Generalized Method of Moments (GMM) Estimation

Heino Bohn Nielsen

Outline of the Lecture

(1) Introduction.

(2) Moment conditions and methods of moments (MM) estimation.
 • Ordinary least squares (OLS) estimation.
 • Instrumental variables (IVE) estimation.

(3) GMM defined in the general case.

(4) Specification test.

(5) Linear GMM.
 • Generalized instrumental variables (GIVE or 2SLS) estimation.
Idea of GMM

Estimation under weak assumptions; based on so-called moment conditions.

Moment conditions are statements involving the data and the parameters. Arise naturally in many contexts. For example:

(A) In a regression model, $y_t = x_t' \beta + \epsilon_t$, we might think that $E[y_t \mid x_t] = x_t' \beta$. This implies the moment condition

$$E[x_t \epsilon_t] = E[x_t (y_t - x_t' \beta)] = 0.$$

(B) Consider the economic relation

$$y_t = \beta \cdot E[x_{t+1} \mid I_t] + \epsilon_t$$

$$= \beta \cdot x_{t+1} + (\beta \cdot (E[x_{t+1} \mid I_t] - x_{t+1}) + \epsilon_t)$$

Under rational expectation, the expectation error, $E[x_{t+1} \mid I_t] - x_{t+1}$, should be orthogonal to the information set, I_t, and for $z_t \in I_t$ we have the moment condition

$$E[z_t \epsilon_t] = 0.$$

Properties of GMM

GMM is a large sample estimator.
Desirable properties as $T \to \infty$.

- Consistent under weak assumptions.
 No distributional assumptions like in maximum likelihood (ML) estimation.

- Asymptotically efficient in the class of models that uses the same amount of information.

- Many estimators are special cases of GMM.
 Unifying framework for comparing estimators.

- GMM is a nonlinear procedure.
 We do not need a regression setup $E[y_t] = h(x_t; \beta)$.
 We can have $E[f(y_t, x_t; \beta)] = 0.$
Moment Conditions and MM Estimation

• Consider a variable y_t with some (possibly unknown) distribution. Assume that the mean $\mu = E[y_t]$ exists. We want to estimate μ.

• We could state the population moment condition:

$$E[y_t - \mu] = 0,$$

or

$$E[f(y_t, \mu)] = 0, \quad \text{where} \quad f(y_t, \mu) = y_t - \mu.$$

• The parameter μ is identified by the condition if there is a unique solution, in the sense

$$E[f(y_t, \mu)] = 0 \quad \text{only if} \quad \mu = \mu_0.$$

• We cannot calculate $E[f(y_t, \mu)]$ from an observed sample, $y_1, y_2, \ldots, y_t, \ldots, y_T$. Define the sample moment condition as

$$g_T(\mu) = \frac{1}{T} \sum_{t=1}^{T} f(y_t, \mu) = \frac{1}{T} \sum_{t=1}^{T} (y_t - \mu) = 0. \quad (*)$$

• By Law of Large Numbers, sample moments converge to population moments,

$$g_T(\mu) \to E[f(y_t, \mu)] \quad \text{for} \quad T \to \infty. \quad (**$$

The method of moments estimator, $\hat{\mu}_{MM}$, is the solution to $(*)$, i.e.

$$\hat{\mu}_{MM} = \frac{1}{T} \sum_{t=1}^{T} y_t.$$

The sample average can be seen as a MM estimator.

• **MM estimator is consistent.** Under weak regularity conditions $(**)$ implies

$$\hat{\mu}_{MM} \to \mu_0.$$
OLS as a MM Estimator

• Consider the regression model with K explanatory variables

$$y_t = x'_t \beta + \epsilon_t.$$

Assume no-contemporaneous-correlation (minimum for consistency of OLS):

$$E[x_t \epsilon_t] = E[x_t (y_t - x'_t \beta)] = 0 \quad (K \times 1).$$

K moment conditions for the K parameters in β.

• Define the sample moments

$$g_T(\beta) = \frac{1}{T} \sum_{t=1}^{T} (x_t (y_t - x'_t \beta)) = \frac{1}{T} X' (Y - X \beta) = 0 \quad (K \times 1).$$

The MM estimator is given by the solution

$$\hat{\beta}_{MM} = \left(\sum_{t=1}^{T} x_t x'_t \right)^{-1} \sum_{t=1}^{T} x_t y_t = (X'X)^{-1}X'Y = \hat{\beta}_{OLS}.$$

Instrumental Variables as a MM Estimator

• Consider the regression model

$$y_t = x'_{1t} \beta_1 + x_{2t} \beta_2 + \epsilon_t,$$

where the $K - 1$ variables in x_{1t} are predetermined and x_{2t} is endogenous:

$$E[x_{1t} \epsilon_t] = 0 \quad (K - 1) \times 1$$

$$E[x_{2t} \epsilon_t] \neq 0. \quad \text{(\#)}$$

OLS is inconsistent!

• Assume there exists a variable, z_{2t}, such that

$$\text{corr}(x_{2t}, z_{2t}) \neq 0$$

$$E[z_{2t} \epsilon_t] = 0 \quad (1 \times 1) \quad \text{(#\#)}$$

The new moment condition (#\#) can replace (\#).
Define
\[\begin{pmatrix} x_{1t} \\ x_{2t} \end{pmatrix} = z_t \begin{pmatrix} x_{1t} \\ z_{2t} \end{pmatrix}. \]

\(z_t \) are called instruments. \(z_{2t} \) is the new instrument; the predetermined variables, \(x_{1t} \), are instruments for themselves.

- The \(K \) population moment conditions are
 \[E[z_t \varepsilon_t] = E[z_t (y_t - x_t' \beta)] = 0 \quad (K \times 1). \]

The \(K \) corresponding sample moment conditions are
\[g_T(\beta) = \frac{1}{T} \sum_{t=1}^{T} (z_t (y_t - x_t' \beta)) = \frac{1}{T} Z'(Y - X \beta) = 0 \quad (K \times 1). \]

The MM estimator is given by the unique solution
\[\hat{\beta}_{MM} = \left(\sum_{t=1}^{T} z_t x_t' \right)^{-1} \sum_{t=1}^{T} z_t y_t = (Z' X)^{-1} Z' Y = \hat{\beta}_{IV}. \]

(Where do Instruments Come From?)

- Consider the two simple equations
 \[\begin{align*}
 c_t &= \beta_{10} + \beta_{11} y_t + \beta_{12} w_t + \epsilon_{1t} \\
 y_t &= \beta_{20} + \beta_{21} c_t + \beta_{22} w_t + \beta_{23} r_t + \beta_{24} \tau_t + \epsilon_{2t}
 \end{align*} \]

Say that we are only interested in the first equation.

- Assume that \(w_t \) is predetermined. If \(\beta_{21} \neq 0 \), then \(y_t \) is endogenous and
 \[E[y_t \epsilon_{1t}] \neq 0. \]

- In this setup \(r_t \) and \(\tau_t \) are possible instruments. We need \(\beta_{23} \) and \(\beta_{24} \) different from zero and
 \[E[(r_t, \tau_t) \epsilon_{1t}] = 0. \]

- In dynamic models we can often used lagged values as instruments.

- Note, that in this case we have more potential instruments than we have endogenous variables. This is adressed in GMM.
The GMM Problem Defined

- Let \(w_t = (y_t, x'_t)' \) be a vector of model variables and let \(z_t \) be instruments. Consider the \(R \) moment conditions

\[
E[f(w_t, z_t, \theta)] = 0.
\]

Here \(\theta \) is a \(K \times 1 \) vector and \(f(\cdot) \) is a \(R \) dimensional vector function.

- Consider the corresponding sample moment conditions

\[
g_T(\theta) = \frac{1}{T} \sum_{t=1}^{T} f(w_t, z_t, \theta) = 0.
\]

- When can the \(R \) sample moments be used to estimate the \(K \) parameters in \(\theta \)?

Order Condition

\(R < K \)

No unique solution to \(g_T(\theta) = 0 \).
The parameters are not identified.

\(R = K \)

Unique solution to \(g_T(\theta) = 0 \).
Exact identification.
This is the MM estimator (OLS, IV).
Note, that \(g_T(\theta) = 0 \) is potentially a non-linear problem—numerical solution.

\(R > K \)

More equations than parameters.
Over-identified case. No solution in general (\(Z'X \) is a \(R \times K \) matrix).
- Not optimal to drop moments!
- Instead, choose \(\theta \) to make \(g_T(\theta) \) as close as possible to zero.
GMM Estimation \((R > K) \)

- We want to make the \(R \) moments \(g_T(\theta) \) as close to zero as possible...how?

- Assume we have a \(R \times R \) symmetric and positive definite weight matrix \(W_T \). Then we could define the quadratic form

\[
Q_T(\theta) = g_T(\theta)' W_T g_T(\theta) \quad (1 \times 1).
\]

The GMM estimator is defined as the vector that minimizes \(Q_T(\theta) \), i.e.

\[
\hat{\theta}_{GMM}(W_T) = \arg \min \theta \left\{ g_T(\theta)' W_T g_T(\theta) \right\}.
\]

- The matrix \(W_T \) tells how much weight to put on each moment condition. Different \(W_T \) give different estimators,

\[
\hat{\theta}_{GMM}(W_T).
\]

GMM is consistent for any weight matrix, \(W_T \).

What is the optimal choice of \(W_T \)?

Optimal GMM Estimation

- The \(R \) sample moments \(g_T(\theta) \) are estimators of \(E[f(\cdot)] \); and random variables. The law of large numbers implies:

\[
g_T(\theta) \to E[f(\cdot)] \quad \text{for} \quad T \to \infty.
\]

A central limit theorem implies:

\[
\sqrt{T} \cdot g_T(\theta) \to N(0, S),
\]

where \(S \) is the asymptotic variance of the moments, \(\sqrt{T} \cdot g_T(\theta) \).

- Intuitively, moments with little variance should have large weights. The optimal weight matrix for GMM is a matrix \(W_{opt}^T \) such that

\[
\lim_{T \to \infty} W_{opt}^T = W_{opt} = S^{-1}.
\]
• Without autocorrelation, a natural estimator \(\hat{S} \) of \(S \) is

\[
\hat{S} = V \left[\sqrt{T} \cdot g_T(\theta) \right] \\
= T \cdot V [g_T(\theta)] \\
= T \cdot V \left[\frac{1}{T} \sum_{t=1}^{T} f(w_t, z_t, \theta) \right] \\
= \frac{1}{T} \cdot \sum_{t=1}^{T} f(w_t, z_t, \theta) f(w_t, z_t, \theta)'.
\]

This implies that

\[
W_T^{opt} = \hat{S}^{-1} = \left(\frac{1}{T} \sum_{t=1}^{T} f(w_t, z_t, \theta) f(w_t, z_t, \theta)' \right)^{-1}.
\]

• Note, that \(W_T^{opt} \) depends on \(\theta \) in general.

Estimation in Practice

• **Two-step (efficient) GMM.**

 1. Choose some initial weight matrix \(W_{[1]} \). E.g. \(W_{[1]} = I \) or \(W_{[1]} = (Z'Z)^{-1} \).

 Find a (consistent) estimate

 \[
 \hat{\theta}_{[1]} = \arg\min_{\theta} g_T(\theta)'W_{[1]}g_T(\theta).
 \]

 Estimate the optimal weights, \(W_T^{opt} \).

 2. Find the optimal GMM estimate

 \[
 \hat{\theta}_{GMM} = \arg\min_{\theta} g_T(\theta)'W_T^{opt}g_T(\theta).
 \]

• **Iterated GMM.**

 Start with some initial weight matrix \(W_{[1]} \).

 1. Find an estimate \(\hat{\theta}_{[1]} \).

 2. Find a new weight matrix, \(W_{[2]}^{opt} \).

 Iterate between \(\hat{\theta}_{[1]} \) and \(W_{[1]}^{opt} \) until convergence.
Properties of Optimal GMM

- The GMM estimator, \(\hat{\theta}_{GMM}(W_{opt}^T) \), is asymptotically efficient.
 Lowest variance in a class of models that uses same information.

- The GMM estimator is asymptotically normal, i.e.
 \[
 \sqrt{T} \cdot (\hat{\theta}_{GMM} - \theta) \rightarrow N(0, V),
 \]
 where
 \[
 V = (D'W_{opt}^T D)^{-1} = (D'S^{-1} D)^{-1},
 \]
 \[
 D = \text{plim} \frac{\partial g_T(\theta)}{\partial \theta'} (R \times K).
 \]
 - \(S \) measures the variance of the moments. The larger \(S \) the larger \(V \).
 - \(D \) measures the sensitivity of the moments wrt. changes in \(\theta \).
 If this is large the parameter can be estimated precisely.

- Little is known in finite samples.

Specification Test

- If \(R > K \), we have more moments than parameters.
 All moments have expectation zero.
 In a sense \(K \) moments are zero by estimating the parameters. Test if the additional \(R - K \) moments are close to zero.
 If not, some orthogonality condition is violated.

- Remember, that
 \[
 \sqrt{T} \cdot g_T(\theta) \rightarrow N(0, S).
 \]
 This implies that if the weights are optimal, \(W_{opt}^T \rightarrow S^{-1} \), then
 \[
 \xi = g_T(\hat{\theta}_{GMM})' \left(\frac{1}{T} S \right)^{-1} g_T(\hat{\theta}_{GMM}) \]
 \[
 = T \cdot g_T(\hat{\theta}_{GMM})' W_{opt}^T g_T(\hat{\theta}_{GMM}) \rightarrow \chi^2(R - K).
 \]
 Hansen test for overidentifying restrictions. (J-test, Sargan test).
 A test for \(R - K \) overidentifying conditions.
Famous Example: Hansen and Singleton (1982)

• Consider an optimizing agent with a power utility function on consumption,
 \[U(C_t) = \frac{C_{t}^{1-\gamma}}{1-\gamma} \]. The first order condition for maximizing the discounted utility of future consumption is given by
 \[E \left[\delta \left(\frac{C_{t+1}}{C_t} \right)^{1-\gamma} (1 + r_{t+1}) - 1 \mid I_t \right] = 0, \]
 where \(I_t \) is the conditioning information set at time \(t \).

• Assume rational expectations. Now if \(z_t \in I_t \), then it must be orthogonal to the expectation error, i.e.
 \[f(C_{t+1}, C_t, r_{t+1}; z_t; \delta; \gamma) = E \left[\left(\delta \left(\frac{C_{t+1}}{C_t} \right)^{1-\gamma} (1 + r_{t+1}) - 1 \right) z_t \right] = 0. \]
 This is a moment condition. We need at least \(R = 2 \) instruments in \(z_t \).

• Note: Specification is theory driven, nonlinear, and not in regression format.

Linear GMM and GIVE

• Consider the linear regression model with \(K \) explanatory variables
 \[y_t = x'_{1t}\beta_1 + x'_{2t}\beta_2 + \epsilon_t = x'_{t}\beta + \epsilon_t, \]
 where \(E[x_{1t}\epsilon_t] = 0 \), but the variables in \(x_{2t} \) are endogenous \(E[x_{2t}\epsilon_t] \neq 0 \).

• Assume there exist \(R > K \) instruments \(z_t = (x'_1, z'_2) \), such that
 \[E[z_t\epsilon_t] = E[z_t(y_t - x'_t\beta)] = 0 \] \((R \times 1)\).
 Identification requires a non-zero correlation of \(z_{2t} \) and \(x_{2t} \). Rank condition.

• The sample moments are
 \[g_R(\beta) = \frac{1}{T} \sum_{t=1}^{T} (z_t(y_t - x'_t\beta)) = \frac{1}{T} Z' (Y - X\beta). \]
 Note, that we cannot solve \(g_R(\beta) = 0 \) directly.
 \(Z'X \) is a \(R \times K \) matrix (of rank \(K \)) and cannot be inverted.
• Instead we want to minimize the quadratic form

\[Q_T(\beta) = g_T(\beta)' W_T g_T(\beta) \]
\[= \left(\frac{1}{T} Z'(Y - X\beta) \right)' W_T \left(\frac{1}{T} Z'(Y - X\beta) \right) \]
\[= \frac{1}{T^2} (Y'Z - \beta'X'Z) W_T (Z'Y - Z'X\beta) \]
\[= \frac{1}{T^2} (Y'ZW_TZ'Y - 2\beta'X'ZW_TZ'Y + \beta'X'ZW_TZ'X\beta). \]

• To minimize \(Q_T(\beta) \) we take the derivative and solve the \(K \) equations

\[\frac{\partial Q_T(\beta)}{\partial \beta} = 0 \quad (K \times 1). \]

• The GMM estimator solves the \(K \) equations

\[\frac{\partial Q_T(\beta)}{\partial \beta} = \frac{\partial \left(T^{-2} \left(Y'ZW_TZ'Y - 2\beta'X'ZW_TZ'Y + \beta'X'ZW_TZ'X\beta \right) \right)}{\partial \beta} \]
\[= -2T^{-2}X'ZW_TZ'Y + 2T^{-2}X'ZW_TZ'X\beta \]
\[= 0 \]

i.e.

\[\hat{\beta}_{GMM}(W_T) = (X'ZW_TZ'X)^{-1} X'ZW_TZ'Y. \]

• The optimal weight matrix is the inverse variance of the moments, i.e.

\[W_T^{opt} = S^{-1}, \]

where

\[S = V \left[\sqrt{T} \cdot g_T(\theta) \right] = \frac{1}{T} V [Z'\epsilon] = \frac{1}{T} E [Z'\epsilon'Z] = \frac{1}{T} Z'\Omega Z, \]

where we define \(E[\epsilon\epsilon'] = \Omega. \)
Case 1: Homoscedastic Errors

- If $E[\varepsilon \varepsilon'] = \Omega = \sigma^2 I$, the natural estimator of S is
 \[
 \hat{S} = \frac{1}{T} Z' \hat{\Omega} Z = \frac{1}{T} \hat{\sigma}^2 Z' Z,
 \]
 where $\hat{\sigma}^2$ is a consistent estimator for σ^2.

- Then the GMM estimator becomes
 \[
 \hat{\beta}_{GMM} = \left(X' Z \hat{S}^{-1} Z' X \right)^{-1} X' Z \hat{S}^{-1} Z' Y
 \]
 \[
 = \left(X' Z \left(\frac{1}{T} \hat{\sigma}^2 Z' Z \right)^{-1} Z' X \right)^{-1} X' Z \left(\frac{1}{T} \hat{\sigma}^2 Z' Z \right)^{-1} Z' Y
 \]
 \[
 = \left(X' Z (Z' Z)^{-1} Z' X \right)^{-1} X' Z (Z' Z)^{-1} Z' Y
 \]
 \[
 = \hat{\beta}_{GIVE} = \hat{\beta}_{2SLS}
 \]
 Under homoscedasticity the optimal GMM estimator is GIVE (and 2SLS).

- Recall, that
 \[
 \hat{\beta}_{GMM} \rightarrow N \left(\beta, \frac{1}{T} \left(D' W_{opt} D \right)^{-1} \right).
 \]
 The derivative is given by
 \[
 D_T \left(R \times K \right) = \frac{\partial g_T(\beta)}{\partial \beta'} = \frac{\partial \left(\frac{1}{T} Z' (Y - X \beta) \right)}{\partial \beta'} = -\frac{1}{T} Z' X = -\frac{1}{T} \sum_{t=1}^{T} z_t x_t'.
 \]

- The variance can be estimated by
 \[
 V \left[\hat{\beta}_{GMM} \right] = \frac{1}{T} \left(D_T' W_{opt} D_T \right)^{-1}
 \]
 \[
 = \frac{1}{T} \left(\left(-\frac{1}{T} Z' X \right)' \left(\frac{1}{T} \hat{\sigma}^2 Z' Z \right)^{-1} \left(-\frac{1}{T} Z' X \right) \right)^{-1}
 \]
 \[
 = \hat{\sigma}^2 (X' Z (Z' Z)^{-1} Z' X)^{-1},
 \]
 known from 2SLS.
• The specification test is given by

\[\xi = T \cdot g_T(\hat{\theta}_{GMM})' \hat{S}^{-1} g_T(\hat{\theta}_{GMM}) \]

\[= T \cdot \left(\sum_{t=1}^{T} \tilde{e}_t z_t \right)' \left(\frac{\sigma^2}{T} \sum_{t=1}^{T} z_t' z_t \right)^{-1} \left(\sum_{t=1}^{T} \tilde{e}_t z_t \right) \]

\[= \left(\sum_{t=1}^{T} \tilde{e}_t z_t \right)' \left(\frac{\sigma^2}{T} \sum_{t=1}^{T} z_t' z_t \right)^{-1} \left(\sum_{t=1}^{T} \tilde{e}_t z_t \right) \]

\[\rightarrow \chi^2(R - K). \]

In the linear case it is denoted the Sargan test.

• A simple way to calculate \(\xi \) is to consider the regression

\[\tilde{e}_t = z_t' \gamma + \text{residual}, \]

and calculate the test statistic as \(\xi = T \cdot R^2. \)

Case 2: Heteroscedasticity, No Autocorrelation

• In the case of heteroscedasticity but no autocorrelation,

\[E[\epsilon\epsilon'] = \Omega = \begin{pmatrix} \sigma_1^2 & 0 & \ldots & 0 \\ 0 & \sigma_2^2 & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ldots & 0 & \sigma_T^2 \end{pmatrix}, \]

we can use the estimator

\[\hat{S} = \frac{1}{T} Z' \hat{\Omega} Z = \frac{1}{T} \sum_{t=1}^{T} \tilde{e}_t^2 z_t z_t'. \]

We only need an estimate of the \(K \times K \) matrix \(Z' \Omega Z \) and not the \(T \times T \) matrix \(\Omega \). We get

\[\beta_{GMM}(\hat{S}^{-1}) = \left(X' Z' \hat{S}^{-1} Z' X \right)^{-1} X' Z' \hat{S}^{-1} Z' Y. \]

Note, that a constant in the weight is not important for the estimation.
• The variance of the estimator becomes

\[
V \left[\hat{\beta}_{GMM} \right] = \frac{1}{T} (D_T W_{opt} D_T)^{-1}
\]

\[
= \frac{1}{T} \left(\left(-\frac{1}{T} \sum_{t=1}^{T} x_t' z_t' \right) \left(\frac{1}{T} \sum_{t=1}^{T} \tilde{\epsilon}_t^2 z_t' z_t' \right)^{-1} \left(-\frac{1}{T} \sum_{t=1}^{T} z_t x_t' \right) \right)^{-1}
\]

\[
= \left(\sum_{t=1}^{T} x_t' z_t' \right)^{-1} \sum_{t=1}^{T} \tilde{\epsilon}_t^2 z_t^{-1} \left(\sum_{t=1}^{T} z_t x_t' \right)^{-1},
\]

which is the heteroscedasticity consistent variance estimator of White.

Case 3: Autocorrelation

• The weight-matrix is \(W_{opt} = \hat{S}^{-1} \), where

\[
\hat{S} = V \left[\sqrt{T} \cdot g_T(\theta) \right] = T^{-1} V \left[\sum_{t=1}^{T} (z_t \epsilon_t) \right].
\]

With autocorrelation, we need to take into account the covariances.

• This is done by the heteroscedasticity and autocorrelation consistent (HAC) estimator. Let

\[
\Gamma_j = \text{cov}(z_t \epsilon_t, z_{t-j} \epsilon_{t-j}) = E \left[(z_t \epsilon_t)(z_{t-j} \epsilon_{t-j})' \right]
\]

be a covariance matrix for lag \(j \). Then

\[
T \cdot S = T^{-1} \left\{ V(z_t \epsilon_t) + \text{Cov}(z_t \epsilon_t, z_{t-1} \epsilon_{t-1}) + \text{Cov}(z_t \epsilon_t, z_{t-2} \epsilon_{t-2}) + \ldots \right.
\]

\[
+ \text{Cov}(z_t \epsilon_t, z_{t+1} \epsilon_{t+1}) + \text{Cov}(z_t \epsilon_t, z_{t+2} \epsilon_{t+2}) + \ldots \left\}
\]

\[
= T^{-1} \sum_{j=-\infty}^{\infty} \Gamma_j.
\]
• If we can argue that $\Gamma_j = 0$ for j larger than some lag, q, we can use the estimator

$$\hat{S} = T^{-1} \sum_{j=-q}^{q} \hat{\Gamma}_j,$$

where we estimate the covariances by

$$\hat{\Gamma}_j = \frac{1}{T} \sum_{t=j+1}^{T} (z_t \hat{e}_t)(z_{t-j} \hat{e}_{t-j})'.$$

• The obtained \hat{S} is not necessarily positive definite. Instead the covariances can be given decreasing weights, Newey-West estimator. Finite sample properties are unknown.

• The HAC covariance estimator can also be used for OLS.