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Abstract

Health economic assessment has become a major field of application of Health Eco-
nomics, and the use of utility representation of indices of health-related quality of life,
typically in the form of QALYs, is an important ingredient in such assessments. In spite
of its widespread application, the foundations of indexes representing preferences over
health states may still need some clarifications. A possible approach towards a theoretical
background for measuring quality of life might be based on the notion of characteristics
considered as the totality of functionings available to an individual. For the concept of
capabilities to be useful, an index representing preferences over capabilities should be
more just than a weighted average of the assessments over its constituent functionings.
In the present paper we investigate whether such an index is possible, and the answer is
a affirmative although with some qualifications and limitations.

1. Introduction

Since its appearance, the capability approach introduced by Sen (1980, 1985) has been ap-
plied in several different fields of economics, such as poverty and inequality and health. To
introduce capabilities, one has to start with Sen’s more fundamental notion of functionings.
Sen distinguishes several forms of relationship between an individual and a good (such as a
for example a car): a good is an item (the car), utility is the benefit derived from using this
item (pleasure from driving), characteristics are qualities of the goods (transport), and the
functioning relates to use of the car (moving around). Functionings are important, but what
matters more is the capability, the extent to which the individual can function in a particular
way, or whether or not she chooses a particular functioning. An approach to the measurement
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of standard of living using functionings as a basic concept can be found in Gaertner and Xu
(2006).

The literature on capabilities and their possible application in different branches of eco-
nomics is considerable. For a discussion of characteristics in the context of health economics,
see e.g. Anand (2005, 2005a), Cookson (2005), Coast, Smith and Lorgelly (2008), Coast
(2009). A recurrent theme in most contributions is the assertion that the capability approach
extents the way of dealing with allocative justice and equity beyond the limits posed by tra-
ditional welfare theory insisting on individual utility assessments of social states as the basic
notion. Although this so-called extra-welfarism has been criticised as being essentially a
restructuring of the welfarism approach which it strives to avoid (see Birch and Donaldson
(2003)), the focus on sets of functionings rather than on allocations and their utility assess-
ments by individuals suggest that the extra-welfarists may have a point.

Even though the major part of this literature is discussing alternative ways of interpreting
and understanding characteristics, there have also been attempts at a more formal treatment.
Several studies (Herrero (1996),(1997), Herrero, Iturbe-Ormaetxe and Nieto (1998)) have
applied the capability approach to problems of equality, whereby capabilities are taken as
depending on the initial state, formalized as an allocation of goods. We shall expand slightly
on this formulation, using the concept of characteristics introduced by Lancaster (see, e.g.
Lancaster (1971)). We assume that individuals have access to a (household) technology for
transforming initial bundles of goods into characteristics. Each such transformation would
then correspond to a functioning, but the set of functionings now depend in a rather simple
way on the initial bundle, since they will be all the processes which are feasible and use
the available endowment as inputs. This approach to capabilities is admittedly simplistic, in
particular if we add standard assumptions on the overall technology, but this very simplicity
has the advantage that it makes it possible to concentrate on what may or may not be the
essential nature of capabilities and whether a theory of capabilities can achieve something
which was not possible in the classical approach.

In the present paper, we consider the possibility of assigning an index to individual ca-
pabilities, so that one capability set is considered as better than another capability set by the
individual considered if and only if it has a higher index value. Assigning utilities to prefer-
ence relations over a given set, in our case a set of capabilities, is possible if the preference
relation is a complete preorder, but not any utility will be of interest when dealing with ca-
pabilities. In order to capture the essence of this approach, the ranking of capabilities should
not be trivial in the sense that it depends only on an underlying ranking of functionings, so
that one capability is better than another if the best functioning in the first is better than the
best functioning in the other one. For the capability approach to add something new to a
traditional analysis of choice, the preferences must involve something more than just utility
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maximization over functionings.
The paper is structured as follows. In Section 2, we consider individual preferences over

capabilities, with a special view to application to health related quality of life, and in section
3, we discuss problems of allocation in society. Having found that the formalizations so
far miss essential parts of the concept of capabilties, we proceed in Section 4 to consider the
interpretation of capabilties as options which should be assessed according to the choices that
may be made according to preferences on functionings that are not yet known. We conclude
with a brief summary in Section 5.

2. Capability indices: The axiomatic approach

As is well-known, measuring individual health is both conceptually and technically compli-
cated; indeed the very nature of health is open to some debate, and it has been suggested that
the capability approach outlined above and the measurement of health as QALYs are closely
related (see for example Cookson, 2005).

In the following we consider a given family C of capabilities, which technically are com-
pact, convex, and comprehensive (meaning that if x ∈ C and y ∈ RL

+ satisfies yh ≤ xh for
h = 1, . . . , L, then y ∈ C) sets of functionings (interpreted as representing the activities open
to an individual in a given health state). For our subsequent reasoning, it is convenient to
assume that C is rich enough to contain some distinguished sets: First of all, for each x ∈ RL

+,
C contains the set

x≤ =
[
{x} − RL

+

]
∩ RL

+ = {x′ ∈ RL
+ | x

′
h ≤ xh, h = 1, . . . , L}.

Secondly, C contains {0} and permits the operation of (Minkowski) weighted averages, i.e. if
C,C′ ∈ C and λ ∈ [0, 1], then the set

λC + (1 − λ)C′ =
{
y ∈ RL

+

∣∣∣ y = λx + (1 − λ)x′, x ∈ C, x′ ∈ C′
}

belongs to C as well. We shall say that a family C with these properties is rich.
This possibility of taking weighted averages of capability sets may not be too restrictive

at this point, where we are only defining the set of all conceivable sets of functionings which
in some situation might occur as a capability. However, since we shall use the averaging
operation repeatedly in what follows, we add some comments: Taking a weighted average
of two capabilities, which amounts to taking the set of all weighted averages (with the given
weights) of functionings in the two sets, might be interpreted as sampling the functionings
of the two sets with given probabilities, or alternatively, if we assume that a fraction λ of
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the population has the capability C and the rest has C′, then λC + (1 − λ)C′ is the average
capability set available to this population.

The other assumptions on C are more standard, but here again some properties are as-
sumed implicitly. Considering functionings of elements of RL already assumes that the vector
space operations make sense, and the comprehensiveness assumption on capabilities implies
that once an array of functionings is available, then all arrays using less of each functioning is
available as well, something which may seem reasonable, but which will again play a certain
role in the sequel.

We consider the situation where an individual ranking of capabilities has a utlity rep-
resentation. This implies that there is complete preorder �∼ on the sets C ∈ C; we let �
and ∼ denote the associated strict order and indifference, respectively. For completeness of
exposition, this is stated as a a first axiom.

Axiom 1 The preference relation �∼ on the family C is a complete preorder, and it is con-
tinuous in the sense that {C′ ∈ C | C �∼ C′} and {C′′ ∈ C | C′′ �∼ C} are closed1 subsets of
C.

We shall consider in some more details the properties of this preorder which seem reason-
able if it is to be represented by an index with QALY-like properties. Consider two alternative
health states s1 and s2 for which the index I assigns the same value I(s1) = I(s2), and let s′1, s

′
2

be some other states with the same value I(s′1) = I(s′2), but not necessarily the same as I(s1)
or I(s2). If a share λ of the population is in health state s1 and 1 − λ is in health state s′1, then
the index yields the same average value λI(s1) + (1 − λ)I(s′1) as when a share λ is in state s2

and 1 − λ in state s′2. We assume that a similar result will emerge when using our operation
of weighted averages on capabilities:

Axiom 2 Let (C1,C2) and (C′1,C
′
2) be pairs of elements of C with C1 ∼ C2, C′1 ∼ C′2, and let

λ ∈ [0, 1]. Then
λC1 + (1 − λ)C′1 ∼ λC2 + (1 − λ)C′2.

The property stated as Axiom 2 is a strong one, inducing some linearity into the prefer-
ences (which indeed is what comes out of the present characterization). On the other hand it
seems no more restrictive than what is usually assumed when considering preferences over
health states, where indifference between suitable lotteries are instrumental for assessing the
values of the utility indices.

The next axiom is a monotonicity property of the ranking of capabilities – larger sets are
better than smaller sets. Here and in the sequel, int C is the interior of the set C relative to RL

+,
and cl A for A ⊂ RL

+ denotes the closure of A
1Here closedness is considered w.r.t. the topology on C induced by the Hausdorff distance on the compact

subsets of RL
+.
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Axiom 3 If C1 ⊂ int C2, then C2 � C1.

In its present form, this axiom can hardly be controversial, stating that if there are strictly
less functionings available, then the resulting smaller capability set is less desired than the
large one. We shall later have to consider modifications of this axiom which are perhaps less
immediately acceptable.

Our fourth axiom is much more open to criticism, indeed it may be seen as a violation of
the very principles behind the use of capabilities. The basic idea here is that every capability
set can be matched (in terms of individual preferences) by a capability set which is focussed
on a particular combination of functionings alrady available.

Axiom 4 For each C ∈ C, there exists x ∈ C such that {x} − RL
+ ∼ C.

This axiom can be recognized as a version of Independence of Irrelevant Alternatives
(IIA). If preferences over capabilities can be rationalized by a utility function, then the utility-
maximizing element of the availability set (extended by free disposal to satisfy comprehen-
siveness) should be exactly as good as the larger choice set containing options that will not
be chosen anyway. Thus, an IIA axiom of some type (and we shall consider another type of
IIA axiom later) seems to be a necessary ingredient in any system of axioms for preferences
on availability sets which can be rationalized by utility maximization. We note that if Axiom
3 holds, then the vector x of Axiom 4 must belong to the boundary of C.

As mentioned above, the third axiom is too strong if we want to keep some of the intuitive
content of the capability approach. This is formally confirmed by the following result.

Theorem 1 Let C be a rich family of subsets of RL
+, and let �∼ be a relation on C. Then the

following are equivalent:
(i) (C, �∼ ) satisfies Axioms 1 – 4,
(ii) there is a linear map u : RL

+ → R such that

C �∼ C′ ⇔ max
x∈C

u(x) ≥ max
x∈C′

u(x).

Thus, a preference relation on capabilities satisfying all four axioms is trivial in the sense
that it has an index representation derived from a utility on functionings, so that the index
value of a capability C is the maximal utility attained on a functioning in C.

Proof of Theorem 1: The proof of the implication (ii)⇒(i) is straightforward and left to the
reader. Define the set L1 = {x ∈ RL

+ | x≤ ∈ C, x≤ �∼ C′, all C′ ∈ C}. By Axiom 1 there are
maximal elements for �∼ on C, and by Axiom 4, we get that L1 is nonempty.
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Next, choose any x∗ ∈ L1 and define for each λ ∈ [0, 1] the set

Lλ =
{
x ∈ RL

+

∣∣∣ x≤ ∼ (λx∗)<
}
. (1)

By Axiom 2, each set Lλ is convex, and we have that λ′λ−1Lλ ⊆ Lλ
′

whenever λ′ ≤ λ. Letting
L̂1 = {x | λx ∈ Lλ for some λ ∈ [0, 1]} we get that L̂1 is convex and that for each x ∈ L̂1,
the sets {x′ | x′ < x} and L̂1 are disjoint. Consequently, by separation of convex sets there is
c ∈ RL

+, c , 0, such that L1 ⊂ {x′ | c · x′ = 1}. It follows that Lλ ⊂ {x′ | c · x′ = λ} for each
λ ∈ [0, 1].

Define the map u : RL
+ → R by u(x) = c · x for each x. We show that u satisfies the

conditions in (ii). Let C be arbitrary, and assume that C ∼ x≤ for some x ∈ Lλ. Then there
is y ∈ C with y≤ ∼ x≤, and since u(y) = u(x) = λ, we have that maxz∈Cu(z) ≥ λ. Suppose
that maxz∈Cu(z) = λ′ > λ; then C contains some vector z ∈ Lλ

′

, meaning that z′ = λ(λ′)−1z
must belong to Lλ. But since (z′)< is contained in the interior of C by Axiom 3, we have a
contradiction.

It can be checked that the linear function u is uniquely determined (up to a positive multi-
ple) in the case where dim Lλ = L−1 (where Lλ was defined in (1) above) for some λ ∈ [0, 1].
Also, if we do not insist on u being linear, we still need that u(x) = λ for all x ∈ Lλ, each λ,
meaning that the level sets of u will have large flat segments, possibly of dimension L − 1.

Since the assumption that C contains a sufficient large supply of sets of the form x≤ may be
difficult to justify in the applications at hand, we consider below another axiom system which
is tailored for our purpose. As before, we assume C to be compact (in topology induced by
the Hausdorff metric), convex and to contain {0}. In our present setup we assume moreover
that C is closed under the operation of taking (arbitrary) unions followed by convexifying.
Thus, ifD ⊂ C, then the set

conv∗(∪D) = cl

x

∣∣∣∣∣∣∣ x =

r∑
i=1

µixi, µi ∈ [0, 1],
r∑

i=1

µi = 1, xi ∈ Ci ∈ D, i = 1, . . . , r


belongs to C. For ease of reference, a family satisfying all these conditions shall be called
regular.

For the following result, we need to modify some of the axioms stated above; clearly
Axiom 4 must be replaced by another one, but also Axiom 3 must me sharpened slightly.

Axiom 5 Let C,C′ ∈ C. If C ⊆ C′ then C′ �∼ C, and if C ∼ C′, then the set bd C′∩C is convex.

In the context of regular families of convex sets, we replace Axiom 4 above by the fol-
lowing axiom which exploits the new structure.
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Axiom 6 Let C′ be a family of sets from C such that C ∼ C′ for all C,C′ ∈ C′. Then
conv (∪C′) ∼ C for each C ∈ C′.

On the face of it, Axiom 6 is very different from 4. Instead of postulating an equivalent
subset of a capability C dominated by a single array of functionings, we assume some regu-
larity of the superset consisting of all equilvalent sets. Taken together with the new version
of Axiom 3 we however end up with the same situation, that is triviality of the representing
index on capabilities.

Theorem 2 Let C be a rich family of closed, convex, and comprehensive subsets of RL
+, and

let �∼ be a complete and continuous preorder on C. Then the following are equivalent:
(i) (C, �∼ ) satisfies Axioms 1,2,5 and 6,
(ii) there is an affine function u : RL

+ → R such that for all C,C′ ∈ C,

C �∼ C′ ⇔ maxx∈Cu(x) ≥ maxx∈C′u(x).

Proof: As before we leave the implication (i)⇒(ii) to the reader. For the converse implication,
we follow the steps in the proof of Theorem 1. Let D1 be the set of elements of C which are
maximal for �∼ , and let C1 = conv∗(∪L1). Then C1 belongs to D1 by Axiom 4’. For each
λ ∈ [0, 1], we defineLλ as the set of all C such that C ∼ λC1, and let Cλ = conv∗(∪Dλ); again
Cλ ∈ Dλ by Axiom 4’. If for all λ, the setDλ consists of the single element Cλ, then Cλ = λC1

for each λ. Choosing any x ∈ bd C1 and any p which supports C1 at x (i.e. p · c ≤ p · x for all
c ∈ C1, we have that the function u defined by u(x) = p · x satisfies the conditions stated in
(ii).

If there is some λ such thatDλ contains more than one element, then we define the set

E =
{
x ∈ RL

+

∣∣∣∃λ ∈ [0, 1],C ∈ Dλ, C , Cλ : λx ∈ bd Cλ ∩C
}
.

We claim that E is convex. Indeed, let x1, x2 ∈ E and let µ ∈ [0, 1] be arbitrary. Then there
is some λ (chosen small enough), together with sets C1,C2 ∈ D

λ, C1,C2 , Cλ, such that
λxi ∈ bd Cλ ∩ Ci, i = 1, 2. It follows that λx1, λx2 ∈ bd Cλ ∩ conv (C1 ∪ C2), and by Axiom
3’, we have that

µλx1 + (1 − µ)λx2 ∈ bd Cλ ∩ conv (C1 ∪C2)

for any µ ∈ [0, 1]. If conv (C1 ∪ C2) , Cλ, then µx1 + (1 − µ)x2 ∈ E; if not, we repeat the
argument above with C1 replaced by νC1 + (1−ν)C2 for ν small enough so that µx1 + (1−µ)x2

can be written as a convex combination of νx1 + (1 − ν)x2 and x2.
Next, consider the family of closed convex sets (λ−1Cλ)0<λ≤1. We have that λ−1Cλ ⊆ λ̂−1Cλ̂

for λ̂ ≤ λ, so the set F = ∪0<λ≤1λ
−1Cλ is convex. Moreover, E does not intersect the interior
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of E, since in that case E would intersect the interior of Cλ for some λ > 0, a contradiction.
It follows that E can be separated from the set int F, so that there is a linear form p such that
p · x = 1 for x ∈ E and p · x ≤ 1 for x ∈ F.

Define u by u(x) = p · x; we check that u has the desired properties by showing that
maxx∈C = λ for C ∈ Dλ, λ ∈ [0, 1]. Thus, let C ∈ Dλ. Then bd Cλ ∩ C , ∅, since otherwise
C ≺ Cλ by Axiom 5. Since u(x̂) = λ for x̂ ∈ bdCλ ∩ C, we have that maxx∈Cu(x) ≥ λ. The
fact that maxx∈Cu(x) ≥ λ follows from the separation property, since u(x) ≤ 1 on F implies
u(x) ≤ λ for x ∈ Cλ.

We conclude this section with some considerations of the conditions for a family C to
be regular. In the application that we have had in mind, sets C ∈ C arise as sets of feasible
(characteristics) outputs in a technology with commodity bundles as inputs. Let T ⊂ Rl

+×R
L
+

be a convex set, interpreted as a production set for the household transforming commodity
bundles x ∈ Rl

+ to characteristics bundles ξ ∈ RL
+. Then any set of the form

T (x) = {ξ | (x, ξ) ∈ T }

would be a feasible availability set. The set {0}will appear as T (0) provided that T satisfies the
standard assumption that no output is obtainable without input. The remaining properties of
regular or rich families do not however follow if we restrict ourselves to sets of the type T (x)
or even sets ∪x∈AT (x) for suitable subsets A of Rl

+, the standard example of A being bundles
obtainable in a market from a given bundle of ressources. Thus, for our results above to make
sense in this context we might have to assume that individuals can order also availability sets
that do not arise in any natural way.

Needless to say, any rich family Cmay arise from some technology T , at least if we allow
for infinite-dimensional commodity spaces; as the input bundle giving rise to C, we may then
choose the support function of C, giving us a suitable subspace of C0 as the commodity space;
the operatios of averaging and of convex combinations carry over to support functions. Since
this construction has only limited interest unless combined with some method of reduction to
finite dimensions, we shall not pursue this matter any further.

3. Nontrivial capability indices

In the previous section, we have seen that an index representation of a complete preorder on
capabilities becomes trivial when we pose to strong conditions on the way in which particular
sub- or supersets of a capability inherit the ranking of the capability itself. I might seem that
nontriviality will not occur very often. That is can indeed occur, so that index representations
are not all trivial, can be seen by the example in Figure 1, where the family C of capabilities
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contain the triangles marked by A and C and the square B; we assume that the sides of B
have unit length while the longest side of the triangles has length a > 1. Assume now that
A ∼ C �∼ B. If this ordering had a trivial index representation, then there should be a linear
linear form on R2 which attains the same maximum on the sets A and C, but such a linear
form would necessarily attain a larger value on B.

A

B

x

x

1

2

C

Figure 1

In the interpretation, we assume that the individual may have access to the functionings
of given capability set, but that the preferences over functionings are revealed only at
a later point of time. Thus, at the moment where the capability is evaluated, only the
probabilities of the possible utility functions over functionings are known, not the actual
utility functions. Therefore, evaluation is performed by taking averages over the value of
the capability given the utility function drawn.

To see that the two forms of rationalizing orderings are effectively different, consider
the simple example in Figure 1, where the family C of capabilities contain the triangles
A and C and the rectangle B. Assume now that A ∼ C ≻∼ B. This ordering cannot be
rationalized in the static way, since a linear form on R2 which attains the same maximum
on A and C must belong to {u ∈ R2 | u1 ≤ 0 or u2 ≤ 0}, and for each such u, this
maximum (which is = 0) is equal to the maximum on B.

On the other hand, it is not difficult to define a utility process ũ such that the ordering
is rationalized in the dynamic way; indeed, suppose that

ũ =

{
(1, 0) with probability 1/2
(0, 1) with probability 1/2 .

Then E [maxAũ] = E [maxC ũ] > E [maxBũ], so that the ordering ≻∼ is indeed recovered
by probabilistic utility maximization.

We have a characterization of dynamically rationalized orderings of families of
capabilities which uses support functions of convex sets. For C ⊂ RL a capability,

4

Figure 1: The ordering A ∼ C � B admits no trivial index representation

On the other hand, it is not too complicated to exhibit a function on subsets of R2
+ which

takes the same value on A and C and a smaller value on B, indeed, we may define this index
as

I(D) =
1
2

max
x∈D

(1, 0) · x +
1
2

max x ∈ D(0, 1) · x

for D a subset of R2
+. Then

I(A) = I(C) =
1
2

1 +
1
2

a >
1
2

1 +
1
2

1 = I(B).

We may think of this representation as arising from two trivial representations after a random
choice, in our case the random utility on functionings is

ũ(x) =

(1, 0) · x with probability 1/2

(0, 1) · x with probability 1/2

and the index representing �∼ appears as

I(D) = E [maxx∈Dũ(x)].
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It is seen that although the realizations of ũ give rise to trivial representations, using the expec-
tation gives a nontrivial one, taking into consideration more than a single utility-maximizing
functioning in the capability set.

We now propose a characterization of complete preorderings of capabilties which have
an index representation of this form. For this we use t support functions of convex sets: For
C ∈ C a capability, the support function δ∗(· | C) : ∆→ R+ defined by

δ∗(· | C) = max
u∈∆L
{u · x | x ∈ C}, (2)

where ∆L is the unit simplex in RL,

∆L =

u ∈ RL
+

∣∣∣∣∣∣∣
L∑

h=1

uh = 1

 .
The support function is convex, and it characterizes the capability C fully, in the sense that if
g : ∆→ R+ is a convex function, then g(u) = δ∗(u | Cg), all u ∈ ∆, where

Cg = ∩u∈∆{x ∈ R | u · x ≤ g(u)}.

Using the notion of support functions, we may write the generalized version of the index
considered as

I(C) =

∫
∆L

δ∗(u|C) dP(u) (3)

for some probability measure P on ∆L.
The orderings admitting a representation of the form given by (3) In this section, we

present a characterization of dynamically rationalizable orderings of families of capabilities.
We begin with the following straightforward result:

Theorem 3 Let C be a regular family of capabilities ordered by �∼ , and suppose that �∼
admits a representation (3). Then �∼ satisfies Axioms 1 – 3.

Proof of Theorem 3: To show that Axiom 1 holds, we need only to check the continuity part,
since it is clear that �∼ must be a complete preorder. Let (Cn)n∈N be a sequence of capabilities
with Cn �∼ C converging to C0 in the Hausdorff topology. Using (3) we have that there is P
such that ∫

∆

δ∗(u | Cn) dP(u) ≥
∫

∆

δ∗(u | Cn) dP(u)

for all n ∈ N. Since the map C′ 7→ δ∗(· | C′) is continuous, we get that∫
∆

δ∗(u | C0) dP(u) ≥
∫

∆

δ∗(u | C0) dP(u)
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or C0 �∼ C, and we conclude that the set {C′ | C′ �∼ C} is closed for every C ∈ C. Closedness
of {C′ | C �∼ C′} is established in similar way.

For Axiom 2, let (C1,C2) and (C′1,C
′
2) be pairs of elements of C with C1 ∼ C2, C′1 ∼ C′2,

and let λ ∈ [0, 1]. Using the definition of support functions, we have that

δ∗(u | λC j + (1 − λ) | C′j) = λδ∗(u | C j) + (1 − λ)δ∗(u | C′j),

j = 1, 2, for each u ∈ ∆, so that∫
∆

δ∗(u | λC j+(1 − λ) | C′j) dP(u)

= λ

∫
∆

δ∗(u | C1) dP(u) + (1 − λ)
∫

∆

δ∗(u | C′1) dP(u),

j = 1, 2, we get from repeated use of Theorem 1 that λC1 + (1 − λ)C′1 ∼ λC2 + (1 − λ)C′2.
Axiom 3 follows easily from the fact that δ∗(u,C1) < δ∗(u,C2) for all u ∈ ∆.

To proceed we shall need a general result about ordered topological vector spaces.

Theorem 4 Let (V,≥) be an ordered topological vector space with positive cone V+ having
nonempty interior, let A be a convex cone contained in V+, and let �∼ be a continuous total
preorder on A. Then the following are equivalent:

(i) �∼ is monotonic (in the sense that x, x′ ∈ A, x ≥ x′ implies x �∼ x′) and respects
nonnegative linear combinations in the following sense: If x, x′, y, y′ ∈ A with , and λ, µ ∈ R+,
then

[x �∼ y, x′ �∼ y′, λx + µx′ ∈ A, λy + µy′ ∈ A]⇒ λx + µx′ �∼ λy + µy′. (4)

(ii) �∼ has a utility representation u, where u = v|A : A → R+ is the restriction to A of a
positive linear form u on V.

Proof : (ii)⇒(i): Since for x, x′ ∈ A, x �∼ x′ if and only if u(x) ≥ u(x′), and u is the restriction
of a positive linear form on V , we have immediately that �∼ is monotonic. The second
condition in (ii) follows similarly: If u(x) ≥ u(y) and u(x′) ≥ u(y′), then by linearity of u we
get that

u(λx + µx′) = λu(x) + µu(x′), u(λy + µy′) = λu(y) + µu(y′),

and the conclusion follows.
(i)⇒(ii): Choose an element x of A with x � 0 (such an element exists since 0 is minimal

for �∼ by monotonicity). Clearly, λx � x for λ > 1 and x � λx for λ < 1. Let I(x) = {x′ ∈ A |
x′ ∼ x} be the set of elements of A which are equivalent to x in �∼ (that is, such that x′ �∼ x
and x �∼ x′). Using (4) with y = y′ = x we get that I(x) is the intersection of A with an affine
subset in V; we write this set as K + {x}, where K is a closed subspace of V .
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By monotonicity, the set K does not intersect int V+, and by the Hahn-Banach theorem
(see, e.g., Rudin (1973), Theorem 3.4), there is a continuous linear form v on V such that
v(x) = 0 for x ∈ K and v(x) > 0 for x ∈ int V+. It is easily seen that u = v|A satisfies the
conditions in (i).

Now we may prove a converse of Theorem 3, giving a characterization of index represen-
tations of rankings of capabilities.

Theorem 5 Let C be a regular family of closed, convex, and comprehensive subsets of RL,
and assume that if C contains sets C and C′ , then it contains also λC + µC′ for all λ, µ ∈ R+.

If �∼ is a an ordering of C which satisfies Axioms 1 – 3, then there exists a probability
measure P on ∆L such that �∼ has a representation of the form (3).

Proof of Theorem 5: Let V = C(∆) be the set of continuous real functions on ∆. Endowed
with the topology of uniform convergence, V is a topological vector space, and its positve
cone (the set of all nonnegative functions on ∆) has nonempty interior (consisting of the
strictly positive functions).

We define the set A = {δ∗(· | C) | C ∈ C}. Since λC + µC′ ∈ C for all C,C′ ∈ C and
λ, µ ∈ R+, and δ∗(· | λC) = λδ∗(· | C), δ∗(· | µC′) = µδ∗(· | C′) we have that A is a convex
cone.

Define the preorder �∼ on A in the obvious way, that is by

δ∗(· | C) �∼ δ∗(· | C′)⇔ C �∼ C′

(since this is basically the “same” ordering, only transferred from sets to their support func-
tions, we have kept the same notation). We leave it to the reader to check that �∼ is a contin-
uous preorder on A (the continuity part was shown in the proof of Theorem 2).

Monotonicity of �∼ defined on A is a straightforward consequence of Axiom 3. Similarly,
it is easily seen that (1) follows from Axiom 2. We thus have that all the conditions in (i) of
Theorem 3 are fulfilled.

Using now Theorem 4, we get that �∼ has a utility representation U, which is the restric-
tion to A of a positive linear form on V = C(∆). By the Riesz representation theorem (see
e.g., Rudin (1966), Thm.6.19), a positive linear form on V can be identified with a probability
measure P on ∆, so that

U(δ∗(· | C) =

∫
∆

δ∗(u | C) dP(u),

which by Theorem 1 is exactly the expression of dynamic rationalizability.

It is seen that the randomized trivial representation described in (3) appears as the only
functional form of an index representing a preorder which satisfies the Axioms 1 – 3, and if we
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consider these as the least controversial of the axioms, then the result is remarkably general,
showing that the idea of maximizing utility over functionings remain fundamental, since the
index emerges as the expected value of all the possible trivial representations, weighted in a
suitable way.

To interpret the results, we must return to the starting point for the axiomatic approach to
ordering capabilities: Why are we at all interested in such orderings? The point here is that in
order to use capabilities for measuring inequality, we would like capabilities to be ordered in a
more or less objective way, making it possible to decide whether or not an individual is better
or worse off getting one capability instead of another; in the absence of such a common scale
of preferences we would have to be satisfied with weak measures of inequality such as non-
envy or egalitarian-equivalence, which clearly are much less appealing that standard equality
measures. Our result shows that the members of a reasonably broad class of orderings on
capabilities are uniquely determined by a probability distribution over utility assignments.
Assuming this probability distribution given in society, a unique ranking of capabilities will
emerge. This is a much better result than what we obtained in the first paper, where orderings
related directly to utilities, that is to subjective properties of the individual, and therefore
could not reasonably be taken as valid for all individuals in society. With the options approach
to capabilities, it does make sense to speak of objective ranking of capabilities as better or
worse. In this sense, the results of the paper may be seen as a possibility result opening up
for measuring inequality through capabilities. Needless to say, this measurement faces many
other problems than the conceptual one considered here, but at least we have moved one step
towards the goal.

4. Capability indices and choice of allocation

In the present section, we return to the model considered section, we considered briefly at
the end of Section 2, where we treated capabilities as sets of possible outputs in the form of
functionings from a given input of commodities using a common technology. Since we are
now treating allocations of commodities as well as of functionings, we distinguish in notation
using lower case greek letters ξ, η etc. for arrays of functionings and keeping standard notation
x, y, z for allocations of commodities.

In our simple model, individuals i ∈ N = {1, . . . , n} receive commodity bundles to be
transformed according to a known and common technology. If individual i inserts the bundle
xi into the common technology T , she obtains the option of choosing an array of functionings
ξi from T (xi). Thus, a given input may give rise to many different outputs, which seems
to be in accordance with both our intuition pertaining to individual choice of life style and
health profile and with the properties of technologies in general. As in the previous section,
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we consider orderings of the possible capabilities which may or may not be trivial, that is
defined by maximizing a given utility function on functionings under the constraints given by
the capability.

An allocation in this model is an array x = (x1, . . . , xn) of commodity bundles in Rl
+,

and we work with a given set X of allocations, which might be all allocations obtained by
distributing a given initial endowment, or it might arise in some other way, we shall need
only that X is a convex set, and that it allows redistribution: if x ∈ X is an allocation, and
z = (z1, . . . , zn) ∈ Rln satisfies

∑n
i=1 zi = 0, then there is some λ > 0 such that the array x + λz

belongs to X.
Each allocation x = (x1, . . . , xn) gives rise to an array of capabilities (T (x1), . . . ,T (xn)). If

individual i has preferences over capabilities, formalized as a complete preorder �∼i on the
family {T (xi) | xi ∈ R

l
+}, then allocations x = (x1, . . . , xn) and (x′1, . . . , x

′
n) may be assessed by

the individual according to whether or not T (xi) �∼i T (x′i).
We shall be interested in the case where an allocations x ∈ X with associated capabilities

(T (x1), . . . ,T (xn)) is Pareto optimal in the sense that there is no allocation x′ ∈ X with asso-
ciated capabilities (T (x′1), . . . ,T (x′n)) such that T (x′i) �∼i T (xi) for all i ∈ N and T (x′j) � j T (x j)
for some j ∈ N.

Theorem 6 Assume that

(a) for each i ∈ N, the preference relation �∼i over capabilities is monotonic in the
sense that if

C ⊆ C′ ⇒ C′ �∼i C, C ⊂ int C′ ⇒ C′ �i C

for any wo capability sets C and C′.

(b) T is monotonic in inputs: if xh > x′h for h = 1, . . . , l, then T (x′) ⊂ int T (x).

Let x ∈ X be an allocation which is not Pareto optimal. Then there is there is a profile
(u1, . . . , un) of linear utility functions on RL

+ an an allocation x′ ∈ X such that

max
ξi∈T (x′i )

ui(ξi) > max
ξi∈T (xi)

ui(ξi), all i ∈ N. (5)

Proof: Since x is not Pareto optimal, there is an allocation x̂′′ ∈ X such that T (x̂′′i ) �∼i T (xi)
for i ∈ N and T (x̂′′j ) � j T (x j) for at least one j ∈ N. Choose j0 such that T (x̂′′j0) � j0 T (x j0).
By continuity of �∼ j0 we may assume that x′′j0 belongs to the interior of Rl

+. Choose λ such
that x′ defined by

x′j0 = x′′0 j − λe, x′i = x′′i +
λ

n − 1
e,

where e = (1, 1, . . . , 1) is the diagonal vector in Rl, and x′′ ∈ X (this is possible by our
assumptions on X). If λ is chosen small enough, then T (x′j) � j T (x j) and T (x′i) �i T (xi) by
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monotonicity of �∼i , i , j.
For each i ∈ N, since T (x′i) � j T (xi), there is some ui ∈ ∆L such that

max
ξi∈T (x′i )

ui(ξi) > max
ξi∈T (xi)

ui(ξi),

since otherwise we would have T (x′i) ⊆ T (xi), a contradiction. It follows that (5) is satisfied
at the profile (u1, . . . , un).

The result of Theorem 6 seems to vindicate that linear utilities on functionings suffice for
tracing inefficiency in an economy of the type modelled here. However it should be noticed
that the profile of utility function which is used in (5) depends on the particular allocation
x′ which Pareto dominates x, so that it cannot be used as a method for detecting Pareto
improving allocations.

It may be noticed that if T (xi) ⊂ T (x′i) then any linear utility in ∆L may be used in the
profile (u1, . . . , un), so that in some cases the profile may consist of identical utility functions.
As mentioned above, the practical advantages of this are however limited.

The above result can be combined with the standard welfare theorem to show that if there
is no instance where a profile of linear utilities on functionings detects that all individuals
can be better off, then the allocation must be an price equilibrium in the sense that for each
individual, a bundle which induces a preferred capability must be more expensive than the
actual bundle. Not surprisingly we need a convexity assumption on the preferences over
capabilities.

Theorem 7 Assume the assumptions (a) and (b) of Theorem 6 are fulfilled, and that in addi-
tion

(c) for each i ∈ N and xi ∈ R
l
+, the set {x′i ∈ R

l
+ | T (x′i) �∼i T (xi)} is convex.

Let x = (x1, . . . , xn) be a feasible allocation. Then one of the following holds:
(i) there is a profile of linear utility functions on RL

+ u = (u1, . . . , un) and a feasible allo-
cation x′ = (x′1, . . . , x

′
n) such that

max
ξi∈T (x∗i +zi)

ui(ξi) > max
ξi∈T (x∗i )

ui(ξi) (6)

for each i ∈ N,
(ii) there is a price vector p ∈ Rl

+ such that (x∗1, . . . , x
∗
n, p) is an equilibrium in the sense

that for each i ∈ N, if x′i ∈ R
l
+ is such that T (x′i) �i T (x∗i ), then p · x′i > p · x∗i .

Proof: If there is a Pareto improvement of x, then (i) holds by Theorem 6, so there is a profile
/(u1, . . . , un) and an allocation x′ ∈ X such that (6) is satified. Suppose now that the allocation

15



x is Pareto optimal. Define for each i ∈ N the set

Zi =
{
zi ∈ R

l | T (xi + zi) �∼i T (xi)
}
,

and let Z be the set of all vectors
∑n

i=1 zi with zi ∈ Zi. Then each Zi and consequently also Z
are convex by assumption (c).

We claim that Z does not intersect the set {y ∈ Rl | yh < 0, h = 1, . . . , l}. Indeed, if∑n
i=1 zih < 0, all h, for some (zi)i∈N with T (xi +zi) �∼i T (xi), all i, then there would be a feasible

allocation x′ = (x′1, . . . , x
′
n) with x′ih > xih for all i and h, so that T (x′i) �i T (xi) for all i,

contradicting Pareto optimality of x.
By separation of convex sets, there is p ∈ Rl

+, ph > 0, h = 1, . . . , l, such that p · z ≥ 0 for
z ∈ Z. It follows that p · x′i ≥ p · xi whenever T (x′i) �∼i T (xi), all i ∈ N, so that (x, p) is indeed
a price equilbrium.

5. Interpretation of results

In the present paper, we considered utility representations of preferences on capabilities, con-
sidered as subsets of functionings, with the specific aim of obtaining a representation which is
non-trivial in the sense that it does not reduce to maximization on of a utility function defined
directly on the functionings, the interpretation being that capabilities represent something
over and above a constraint on functionings available.

Looking first at a single individual, we found that an assignment of index values to capa-
bilities which satisfied some rather reasonable properties turned out to be trivial, so that the
properties had to be revised. Retaining what might be considered a minimum of structure we
found that the only possible representation has the form of a suitably weighted average of triv-
ial indices. Such an index does not correspond to maximizing a utility over the functionings
contained in the capability, although it retains some resemblance to the trivial representations.

In the context of preferences over capability profiles in a society, where capabilities are
derived from using a common individual (health-promoting) technology whose inputs are
commodity bundles obtained in the market, we saw although trivial utility representations are
enough for detecting cases of inefficient allocation, the particular choice of such utilities will
depend on both the allocation considered and the Pareto improvement. Consequently, we
cannot rely of the trivial index representation of preferences over capabilities, and the more
general version considered in Section 3 is appropriate also in this model. It should be stressed
that the results obtained are not to be considered as in any way reducing the potential use-
fulness of the capability approach. Rather, they should be seen as an additional argument for
intensifying research in the nature of capabilities; since preferences on capabilities cannot be
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trivially deduced from standard utility maximization on functionings, we need an explanation
of how preferences on sets of functionings are formed and whether they can at all be reduced
to simpler structures.
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