Economics of Banking Lecture 7

March 2023

200

イロト イヨト イヨト イヨト

Lecture 7

Discussion of credit rationing:

- Adverse selection: The Stiglitz-Weiss model (underinvestment)
 An alternative: The de Meza-Webb model (overinvestment)
- Costly monitoring and the nominal-expected repayment relation
- Moral hazard and its influence on the relaton

Potential entrepreneurs:

Project au has random outcome $\tilde{y}(au) = \mu + \tilde{z}(au)$,

Here $\tilde{z}(\tau)$ random with mean 0, distribution $F(z|\tau)$, s.t.

 $au' > au \iff F(z| au)$ 2nd order stochastically dominates F(z| au')(project au' is more risky than au)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Stochastic dominance 1

Stochastic dominance:

Comparing probability distributions (lotteries) **independent** of decision maker.

1st order: F 1st order dominates F' if expected utility is higher for any person with **increasing** utility.

It can be shown that in this case $F'(x) \ge F(x)$ for each x.

イロト イポト イヨト イヨト 二日

Stochastic dominance 2

Comparing lotteries with the same mean (say, = 0)

2nd order: F 2nd order dominates F' if expected utility is higher for any person with **concave** utility.

It can be shown that in this case $\int_{\infty}^{y} F(x) dx \leq \int_{\infty}^{y} F'(x) dx$ for each y.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Bank uses standard contract with repayment R. Entrepreneur's profit at z is

$$\pi(z,R)=\max\{\mu+z-R,0\},$$

Let $\Pi(\tau, R) = \int_{-\infty}^{+\infty} \pi(z, R) f(z|\tau) dz$ be the expected outcome for type τ .

This can be written as

$$\Pi(au,R) = (\mu-R)(1-F(R-\mu| au)) + \int_{R-\mu}^{\infty} zf(z| au) \,\mathrm{d}z.$$

◆□ > ◆母 > ◆臣 > ◆臣 > □ = −の < ⊙

Expected profit can be written (after some manipulations) as

$$\Pi(\tau, R) = \mu - R + \int_{-\infty}^{R-\mu} F(z|\tau) \, dz.$$

 $\pi(\cdot, R)$ is convex, $-\pi(\cdot, R)$ concace, so: $\Pi(\tau, R)$ is increasing in τ !

Now we come to **adverse selection:** Let $\theta(R)$ be smallest type such that expected profit ≥ 0 , so that

 $\Pi(\theta(R),R)=0$

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Use implicit function theorem to get

$$\theta'(R) = -\frac{1 - F(R - \mu|\theta(R))}{\int_{-\infty}^{R-\mu} F_{\tau}'(z|\theta(R)) \, dz} > 0, \tag{1}$$

so that increasing R forces the low-risk types out of the market!

Average (over borrowers) profit is

$$\overline{\Pi}(R) = rac{1}{1 - G(heta(R))} \int_{ heta(R)}^1 \Pi(au, R) g(au) \, \mathrm{d} au$$

G is distribution of borrower types

Define $\rho(R) = \mu - \overline{\Pi}(R)$ – expected repayment to bank

The curve has a (local) maximum at R^0 with $ho(R^0)=r^0$

— expected repayment first increases, then decreases with nominal repayment.

(At R^{max} – the highest repayment rate at which there can be borrowers – repayment equals expected outcome

- showing that ρ eventually increases in our case)

イロト 不得 トイヨト イヨト ヨー シタウ

An alternative view: Oversupply of credits

Investment projects: y_H if success, y_L if failure

Investors differ in probability π of success (investors distributed with density $f(\pi)$)

Borrowers have initial wealth W, borrow B = 1 - W

Investment project profitable for society as a whole if

$$\pi y_H + (1-\pi)y_L \ge 1+r$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Oversupply 2

Given repayment R, borrower will accept loan if

$$\pi(y_H - RB) \ge (1+r)W,$$

Smallest probability at R (with =) is $\pi(R)$.

Bank supplies credits as long as

$$\pi RB + (1-\pi)y_L \ge (1+r)B,$$

Assume free entry of banks, so that we have = in this equation.

イロト イポト イヨト イヨト

= nac

12 / 1

March 2023

Oversupply 3

Let $f_R(\pi)$ be conditional density given that $\pi \ge \pi(R)$ (investor gets credits),

Average project in the market $\overline{\pi}(R) = \int_{\pi(R)}^{1} \pi f_R(\pi) d\pi$.

Then bank profits = 0 means that

 $\overline{\pi}(R)RB + (1 - \overline{\pi}(R))y_L = \overline{\pi}(R)(RB - y_L) + y_L = (1 + r)B,$

and $\overline{\pi}(R) > \pi(R)$ implies

 $\pi(R)RB + (1 - \pi(R))y_L < \overline{\pi}(R)RB + (1 - \overline{\pi}(R))y_L = (1 + r)B.$

Add the condition for the investor with $\pi = \pi(R)$,

$$\pi(R)(y_H - RB) = (1+r)W,$$

to get

$$\frac{\pi(R)y_H + (1 - \pi(R))y_L < 1 + r}{2}$$

Costly monitoring

Assume standard contract, monitoring cost is c_m ,

Monitoring when y is < R.

Outcome \tilde{y} has distribution function F(y) and density f(y).

Then

$$\rho(R) = \int_0^R (y - c_m) f(y) dy + \int_R^\infty Rf(y) dy.$$

Take the derivative w.r.t. R,

$$ho'(R) = (R - c_m)f(R) - Rf(R) + \int_R^\infty f(y)dy = [1 - F(R)] - c_m f(R).$$

For R large, first member goes to 0, so the derivative becomes negative

∃ 990

14 / 1

March 2023

イロト イポト イヨト イヨト

Moral hazard 1

Recall the simple model of moral hazard:

Borrower may choose between projects I_B and I_G ,

We have B > G but $\pi_G G > 1 > \pi_B B$.

The choice of project cannot be observed by the bank.

Invester chooses I_G if $R \le R^* = \frac{\pi_G G - \pi_B B}{\pi_G - \pi_B}$.

Expected payment is $\pi_G R$ if $R \leq R^*$, $\pi_B R$ otherwise.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Moral hazard 2

Use of collateral 1

An adverse selection model with collateral Investment project: Invest 1, get *y* with some probability, otherwise 0.

Two types of borrowers G and B with $\pi_G > \pi_B$. Repayment R, collateral C may be used.

Investor with utility u has expected utility of a loan contract with repayment R and collateral C

$$U(R, C; \pi_j) = \pi_j u(W + y - R) + (1 - \pi_j)u(W - C), \ j = B, G,$$

where W is initial wealth.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

The value of the collateral C is v(C), v concave, expected profit is

$$V(R, C; \pi_j) = \pi_j R + (1 - \pi_j) v(C) - (1 + r),$$

where r is the risk-free rate of interest (funding the bank).

Draw the zero-expected-profit curves in a (C, R) diagram. Contracts are points in the diagram.

We look for a *separating equilibrium:* Each type chooses the contract which is designated for this type.

イロト 不得 トイヨト イヨト ヨー シタウ

Equilibrium conditions in this market:

- (1) contracts are *incentive compatible*
- (2) bank has zero expected profit on each contract,
- (3) no bank can propose a new contract on which it can earn positive profit

- 4 同 ト - 4 三 ト - 4 三

Collateral 4

The crucial equilibrium condition: No competitor can earn money on a pooling contract

The *G*-indifference curve through the point *G* must not intersect the all-types-together zero-profit curve!

If it does, there is no separating equilibrium, but

The pooling contract is *not* an equilibrium, so there is no equilibrium in this model....

イロト イポト イヨト イヨト

Collateral 7

