Solutions to Exercises in Game Theory Chapter 6

1. [Typo: The formula for the optimal bid should be

$$
\beta(x)=\frac{1}{G(x)} \int_{0}^{x} y g(y) \mathrm{d} y
$$

with and y inside the integral and x as upper bound for the integral.] To show that β is a symmetric equilibrium strategy, we let the bidder act as if the value was z (rather than x). The expected payoff is then

$$
G(z)(x-\beta(z)
$$

(the probability of $\beta(z)$ being largest or (assuming monotonicity of β) of z being largest value, multiplied with the gain if winning), and this can be rewritten as

$$
\begin{aligned}
G(z)(x-\beta(z)) & =G(z) x-\int_{0}^{z} y g(y) \mathrm{d} y \\
& \left.\left.=G(z) x-G(z) z+\int_{0}^{z} G(y)\right) \mathrm{d} y=G(z)(x-z)+\int_{0}^{z} G(y)\right) \mathrm{d} y,
\end{aligned}
$$

where we have used integration by parts. Subtracting this from the expected gain using x, which is $\int_{0}^{x} y g(y) \mathrm{d} y$, we get the difference

$$
G(z)(z-x)-\int_{x}^{z} G(y) \mathrm{d} y,
$$

which is easily seen to be ≥ 0 for all values of z.
2. The figure below contains three curves, namely for each p (in the text p) (1) the average loss of an individual with risk p, (2) the average $\operatorname{loss} C(p, L)$ of an individual with risk $\geq p$, and (3) the willingness to pay $P(p, L)$ of an individual with risk p.

The individuals for which $C(p ; L)>P(p, L)$ will not buy insurance since they consider it as too expensive.
3. In the first step of this procedure (where we determine $t(a)$ for each e), we solve the problem of maximizing

$$
\sum_{h=1}^{r} p_{h}(e)\left(y_{h}-t_{h}\right)
$$

over all $\left(t_{1}, \ldots, t_{r}\right)$ such that

$$
\begin{aligned}
& \sum_{h=1}^{r} p_{h}(e)\left(v\left(t_{h}\right)-w(e)\right)=0 \\
& \sum_{h=1}^{r} p_{h}(e)\left(v_{h}\left(t_{h}\right)-w(e)\right) \geq \sum_{h=1}^{r} p_{h}\left(e^{\prime}\right)\left(v\left(t_{h}\right)-w\left(e^{\prime}\right)\right), \text { all } e^{\prime}
\end{aligned}
$$

where the first constraint a participation condition (the 0 on the right-hand side represents the expected value of alternative engagement) and the second is the incentive compatibility constraint (the agent must be induced to deliver the effort e)..

Let $t^{*}=\left(t_{1}^{*}, \ldots, t_{r}^{*}\right)$ be a solution, and let $K(e)$ be set of e^{\prime} such that the last condition is fulfilled with equality. Restricting to the corresponding equations gives a maxinization problem with first order conditions

$$
p_{h}(e)+\lambda v^{\prime}\left(t_{h}^{*}\right)+\sum_{e^{\prime} \in K(e)} \mu\left(e^{\prime}\right) v^{\prime}\left(t_{h}^{*}\right)\left(p_{h}(e)-p_{h}\left(e^{\prime}\right)\right)=0,
$$

or

$$
\frac{1}{v^{\prime}\left(r_{h}^{*}\right)}=-\lambda-\sum_{e^{\prime} \in K(e)} \mu\left(e^{\prime}\right) \frac{p_{h}(e)-p_{h}\left(e^{\prime}\right)}{p_{h}(e)}
$$

for $h=1, \ldots, r$, where λ and $\mu\left(e^{\prime}\right), e^{\prime} \in K(a)$, are Lagrangian multipliers.
4. In a symmetric Bayesian Nash equilibrium, the bid function $b(x)$ (depending on the signal x received by the individual), assumed to be monotone, is the same for both, and the payoff is

$$
\pi(b, x)=\int_{0}^{\beta^{-1}(b)}(v(x, y)-\beta(y)) g(y \mid x) \mathrm{d} y
$$

where $g(y \mid x)$ is the conditional density of the signal received by the other individual, given that x is the highest signal - the first individual wins if her bid is the highest and pays only the bid of the other individual. Writing the integral as

$$
\int_{0}^{\beta^{-1}(b)}(v(x, y)-v(y, y)) g(y \mid x) \mathrm{d} y
$$

(using the both have the same bidding function), we use that $v(x, y)$ is $>$ or $<$ than $v(y, y)$ depending on whether $x>y$ or $x<y$. To maximize π, we need to keep all the positive and discard the negative contributions to the integral, and this is obtained by choosing $\beta^{-1}(b)=x$ or $b=\beta(x)$.

Suppose that

$$
v(x, y)=\frac{1}{3} x+\frac{2}{3} y
$$

(valuation depends with weight $1 / 3$ on own signal and with weight $2 / 3$ on that of the other bidder). Then the valuation of bidder 1 is greater than that of bidder 2 if and only if $y>x$. In this case bidder 2 has the highest bid and wins the auction, but bidder 2 values it higher, meaning that the second-price auction is not efficient.

Let $x>y$ be arbitrary, and consider the path from (y, x) to (x, y) given by

$$
\gamma(t)=(1-t)(y, x)+t(x, y), t \in[0,1]
$$

By the mean value theorem, there is some t^{0} such that

$$
\frac{\mathrm{d} v(\gamma(t)}{\mathrm{d} t}\left(t^{0}\right)=v(x, y)-v(y, x)
$$

The left-hand side can be written as

$$
v_{1}^{\prime}\left(\gamma\left(t^{0}\right)\right)(x-y)+v_{2}^{\prime}\left(\gamma\left(t^{0}\right)\right)(y-x)=\left(v_{1}^{\prime}-v_{2}^{\prime}\right)(x-y),
$$

and by single-crossing and our assumption $x>y$, we get that $v(x, y)>v(y, x)$, so that highest valuation also has highest bid.
5. If the buyer must propose a price initially, then utility is $\tau_{B} q-p$ if $p \geq \tau S q$ and 0 otherwise, so that trade will occur whenever $\tau_{B} \geq \tau_{S}$, and the proposed price is $\tau_{S} \frac{Q}{2}$.

When the seller proposes a price initially, the buyer will accept when expected value of q exceeds the proposed price, and since the quality must be in the interval $\left[0, \frac{p}{\tau_{S}}\right]$ with mean $\frac{p}{2 \tau_{s}}$ and the buyer will accept when

$$
p \leq \tau_{B} \frac{p}{2 \tau_{S}}
$$

or $\tau_{B} \geq 2 \tau_{S}$. In this case, the seller will obtain maximal payoff if the price is set as $\tau_{S} Q$.

