_t^2 = \arg \min_{\beta} \hat{\epsilon}^2.$$

Looking at the function to be minimized, we find that

$$\hat{\epsilon}^2 = \left(Y' - X \hat{\beta} \right)' \left(Y - X \hat{\beta} \right)$$

$$= \left(Y' - \hat{\beta}' X' \right)' \left(Y - X \hat{\beta} \right)$$

$$= Y'Y - Y'X\hat{\beta} - \hat{\beta}'X'Y + \hat{\beta}'X'X\hat{\beta}$$

$$= Y'Y - 2Y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta},$$

where the last line uses the fact that $Y'X\hat{\beta}$ and $\hat{\beta}'X'Y$ are identical scalar variables.

Note that $\hat{\epsilon}^2$ is a scalar function and taking the first derivative with respect to $\hat{\beta}$ yields the $k \times 1$ vector

$$\frac{\partial (\hat{\epsilon}^2)}{\partial \hat{\beta}} = \frac{\partial \left(Y'Y - 2Y'X\hat{\beta} + \hat{\beta}'X'X\hat{\beta} \right)}{\partial \hat{\beta}} = -2X'Y + 2X'X\hat{\beta}.$$

Solving the k equations, $\frac{\partial (\hat{\epsilon}^2)}{\partial \hat{\beta}} = 0$, yields the OLS estimator

$$\hat{\beta}_{OLS} = (X'X)^{-1} X'Y,$$

provided that $X'X$ is non-singular.

To make sure that $\hat{\beta}_{OLS}$ is a minimum of $\hat{\epsilon}^2$ and not a maximum, we should formally take the second derivative and make sure that it is positive definite. The $k \times k$ Hessian matrix of second derivatives is given by

$$\frac{\partial^2 (\hat{\epsilon}^2)}{\partial \hat{\beta} \partial \hat{\beta}'} = \frac{\partial \left(-2X'Y + 2X'X\hat{\beta} \right)}{\partial \hat{\beta}'} = 2X'X,$$

which is a positive definite matrix by construction.

REFERENCES
