Economics of Banking
 Lecture 14

April 2023

Table of contents

Bank runs

- The D-D model and sunspots
- How can bank runs be avoided?
(i) Narrow banking
(ii) Refusal of payment
(iii) Deposit certificates instead of deposits
- Own efforts: liquidity reserves
- The interbank market
- Adverse selection in the interbank market

Diamond-Dybvig again

Investment project I with payoff $R>1$ per unit.

Individuals subject to liquidity shock at date $t=1$ with probability π.

Optimal arrangement: Deposit contract.
Bank delivers either c_{1}^{0} at $t=1$ or c_{2}^{0} at $t=2$, such that

$$
\max _{c_{1}, c_{2}, l} \pi u\left(c_{1}\right)+(1-\pi) u\left(c_{2}\right)
$$

subject to constraints

$$
\begin{aligned}
\pi c_{1} & =1-I \\
(1-\pi) c_{2} & =R I
\end{aligned}
$$

Sunspot equilibria

Suppose that patient depositors become afraid that bank will not pay at $t=2$:

Then they they will prefer c_{1} at $t=1$ to nothing at $t=2$.
Bank run: Bank cannot satisfy its obligations and is bankrupt.

The initial beliefs of turned out to be justified!
(Extended model: Add a mechanism producing signal $s \in\{0,1\}$.
If the depositors believe that $s=1 \Rightarrow c_{2}=0$, then running the bank is optimal choice, and:

Beliefs sustained: This is an example of a sunspot equilbrium.)

How can bank runs be prevented?

We shall be concerned with several proposals for preventing than bank runs happen:
(1) Suspension of payment: Bank declares that it will pay out only the amount corresponding to c_{1} times number of impatient depositors.

Effect: Patient depositors can see that the bank will survive to $t=2$.

Problem: The share π of impatients must be observed with high precision.

Works only in theory. Points to insurance of deposits (to be treated later).

Deposit certificates instead of deposits

(2) Deposit certificates

Certificates with dividend payment d at $t=1$, giving $R(1-d)$ at $t=2$.
Impatient individuals sell the certificate at price p and gets

$$
c_{1}=d+p
$$

Patient individuals buy $\frac{d}{p}$ and get

$$
c_{2}=\left(1+\frac{d}{p}\right) R(1-d)
$$

Finding the optimal dividend

The price p is found by supply=demand,

$$
\pi=(1-\pi) \frac{d}{p} \text { or } p=\frac{1-\pi}{\pi} d
$$

so

$$
c_{1}=\frac{d}{\pi}, \quad c_{2}=\frac{R(1-d)}{1-\pi} .
$$

Dividend payment can be specified to achieve optimum.
Problem: Depends on the correct setting of d.
Does away with traditional banking (shareholders instead of depositors).

Narrow banking

(3) Narrow banking

Banks taking deposits should invest only in safe securities (sold at full value at any time). so that the bank runs cannot occur.

In the context of the D-D model: The constraints are

$$
\begin{aligned}
& c_{1} \leq 1-I \\
& c_{2} \leq R I
\end{aligned}
$$

Maximizing expected utility here is inferior to the D-D solution, preventing banking as we understood it so far.

Too simple formalization - narrow banking is about separating the activities of banks.

Liquidity risk

Liquidity can be considered as an inventory problem:

Assume: Bank gets r_{L} on loans but must pay penalty rate r_{p} if reserves R too small.

Depositors' demand \tilde{x} has probability distribution function $F(x)$ and density $f(x)$.

Expected profit

$$
\pi(R)=(D-R) r_{L}+R r-r_{p} \int_{R}^{\infty}(x-R) f(x) \mathrm{d} x
$$

Optimal reserves

First order conditions for a maximum:

$$
-r_{L}+r+r_{p} \int_{R}^{\infty} f(x) \mathrm{d} x=0
$$

and since $\int_{R}^{\infty} f(x) \mathrm{d} x=1-F(x)$,

$$
1-F(R)=\mathrm{P}\{\tilde{x} \geq R\}=\frac{r_{L}-r}{r_{p}}
$$

Model not realistic: Suppose that $r_{L}-r=4 \%$ and $r_{p}=20 \%$.
Then the probability of being short of cash is $1 / 5$.

Basel III

Liquidity risk was not considered in Basel I and II.

Basel III introduces:

- a liquidity coverage ratio: High quality assets must cover one month net cash outflow.
- a ratio between long-term assets, suitably risk weighted, and net stable funding (deposits, long-term loans and equity).

Criticism: financial supervisors may not be the right institutions for dealing with questions of liquidity (better to use lenders of last resort).

Many banks with different depositors

Now there are n, banks, and bank j has depositors with probability π_{j} of being impatient. Average probability is $\bar{\pi}$.

Bank j proposes deposit contract $\left(c_{1}^{j}, c_{2}^{j}\right)$.
In the social optimum the contracts should maximize

$$
\frac{1}{n} \sum_{j=1}^{n}\left[\pi_{j} u\left(c_{1}^{j}\right)+\left(1-\pi_{j}\right) u\left(c_{2}^{j}\right)\right]
$$

under the constraints

$$
\begin{aligned}
& \frac{1}{n} \sum_{j=1}^{n} \pi_{j} c_{1}^{j}=1-I \\
& \frac{1}{n} \sum_{j=1}^{n}\left(1-\pi_{j}\right) c_{2}^{j}=R I \\
& 0 \leq I \leq 1
\end{aligned}
$$

Properties of optimum

By concavity of u (risk aversion):

All individuals get the same contract $\left(c_{1}^{*}, c_{2}^{*}\right)$, independent of bank.

If I^{*} is the investment supporting the contract, then at $t=1$ we have:
Average need for liquidity $=\frac{n_{1}}{n} \sum_{j: \pi_{j}>\bar{\pi}} \pi_{j} c_{1}^{*}-\frac{n_{1}}{n}\left(1-I^{*}\right)$,
Average surplus of liquidity $=\frac{n_{2}}{n}\left(1-I^{*}\right)-\frac{1}{n} \sum_{j: \pi_{j} \leq \pi} \pi_{j} c_{1}^{*}$,
with n_{1} and $n_{2}=n-n_{1}$ are the numbers of banks with deficit resp. surplus.

The interbank rate

At $t=2$, the loans are paid back with an interbank interest rate r.

Surplus (at $t=1$) banks can use this when paying back at $t=2$:

$$
(1+r)\left(1-I^{*}-\pi_{k} c_{1}^{*}\right)=\left(1-\pi_{k}\right) c_{2}^{*}-R I^{*}
$$

and borrowers can use the surplus at $t=2$ to pay back debt,

$$
(1+r)\left[\pi_{j} c_{1}^{*}-\left(1-I^{*}\right)\right]=R I^{*}-\left(1-\pi_{j}\right) c_{2}^{*}
$$

Insert $1-I^{*}=\bar{\pi} c_{1}^{*}$ and $R I^{*}=(1-\bar{\pi}) c_{2}^{*}$:

$$
(1+r)\left(\bar{\pi}-\pi_{j}\right) c_{1}^{*}=\left[\left(1-\pi_{j}\right)-(1-\bar{\pi})\right] c_{2}^{*}=\left(\bar{\pi}-\bar{\pi}_{j}\right) c_{2}^{*},
$$

so that $(1+r)=\frac{c_{2}^{*}}{c_{1}^{*}}$ or

$$
(1+r)=\left(\frac{\bar{\pi}}{1-\bar{\pi}}\right)\left(\frac{I^{*}}{1-I^{*}}\right) R .
$$

Interbank market with uncertainty

As before, probability of impatience differ, here: either π_{h} or π_{l},

As always, investment can be liquidated at $t=1$ at a value $L<1$ per unit.

New feature: The investment is subject to uncertainty:

Outcome is R with some probability $u, 0$ otherwise, where

$$
u=\left\{\begin{array}{l}
u_{s} \\
u_{I}
\end{array} \quad u_{S}>u_{r}\right.
$$

The probability is revealed to the relevant bank only at $t=1$.;

Full information

Size of deposit withdrawals $j \in\{h, I\}$ and quality of investment $i \in\{r, s\}$ can be observed by all banks at $t=1$.

Then there will be different interest rates, r_{s} and r_{r}, for to the two types of borrowers.

Lenders get the expected payoff $u_{s}\left(1+r_{s}\right)$ from s-borrowers and $u_{r}\left(1+r_{r}\right)$ from r-borrowers, so

$$
u_{s}\left(1+r_{s}\right)=u_{r}\left(1+r_{r}\right)
$$

Equilibrium

A bank with a large π_{h} needs a loan of size $\pi_{h} c_{1}-\left(1-I^{*}\right)$.
The rates r_{s} and r_{r} can be found from the condition to be satisfied at $t=2$:

$$
\begin{aligned}
\left(1+r_{i}\right)\left(\pi_{h} c_{1}-\left(1-I^{*}\right)\right) & =u_{i} R I^{*}-\left(1-\pi_{h}\right) c_{2} \\
\left(1+r_{i}\right)\left[\left(1-I^{*}\right)-\pi_{I} c_{1}\right] & =\left(1-\pi_{I}\right) c_{2}-u_{i} R I^{*}
\end{aligned}
$$

$i=s, r$, and the average rate (given the proportion of safe and risky projects) is

$$
\rho_{0}=\frac{\hat{\pi}}{1-\hat{\pi}} \frac{I^{*}}{1-I^{*}} \hat{u} R
$$

(much as before)

Asymmetric information

If lenders cannot observe whether borrower is s or r, then there is only one rate ρ_{1}.
(1) Let u^{\prime} be average probability. If $u^{\prime} \rho_{1}<1$, there will be no lenders.
(2) If both r and s banks are borrowing, then $u^{\prime}=\hat{u}$, and the repayment rate ρ_{1} is found as in the B-G model

$$
\rho_{1}=\frac{\hat{\pi}}{1-\hat{\pi}} \frac{I^{*}}{1-I^{*}} \hat{u} R .
$$

(3) In this case, it expected profit for a borrower is

$$
u\left(R I^{*}-\left(1-\pi_{h}\right) c_{2}-\rho_{1}\left(\pi_{h} c_{1}-\left(1-I^{*}\right)\right)\right)-\left(1-I^{*}\right)
$$

and not using the market, it is

$$
u\left(R\left(I^{*}-\frac{1}{L}\left(\pi_{h} c_{1}-\left(1-I^{*}\right)\right)-\left(1-\pi_{h}\right) c_{2}\right)-\pi_{h} c_{1}\right.
$$

The drying out of the interbank market

Rewriting the two equations as

$$
u\left(R I^{*}-\left(1-\pi_{h}\right) c_{2}\right)-\left[u \rho_{1} \pi_{h} c_{1}+\left(1-u \rho_{1}\right)\left(1-I^{*}\right)\right]
$$

and

$$
\left.u\left(R I^{*}-\left(1-\pi_{h}\right) c_{2}\right)-\left[\left(1+\frac{u R}{L}\right) \pi_{h} c_{1}-\frac{u R}{L}\left(1-I^{*}\right)\right)\right] .
$$

If $u_{s} \approx 1$ and u_{s} small so that ρ_{1} is large (remember, $u^{\prime} \rho_{1}>1$), then not borrowing is better for s-borrowers if $\frac{u R}{L}$ is close to 1 .

Consequence: Adverse selection, only bad borrowers, lenders may stay away.

