Economics of Banking
 Lecture 9

March 2023

Table of contents

Shadow banking II

- A model of shadow banking
- Business cycles and financial intermediation
- Leverage cycles

A model including all sectors

Two periods, $t=1,2$, two commodities. Agents:
(1) A consumer with W of good 1 and a utility function, the two goods are considered equal.
(2) A producer delivering good 2 at $t=2$. Input N_{1} of good 1 must be decided upon in $t=1$. It can be revised at $t=2$ to N_{2} at a cost of $\frac{k}{2}\left(N_{2}-N_{1}\right)^{2}$, production cost is c times output. No need for a loan.

Trade only at $t=2$, and the consumer must store commodity 1 using one of the two financial agents:

Financial agents

(3) A bank with two investment options:

1. payment of I at $t=1$: if type G outcome $L+I$, if type B only L. All agents assume that the investment is G with a probability p.
2. payment of x and repayment

$$
\begin{array}{ll}
x+f(x) & \text { with probability } q \\
x & \text { with probability } 1-q
\end{array}
$$

This investment must be financed entirely by equity.
(4) A trust fond which can store the commodity - one unit in, one unit out.

What happens?

Consumer puts W in bank or trustfund, takes it out as W_{2}.

Producer adjusts to demand. Price is set to 1 , so profit is

$$
(1-c) W_{2}-\frac{k}{2}\left(W_{2}-N_{1}\right)^{2} .
$$

W_{2} is random, so N_{1} is taken as its mean value, expected profit is

$$
(1-c) E \widetilde{W}_{2}-\frac{k}{2} \mathrm{E}\left(\widetilde{W}_{2}-\mathrm{E} \widetilde{W}_{2}\right)^{2}=(1-c) \mathrm{E} \widetilde{W}_{2}-\frac{k}{2} \operatorname{Var}\left(\widetilde{W}_{2}\right)
$$

Securitization

Bank offers security based on an investment portfolio:

Repayment: μL if portfolio is $B, \mu L+\lambda /$ if G.

Average return to consumer (and price of security) is $\mu L+p \lambda /$, bank gets rest, uses the cash payment for second investment

Consumer puts remainder $W-\mu L-\lambda p l$ into trust fund and takes it out at $t=2$, so that W_{2} has

- mean $p(W+(1-p) \lambda I)+(1-p) W-p \lambda I=W$,
- variance $p(1-p) \lambda^{2} I^{2}$

Regulation

Bank profit is

$$
L+p l-I+q f(\mu L+\lambda p l-I) .
$$

increasing in μ and λ, without regulation set to 1 (leverage of bank's investment).

Regulation: Assume that regulator can set μ and λ so as to maximize total expected payoff of agents ($=$ bank and producer)

$$
L+p I-I+q f(\mu L+\lambda p I-I)+W(1-c)-\frac{k}{2} p(1-p) \lambda^{2} I^{2} .
$$

Optimal value of μ is 1 . First order condition in λ is then

$$
q f^{\prime}(\lambda p l+L-I) p l-k p(1-p) \lambda I^{2}=0
$$

The optimal λ^{*} may be set indirectly by a limit on consumer share of investment.

Shadow banking

Now we allow the trust fund to become active: Buy a share in the portfolio (not allowed for consumers).

If price <1, Bank will sell a share with probability $1-p+p q$ (otherwise not interested)

The price will be $r=\frac{p q}{1-p+p q}$ (probability of getting money back)
Bank chooses λ^{\prime} maximizing expected profit

$$
\left(p \lambda+r \lambda^{\prime}\right) I+L-I+f\left(\left(p \lambda+r \lambda^{\prime}\right) I+L-I\right)+\left(1-\lambda-\lambda^{\prime}\right) I
$$

First order condition

$$
r I+f^{\prime}\left(\left(p \lambda+r \lambda^{\prime}\right) I+L-I\right) r I-I=0
$$

Welfare conditions 1

Insert r and get

$$
f^{\prime}\left(\left(p \lambda+r \lambda^{\prime}\right) I+L-I\right)=\frac{1-r}{r}
$$

If $0 \leq \lambda^{\prime} \leq 1-\lambda$ then regulator's λ must lie between

$$
\bar{\lambda}=\frac{\varphi\left(\frac{1-p}{p q}\right)+I-L}{p l} \quad \text { and } \quad \hat{\lambda}=\frac{\varphi\left(\frac{1-p}{p q}\right)+I-L-r l}{(p-r) I}
$$

(φ is the inverse of f^{\prime})
Here $\bar{\lambda}>\widehat{\lambda}$. We conclude:

Welfare conditions 2

(I) If $\lambda \geq \bar{\lambda}$, then no shadow banking at all. If $\lambda \leq \hat{\lambda}$, then bank sells $(1-\lambda) /$ to trust fund.
(II) If $\widehat{\lambda}<\lambda_{1}<\lambda_{2}<\bar{\lambda}$, then λ_{2} is Pareto-better than λ_{1} (tightening capital regulation is counterproductive).

A dynamic model with credit and collateral

Economy over time, $t=0,1, \ldots$:

- one consumption good in each period
- capital good 'land' can be used as collateral and for production
- two types of agents:
(i) entrepreneurs own the land but have no endowment of consumption good
(ii) lenders with endowments of consumption good
- Production: one unit consumption good plus k units of land to yield y units of the consumption good in the next period.

Dynamics in the model

At time t : Price of land is q_{t}.
Entrepreneur can obtain $q_{t+1}(1+r)^{-1}$ of the consumption good as a loan using land as collateral.

Then units of the consumption good, the entrepreneur needs $k q_{t+1}(1+r)^{-1}$ units of land.

The remaining $1-k q_{t+1}(1+r)^{-1}$ can be rented out at a rate h_{t}, giving income $h_{t}\left[1-k q_{t+1}(1+r)^{-1}\right]$.

Assume that rent is determined by $h_{t}=b-a l_{t}$.

Fundamental equation

We then have the relation between land price in t and $t+1$:

$$
q_{t+1}+(y-(1+r)) \frac{q_{t+1}}{1+r}+h_{t}\left(1-\frac{k q_{t+1}}{1+r}\right)=q_{t}(1+r)
$$

Insert h_{t}, then q_{t} is a second-degree polynomial in q_{t+1},

$$
q_{t}=\phi\left(q_{t+1}\right)
$$

Backward dynamics

A simple model of securities trading

Two periods, 0 and 1 ; one good, to be consumed or stored

Infinitely many individuals $i \in[0,1]$.

Individuals have one unit of the good AND an asset with payoff in the next period:

Individuals have subjective probability of success, uniformly distributed in $[0,1]$.

Trade only

Individuals with small values of i sell their asset to individuals with larger i.

Equilibrium at price p of asset such that

$$
\begin{equation*}
p=i \cdot 1+(1-i) \frac{1}{4} \tag{1}
\end{equation*}
$$

Market clearing occurs when

$$
p \cdot i=1-i .
$$

In our case we get $i=0.59, p=0.69$.

Trade and loans

Optimistic individuals borrow goods and buy assets

Loans must be fully collateralized (by assets):

Since the asset pays only $1 / 4$ in the case of a failure, borrowed amount y must satisfy

$$
y-1=\frac{1+\frac{1}{4} y}{p}
$$

Equilibrium conditions are (1) and:

$$
p \cdot i=(1-i) \cdot 1+\frac{1}{4}
$$

(buyers use their endowment plus the amount borrowed).

Leverage

Solution: $i=0.7, p=0.78$.

Loan to value ratio is $0.25 / 0.78=32 \%$, and the haircut (percentage subtracted from the market value of the asset) is $0.53 / 0.78=70 \%$.

Leverage, value of assets divided by own capital invested, is

$$
\frac{0.78}{0.78-0.25}=1.47
$$

One more period

Change the setup to three periods:

Loans are repo contract: Lender buys the asset from the borrower, who must buy it back after one period.

Finding equilibrium I

At $t=1$: In the state D marginal individual is i_{1}. At $t=0: i_{0}$. The counterpart of (1) is

$$
p_{D}=i_{1} 1+\left(1-i_{1}\right) \frac{1}{4}
$$

and market clearing at state D is

$$
\frac{i_{1}}{i_{0}} p_{D}=\frac{i_{1}}{i_{0}}\left(i_{0}-i_{1}\right)+\frac{1}{4} .
$$

To the left: Only the individuals up to $i \leq i_{0}$ in the market, each holds $\frac{1}{i_{0}}$ To the right: Goods for sale with individuals in [$\left.i_{1}, i_{0}\right]$, plus what can be borrowed.
Rewrite market clearing as

$$
i_{0}=\frac{4}{5} i_{1}\left(1+p_{D}\right) .
$$

Finding equilibrium II

We must also find i_{0} and p_{0}. We have

$$
\begin{equation*}
i_{0} p_{0}=\left(1-i_{0}\right)+p_{D}, \tag{2}
\end{equation*}
$$

(amount of goods transferred to sellers $t=0$ equals amount of goods that the buyers own plus what they can borrow)
Determining the marginal individual i_{0} :
An asset gives $1-p_{D}$ in state U and 0 in D, against a downpayment of $p_{0}-p_{D}$, so that

$$
i_{0} \frac{1-p_{D}}{p_{0}-p_{D}} .
$$

Or: i_{0} may keep the good to $t=1$, which with probability i_{0} keeps its value at U and with probability $\left(1-i_{0}\right)$ can be leveraged purchase of asset at $t=2$,

$$
i_{0} \frac{1-\frac{1}{4}}{p_{D}-\frac{1}{4}}=\frac{i_{0}}{i_{1}}
$$

Equilibrium results

Solving the system of 4 equations gives

$$
\begin{array}{ll}
i_{1}=0.638, & p_{D}=0.729, \\
i_{0}=0.882, & p_{0}=0.959
\end{array}
$$

Leverage at $t=0$:

$$
\frac{0.959}{0.959-0.729}=4.16
$$

At $t=1$ (in D) changed to

$$
\frac{0.729}{0.729-0.25}=1.522
$$

