Economics of Banking Lecture 1

February 2023

イロト イ団ト イヨト イヨト

996

Contents of this lecture:

- 1. Overview of course
- 2. No banks in classical GE
- 3. Why banks I: Liquidity insurance

DQC

What is banking theory all about?

Our course has two parts:

- Microeconomics of banking: Analysis of financial intermediation, loans, interest rates, losses, defaults
- Risk management: How banks can control their risk

Main problems in banking theory 1

• Why are there banks?

Key competences of financial intermediaries, Should banks hold diversified or specialized portfolios? Big or small banks? Ownership of banks

• Credit allocation: Why is there rationing?

Use of collateral Credit rationing and its impact on society New financial products

Main problems in banking theory 2

• Liquidity transformation, why and how?

How is can illiquid assets be transformed to liquid assets? Role of deposits Bank runs and panics Deposit insurance, public or private?

• Maturity transformation, how and why?

Loans for resale Securitization

イロト イポト イヨト イヨト

Main problems in banking theory 3

• Regulation of banks, how?

Who should regulate and when? Deposit insurance: who should pay and how much? Capital requirements

• Borrowers' choice of financing

Banking competition Banks and non-banks Role of brokers

イロト イポト イヨト イヨト

Simple GE model, consumers

Economy with: 1 consumer, 1 producer, 1 bank, 2 periods t = 0, 1, one good.

Consumer chooses bundle (x_1, x_2) maximizes $u(x_1, x_2)$ under budget constraint

 $x_0 + b^c + s \le \omega$ (consuming, buying bonds and saving) $px_1 \le (1+r)b^c + (1+r_d)s + \pi^p + \pi^b$ (selling the bonds, receiving deposits).

Since utility is maximal, saving is 0 if the deposit rate is below the market rate.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへ⊙

Simple GE model, producers, banks

Producer invests z at t = 0, gets y = g(z) at t = 1 so as to maximize profits

$$\pi^{p} = pg(b^{p} + l) - (1 + r)b^{p} - (1 + r_{l})l.$$

In optimum, loans are 0 if the loan rate above the market rate.

Bank offers credits I funded by deposits s and bond issue b^b , profits are given by

$$\pi^{b} = (1+r_{l})l - (1+r)b^{b} - (1+r_{d})s.$$

E Sac

Simple GE model: no banks

Bank's profits are 0 unless

 $r < r_l$ or $r_l > r_d$.

If $r < r_l$ the producer doesn't use the bank, so $r \ge r_l$. But then the consumer doesn't want to use the bank.

Conclusion: Either there is no activity in the bank or $r_l = r = r_d$, meaning that the bank is just duplicating the bond market!

What went wrong?

The model must have serious shortcomings, but which?

(1) Only one good at each date? Easy to extend, only more notation.

イロト イポト イヨト イヨ

What went wrong?

The model must have serious shortcomings, but which?

- (1) Only one good at each date? Easy to extend, only more notation.
- (2) No uncertainty? Uncertainty can be included in the form of contingent commodities back to (1).

What went wrong?

The model must have serious shortcomings, but which?

- (1) Only one good at each date? Easy to extend, only more notation.
- (2) No uncertainty? Uncertainty can be included in the form of contingent commodities back to (1).
- (3) Uncertainty **plus** asymmetric information: This will open up for financial intermediation in several ways!

Liquidity insurance model

Investment project: For each unit invested at t = 0, get R > 1 at t = 2. At t = 1, money is needed with probability π . But taking it out gives only L > 1.

Consumption plan (c_1, c_2) , where

- c_1 is consumption at t = 1 if consumer is impatient (otherwise 0)
- c_2 is consumption at t = 2 if patient (otherwise 0).

The consumer maximizes utility

$$U(c_1, c_2) = \pi u(c_1) + (1 - \pi)u(c_2).$$

There are several possible scenarios:

イロト イポト イヨト イヨト

1. Autarchy

If the consumer is alone, the constraints are

$$c_1 = 1 - I + LI = 1 - I(1 - L),$$

 $c_2 = 1 - I + RI = 1 + I(R - 1).$

Then $c_1 \leq 1$, with equality only for I = 0. Also $c_2 \leq R$ with equality only in the case that I = 1. In particular, the consumption plan is inferior to (1, R).

・ロト ・ 同ト ・ ヨト ・ ヨ

2. Money market

Sell the investment at t = 1 at price p (per unit outcome at t = 2). The constraints are

$$c_1 = 1 - I + pRI,$$

 $c_2 = rac{1 - I}{p} + RI = rac{1}{p}(1 - I + pRI).$

Price *p* must clear the market: Equilibrium only if $p = \frac{1}{R}$ (Why?).

Then consumption plan is $(c_1, c_2) = (1, R)$ better than autarchy. But there is still room for improvement:

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

3. Social optimum

Maximize $U(c_1, c_2)$ under constraints

$$\pi c_1 = 1 - I,$$

 $(1 - \pi)c_2 = RI.$

First order conditions: Insert c_1 and c_2 to obtain

$$U(c_1, c_2) = \pi u\left(\frac{1-I}{\pi}\right) + (1-\pi)u\left(\frac{RI}{1-\pi}\right),$$

and take derivatives w.r.t. I to get

$$u'(c_1^0) = Ru'(c_2^0),$$

where (c_1^0, c_2^0) is the social optimum.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Better than the market solution

Social optimum (c_1^0, c_2^0) typically differs from (1, R): Equality only if u'(1) = Ru'(R), which will happen only by exception.

Assuming that u is such that zu'(z) decreases in z, then

R > 1 and $c_2^0 \le R$ implies that $Ru'(R) < 1 \cdot u'(1) = u'(1)$,

so that $c_1^0 > 1$ (risk aversion: consumers want the payoffs in t = 1 and t = 2 to be almost the same).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Deposit contracts

Implementing the social optimum:

Create a bank offering contingent deposit contract:

Deposit 1 at t = 0, get c_1^0 if impatient, c_2^0 if patient.

This contract is feasible, the bank has enough liquidity to pay all the consumers when they show up.

No documentation of impatience is needed – no advantage of pretending to be impatient!

(There may however be problems if we introduce expectations into the story – as we shall do at a later stage)

E Sac