Economics of Banking Lecture 13

April 2023

Lecture 13

▲口 ▶ ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ →

王

Irregularities

Bankruptcy for profit

• Economics of looting

Irregular bank behavior

- The problem of the hidden option
- Evergreening

April 2023

Image: A match a ma

Econ0mics of looting

Model over t = 0, 1, 2.

At t = 0: Initial capital W_0 , liabilities L_0

Used to and purchase assets $A = W_0 + L_0$. By capital regulation: $W_0 \ge cA_0$.

Assets give payments $\rho_1(A)$ at t = 1 and $\rho_2(A)$ at t = 2.

At t = 1, dividends Δ_1 are paid out.

After the payment of dividends, the liabilities are

$$L_1 = (1 + r_1)L_0 - \rho_1(A) + \Delta_1.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Liabilities over the years

At t = 2, business can be finished after receipt if $\rho_2(A)$.

The liabilities are

$$(1+r_2)L_1 = (1+r_2)[(1+r_1)L_0 - \rho_1(A) + \Delta_1],$$

and Net worth is value of assets minus value

With **full liability:** Solve (at t = 2)

$$V^* = \max_{A,\Delta_1} \frac{\rho_2(A) - (1+r_2)[(1+r_1)L_0 - \rho_1(A) + \Delta_1]}{1+r_2} + \Delta_1$$

=
$$\max_A \frac{\rho_2(A)}{1+r_2} + \rho_1(A) - (1+r_1)L_0$$

subject to

$$0 \le cA_0 \le W_0.$$

▲ロト ▲圖 ト ▲ ヨト ▲ ヨト 一 ヨ … のへで

Strategic default

With **limited liability:** Government imposes an upper bound M(A) on dividend at t = 1:

Now the problem is:

$$\mathsf{max}_{\mathcal{A}, \Delta_1, \Delta_2} \left[\frac{\Delta_2}{1 + r_2} + \Delta_1
ight]$$

under the constraints

$$egin{aligned} 0 &\leq c A_0 &\leq W_0, \Delta_1 &\leq M(A), \ \Delta_2 &\leq \max\{0,
ho_2(A) - (1+r_2)[(1+r_1)L_0 -
ho_1(A) + \Delta_1]\}, \end{aligned}$$

э

5/1

・ロト ・回ト ・ヨト ・ ヨト

The general result

Let M^* be maximum of M(A) given that $0 \le cA_0 \le W_0$.

Theorem

(1) If $M^* \leq V^*$, then the thrift chooses A so as to maximize the true value.

(2) If $M^* > V^*$, then the thrift chooses A so as to maximize M(A), it pays dividends M^* in period 1 and defaults in period 2.

イロト 人間ト イヨト イヨト

Example

"Riding the yield curve"

The firm acquires a bond with maturity at t = 2 for borrowed money. Yearly interest payment on loan r_L given by

$$(1 + r_L) + (1 + r_L)r_L = (1 + r_1)(1 + r_2)$$

so that $r_L \sim (r_1 + r_2)/2$.

Assume $r_1 > r_L > r_2$:

First year interest $r_1 > r_L$ paid out as dividend. Second year: $r_2 > r_L$ and default!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

A simple mortgage loan model

Investment project: Outcome $y_h > 1$ with probability π , otherwise $y_l < 1$.

Banks' profit:

$$\pi R_L + (1 - \pi)y_l - R = \pi R_L - (1 - \pi)(R - y_l) - \pi R$$

Define $\nu = (1 - \pi)(R - y_l)$: value of option on property with strike price R at t = 1.

If bank profit is 0 (due to competition), then

$$R_L = \frac{\nu}{\pi} + R$$

The option given to the borrower is a cost for the lender.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

April 2023

Consequences

If banks neglect the cost of the option: $R_L o R$

Loan rates do not reflect true cost \rightarrow oversupply of (unsafe) credit!

But why do banks neglect the implicit option?

Bank managers may be

- myopic (wrong perception of possible downturn)
- compete for total assets rather than maximal expected profits

イロト イポト イヨト イヨト 二日

Evergreening

Investments:

Time:	0		1		2
Fast	1	\longrightarrow	Y		
Slow	1	\longrightarrow	Y-1	\longrightarrow	Υ
Very slow	1	\longrightarrow	\longrightarrow	\longrightarrow	Y_2

Bank is funded at interest rate r.

Probability of success:

If monitored	1
If not monitored	р

Monitoring cost m

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Saving the bank after failed engagement

Suppose the bank chooses **not** to monitor a **slow** investment

Borrower defaults with probability 1 - p

If net gains $p(r_L - r)$ are smaller than losses (1 - p)(1 + r) and revealed, the regulator closes the bank.

Instead: Carry on (pretending that the investment is very slow), profits at t = 2 are $p(1 + r_L)^2 - (1 + r)^2$. If

$$p(1+r_L)^2 - (1+r)^2 > (1-p)(1+r) - p(r_L - r)$$

then the bank survives.

If $m > (1-p)(1+r_L)^2$ then not monitoring is better than monitoring!

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

April 2023

Techiques

Technology of money laundering

Placement

legal organisations

Lecture 13

Layering

many transactions between individuals

Integration

sales as legitimate transactions

イロト 不得下 イヨト イヨト

э

Crying wolf: A simple model

Two agents: Bank and Government.

Bank observes transaction: prior probability α (say = 0.1) of ML

ML has cost *h* to society

ML can be prosecuted, reduces *h* by a percentage $\rho(= 0.8)$.

Bank may monitor transaction at cost m(=0.02), receives a signal $\sigma \in \{0, 1\}$. Probabilities are

	Money laundering	Legal transaction
$\sigma = 0$	$1-\delta$	δ
$\sigma = 1$	δ	$1-\delta$

Here: $\delta = 3/4$.

Result of observation

We can compute posterior probability of ML:

$$\beta_0 = \mathsf{P}[ML|\sigma = 0] = \frac{0.1 \cdot 0.75}{0.1 \cdot 0.25 + 0.90 \cdot 0.25} = 0.04$$

$$\beta_1 = \mathsf{P}[ML|\sigma = 1] = \frac{0.1 \cdot 0.75}{0.1 \cdot 0.75 + 0.9 \cdot 0.25} = 0.25$$

Bank reports if received signal. Reporting has a cost c(= 0.01)

Government also exerts effort I (= probability of verifying ML) at cost $\frac{1}{2}I^2$, I_0 if no report and I_1 if report.

Fine F(=10) to bank if government discovers an unreported ML

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

April 2023

The Monitoring and Reporting Game

Bank chooses a policy (M, T)

 $M \in \{0,1\}$ for monitoring, $T \in \{0,1\}$ for reporting when signal is $\geq T$.

Let q_{1T} (q_{0T}) be the probability of ML (no ML) given monitoring and reporting.

Then $q_{01} = \beta_0 = 0.04$, $q_{11} = \beta_1 = 0.25$.

If T = 0, then reporting is uninformative, so that $q_{10} = q_{00} = \alpha = 0.1$.

We also use probability p_T of reporting T, $p_1 = 0.1 \cdot 0.75 + 0.9 \cdot 0.25 = 0.3$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Social welfare

For society, F is a transfer between agents and doesn't matter

Bank chooses (1, 1).

Marginal gain from effort should equal marginal cost:

No report
 Report

$$I_0^* = q_{01}\rho = 0.03$$
 $I_1^* = q_{11}\rho = 0.2$

Lecture 13

But can this optimum be sustained?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 つのべ

Setting the fine

Yes if the fine F can be determined so that

(a) Expected cost for bank not smaller if M = 0,

$$\alpha I_0^* F \ge (1 - p_1) q_{01} I_0^* F + p_1 c + m,$$

or

$$F \ge \frac{p_1 c + m}{[\alpha - (1 - p_1)q_{01}]I_0^*} = 5.65$$

(b) Expected cost should not increase if the bank monitors but reports at all signals,

$$c+m \ge (1-p_1)q_{01}I_0^*F+p_1c+m,$$

or

$$F \leq \frac{(1-p_1)c}{(1-p_1)q_{01}I_0^*} = 9.8.$$

April 2023

イロト 不得下 イヨト イヨト 二日