Economics of Banking Lecture 5

February 2023

イロト イ団ト イヨト イヨト

996

We shall be concerned with several aspects of the loan contract:

- What is the loan contract?
- Loan contracts under perfect information
- Loan contracts with asymmetric information I: hidden information
 - Costly monitoring
 - Threat of non-renewal
- Loan contracts with asymmetric information II: hidden action

What is in the loan contract?

Simple view: a loan contract specifies when and how much to repay

Less simple view: Contract specifies:

- Repayment
- What happens if borrower cannot repay this amount

< ロト < 同ト < ヨト < ヨ

Loan contracts with full information

Borrower gets \tilde{y} , is **observable** and **contractable**

But \tilde{y} is random, so:

Borrower has utility u, lender has v, and expected outcomes are

$$\mathsf{E}[u(\tilde{y}-R(\tilde{y}))] = \int u(y-R(y))f(y)\,dy, \quad \mathsf{E}[v(R(\tilde{y}))] = \int v(R(y))f(y)\,dy$$

Contracts should be *Pareto optimal:* none of the parties can be made better off without the other party becoming worse off.

イロト 不得 トイヨト イヨト ヨー シタウ

Pareto optimal contracts

We want to characterize such contracts:

PO contracts maximize a weighted sum of the expected utilities of borrowers and lender:

$$\lambda_B \mathsf{E}[u(\tilde{y} - R(\tilde{y}))] + \lambda_L \mathsf{E}[v(R(\tilde{y}))]$$

is maximized for some positive numbers λ_B, λ_L .

First order conditions are

$$\lambda_B u'(y - R(y)) - \lambda_L v'(R(y)) = 0.$$

for each value y of the random variable \tilde{y} .

This equation gives us R as a function of y.

We now use the implicit function theorem to get

$$\frac{dR}{dy} = \frac{\lambda_B u''}{\lambda_B u'' + \lambda_L v''}.$$

イロト イポト イヨト イヨ

Using the result:

Interpreting the result

If the bank is risk neutral, so that v'' = 0, we get

$$\frac{dR}{dy} = 1$$

If both are risk averse, then R'(y) < 1 (risk-sharing)

E 990

◆ロト ◆聞ト ◆ヨト ◆ヨト

Truthful reporting

If the outcome of $\tilde{\boldsymbol{y}}$ is observed only by borrower, there is an incentive problem

Assume that true y can be inspected at a cost (not specified here)

We want truth-telling to be optimal for the borrower, but to use as little inspection as possible.

Let *A* be the reports from the borrower which will be audited.

Properties of such a repayment function

(1) If $y_1 < y_2$ both are not audited, then we cannot have $R(y_1) < R(y_2)$

Thus, repayment is constant, say $R(y) = \overline{R}$, in the no-auditing region.

(2) If y_1 is audited, and $R(y_2) < R(y_1)$, then also y_2 must be audited. In particular,

$$\begin{array}{rcl} R(y) & = & \overline{R}, \ y \notin A, \\ R(y) & \leq & \overline{R}, \ y \in A. \end{array}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 シスペ

Incentive compatible contract

A repayment function with these properties may look as this:

Minimizing cost

We now add a condition of efficiency: contract maximizes expected repayment for given probability of audit.

Then we get the *standard* contract

Threat of no renewal

Model of repeated engagements: 2 periods, in each period outcome y_H with probability p, otherwise y_L . No discounting.

We assume $y_L < 1$.

At t = 2, borrower reports y_L .

Rule: New engagement at t = 1 only if reported outcome is y_H .

No renewal

Conditions for feasibility

Incentive compatibility condition for the borrower (at t = 1)

$$-R+p(y_H-y_L)\geq -y_L$$

Present value for the bank is nonegative if

$$-1 + (1 - p)y_L + p(R - 1 + y_L) = p(R - 1) - 1 + y_L \ge 0$$

Combine them to get

$$1-y_L \leq p\left(\mathsf{E} ilde{y}-1
ight)$$

Special case: sovereign debt

Simple (Solow) model of a country:

Country borrows I, invests one-period production with output f(I).

Repayment after one period (1 + r)I.

Optimal level of investment I^* maximizes f(I) - (1 + r)I, first order condition

$$f'(I^*)=1+r.$$

E Sac

イロト イポト イヨト イヨト

Sovereign debt

Repudiating debt

What if debt is not paid back? Lenders' reply: no new debt any more

Future loss (at discount rate β) is

$$\sum_{t=1}^{\infty} \beta^{t} \left[f(I) - (1+r)I \right] = \frac{\beta}{1-\beta} \left[f(I) - (1+r)I \right].$$

Debt is repaid if loss \geq gain from repudiating debt:

$$(1+r)I\leq\beta f(I).$$

イロト イポト イヨト イヨ

The model

Outcome \tilde{y} has density function f(y, e) which depends on **effort** e.

Given repayment $R(\cdot)$, the *borrower* chooses e^* to maximize expected profit

$$\pi(R,e) = \int (y-R(y))f(y,e)\,dy - C(e)$$

We want $R(\cdot)$ to be chosen optimal for the borrower given that the lender should have R_I^0 :

$$\begin{array}{l} \max \ \pi(R,e^*)\\ \text{such that}\\ 0\leq R(y)\leq y, \ \text{all } y,\\ \pi(R,e)\leq \pi(R,e^*), \ \text{all } e,\\ \mathsf{E}[R(\tilde{y})|e^*]\geq R^0_L. \end{array}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Optimal contract

Proof

Simplify: Replace the IC condition with its 1st order condition

$$\pi'_e(R,y) = \int (y-R(y))f'_e(y,e)\,dy - C'(e) = 0.$$

For each y, the repayment R(y) maximizes the Lagrangian

$$(y - R(y))(f(y, e) + \mu f'_e(y, e)) + \lambda R(y)f(y, e)$$

= $y(f(y, e) + \mu f'_e(y, e)) + (\lambda - 1)f(y, e)R(y) - \mu f'_e(y, e)R(y),$

By linearity, in maximum either R(y) = y or R(y) = 0.

E 990

イロト イポト イヨト イヨト

Proof, end

The first case arises if

$$(\lambda - 1)f(y, e) \ge \mu f'_e(y, e)$$

and this can be rewritten as

$$\frac{f'_e(y,e)}{f(y,e)} \leq \frac{\lambda-1}{\mu}.$$

Assume that $\frac{f'_e(y,e)}{f(y,e)}$ is increasing in y, then this inequality is satisfied as long as y is \leq some threshold y^{*}.

◆□ > ◆母 > ◆臣 > ◆臣 > □ = −の < ⊙