Economics of Banking Lecture 4

February 2023

イロト イ団ト イヨト イヨト

996

- Measuring risk
- Interest rate risk
- Coherent measures of risk (not mandatory)

イロト イポト イヨト イ

200

Simple measures 1

Notional-amount approach:

Sum of the values of the individual assets

- possibly weighted by factor representing riskiness

Example: Risk-weighted assets in regulation according to Basel I - III

= nac

イロト イポト イヨト イヨト

Simple measures 2

Factor sensitivity:

Change in portfolio value caused by change in risk factors

- or better:
- Percentagewise change in portfolio value caused by change in risk factors
- that is, elasticity of the value wrt. the risk factor

Example: Duration (to be treated later today)

Risk measures based on loss distribution

How can a probability distribution be summarized in one or two numbers?

Maximal (except in very unlikely situations) loss can be measured by

Value at Risk:

$$\mathsf{VaR}_{\alpha} = \inf \{ I \in R \mid F_L(I) \ge \alpha \}.$$

where F_L is the (cumulative) loss distribution

Risk measures

Value at Risk

E

900

▲ロト ▲圖ト ▲屋ト ▲屋ト

Shortcomings of VaR

Losses above VaR occur with small probability, but how large are these losses?

An estimate of this can be obtained by Expected Tail Loss

$$\mathsf{ETL}_{\alpha} = rac{1}{1-lpha} \int_{lpha}^{1} \mathsf{VaR}_{u} f_{L}(u) \, du.$$

That is, ETL is the conditional mean of VaR for all probabilities $\geq \alpha$.

ETL works better than VaR and is now replacing VaR as popular risk measure.

(ETL is a *coherent* risk measure)

イロト 不得 トイヨト イヨト ヨー シタウ

Scenario-based measures

Stress-testing:

Worst possible case for given risk factor changes $C = \{x_1, \ldots, x_n\}$:

Let $w = (w_1, \ldots, w_n)$ be weights, with $w_j \in [0, 1]$.

Risk of a portfolio is

$$\psi_{[C,w]} = \max \left\{ w_1 l_{[t]}(x_1), \dots, w_n l_{[t]}(x_n) \right\}.$$

Many risk measures used in practice have this form.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Bonds and yields

We consider the assessment of risk on a portfolio of (default-free) bonds

A zero-coupon gives payoff 1 at the date T (the maturity).

At date t < T, the bond has a p(t, T).

The yield to maturity y(t, T) is

$$p(t, T) = e^{-(T-t)y(t,T)}$$

y(t, T) is the interest rate so that p(t, T) is present value at t of 1 paid at T. Then p(T, T) = 1.

The graph of the map $T \mapsto y(t, T)$ is the yield curve at time t.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Risk factors

Portfolio of *d* bonds with maturity T_i and prices $p(t, T_i)$, with λ_i bonds of maturity T_i . Take the yields y(t, T) as risk factors.

Model of profits and losses is

$$V_t = \sum_{i=1}^d \lambda_i p(t, T_i) = \sum_{i=1}^d \lambda_i e^{-(T_i - t)y(t, T_i)},$$

E Sac

イロト イポト イヨト イヨ

Loss distribution

Loss L_{t+1} is

$$L_{t+1} = -\sum_{i=1}^{d} \lambda_i p(t, T_i) (y(t, T_i) - (T_i - t) x_{t+1,i}).$$

 $x_{t+1,i} = y(t+1, T_i) - y(t, T_i)$ is the change in risk factor for type *i*.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Notional measures: **Gap analysis** Split assets and liabilities in

- fixed interest rate
- variable interest rate
- and consider
 - fixed interest rate gap
 - variable interest rate gap

The variable interest can be subdivided: 1 month LIBOR, 3 months LIBOR etc.

Problems with gap analysis

- gap analysis neglects uncertainties in volume and maturity
- gaps give no information about assets and liabilities such as implicit options (in-balance) or guarantees (off-balance),
- gap measures tend to neglect the many different types of interest rate
- the gaps neglect the flows within the time limits set

Duration 1

Simple sensitivity measure: How does market value change with interest rates?

Market value at time 0 of a bond with maturity t_n is:

$$V=\sum_{t=0}^{t_n}Y_t(1+y)^{-t}$$

where Y_t is the payment at t. Differentiating wrt. y yields

$$\frac{\partial V}{\partial y} = -\sum_{t=0}^{t_n} t Y_t (1+y)^{-(t+1)}.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Duration 2

Define the (Macaulay)-*duration* D as the elasticity of V with respect to the payoff rate 1 + y:

$$D = -\frac{\partial V}{\partial y} \frac{1+y}{V}.$$

Then

$$D = -\left[\sum_{t=0}^{t_n} tY_t(1+y)^{-(1+t)}\right] \frac{1+y}{V} = \frac{1}{V} \sum_{t=0}^{t_n} tY_t(1+y)^{-t} = \sum_{t=0}^{t_n} tw_t,$$

where

$$w_t = \frac{Y_t(1+y)^{-t}}{V}.$$

€ 990

15 / 1

イロト イボト イヨト イヨ

Duration matching 1

Asset and liability management (ALM) over T years:

(i) Assets A_j with maturity t_j and interest rate r_j , j = 1, ..., m(ii) Liabilities L - k, with maturity t_k and intest rate r_k , k = 1, ..., n. At any t_j (t_k), market interest rate is i_j (i_k). Define time units such that T = 1.

NPV of assets at t = 1 is:

$$V_{A}^{1} = \sum_{j=1}^{m} A_{j} (1 + r_{j})^{t_{j}} (1 + i_{j})^{1 - t_{j}}.$$

E Sac

Duration matching 2

Assume that the interest rate structure has a **parallel lift** of size λ . Then

$$\begin{split} \frac{\partial V_A^1}{\partial \lambda} &= \sum_{j=1}^m A_j (1+r_j)^{t_j} (1-t_j) (1+i_j)^{-t_j} \\ &= \sum_{j=1}^m \frac{A_j (1+r_j)^{t_j}}{(1+i_j)^{t_j}} (1-t_j) \\ &= V_A (1-D_A), \end{split}$$

Lecture 4

with V_A the NPV of assets at t = 0 and D_A duration of assets.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Duration matching 3

Repeating the procedure for the liabilities, we get

$$\frac{\partial V_L^1}{\partial \lambda} = \sum_{k=1}^n L_k (1+r_k)^{t_k} (1-t_k) (1+i_k)^{-t_k} = V_L (1-D_L),$$

The portfolio is immune against shifts in the interest rate structure if

$$V_A(1-D_A)=V_L(1-D_L),$$

which is the principle of duration matching

・ロト ・ 同ト ・ ヨト ・ ヨ

Shortcomings

Duration matching can be used only for small changes in interest rates

If larger, use (Macaulay-)convexity defined as

$$K = \sum_{t=0}^{t_n} (t^2 + t) w_t,$$

so that

$$\frac{\partial^2 V}{\partial y^2} = \frac{VK}{(1+y)^2}.$$

Then

$$riangle V = -rac{VD}{1+y} riangle y + rac{1}{2} rac{VK}{(1+y)^2} (riangle y)^2.$$

イロト イポト イヨト イヨ

General theory of risk measures

Given n possible future states of the world.

A *risk* is now a vector X with n components. G is the set of all risks.

A measure of risk ρ assigns to each $X \in \mathcal{G}$ a number $\rho(X)$.

An *acceptance set* A is a subset of G of "reasonable" risks.

Example: $VaR_{\alpha}(X) = -\inf \{y \mid P(\{\omega \mid X(\omega) \le yr\}) > \alpha\}$ is a risk measure

 $\mathcal{A}_{
ho} = \{X \mid \mathsf{VaR}_{lpha}(X) \leq 0\}$ is an acceptance set

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Conditions for acceptance sets

A1 $R^n_+ \subset \mathcal{A}$.

A2 $\mathcal{A} \cap \mathbb{R}^{n}_{--} = \emptyset$.

A3 \mathcal{A} is convex.

A4 \mathcal{A} is a cone.

r a given ("very safe") risk. Given an acceptance set A, define risk measure

$$\rho_{\mathcal{A},r}(X) = \inf \{ m \mid mr + X \in \mathcal{A} \}.$$

Properties of risk measures

- T For all X and α , $\rho(X + \alpha r) = \rho(X) \alpha$.
- S For all X, Y, $\rho(X + Y) \le \rho(X) + \rho(Y)$.
- P For all $\lambda \ge 0$ and X, $\rho(\lambda X) = \lambda \rho(X)$.
- M If $X \leq Y$, then $\rho(Y) \leq \rho(X)$.

A risk measure satisfying T,S,P and M is coherent

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろのぐ

Characterization of coherent risk measures

- Let \mathcal{A} be an acceptance set satisfying A 1 4.
- Then $\rho_{A,r}$ is a risk measure satisfying properties T, S, P and M.

Conversely,

if ρ satisfies T, S, P and M, then $\mathcal{A}_{\rho} = \{X \mid \rho(X) \leq 0\}$ satisfies A 1 – 4.

イロト 不得 トイヨト イヨト ヨー シタウ