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Solutions to Exercises in

Game Theory
Chapter 4

1. Both players have two strategies ‘stay’ and ‘swerve off’, and the normal form is

L R

M (−2,−2) (2,−1)

B (−1, 2) (1, 1)

There are two pure strategy Nash equilibria, namely those where one player stays and the
other one swerves off. In addition the this, there is a mixed strategy Nash equilibrium where
each player chooses ‘stay’ and ‘swerve off’ with probability 1/2.

2. The first row (the strategy T) is dominated by the second row (the strategy which should
have been denoted ‘M’), and eliminating T, we get the new game

Stay Swerve off

M (7, 2) (9, 1)

B (8, 4) (2, 2)

Here the strategy R for player 2 is dominated by the strategy L, so R is eliminated, and we
get a game where only player 1 has a choice between strategies, and clearly B dominates M,
so M is eliminated. The final result is therefore the pair (B, L).

It is seen that (B, L) is als a pure strategy Nash equilibrium.

3. (a) Let σ j be an arbitrary mixed strategy of player j, j , i. Since πi(s′i , s−i) > π(si, s−i for
all s−i ∈ S −i, then ∑

s−i∈S −i

[∏
j,iσ j(si)

]
πi(s′i , s−i) >

∑
s−i∈S −i

[∏
j,iσ j(si)

]
πi(s′i , s−i),

so that indeed expected payoff to player i at s′i exceeds that at s′i . So the first statement is true.
(b) This is false, as is seen from the following example:
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L R

T (6, 2) (9, 1)

M (8, 4) (3, 2)

B
(

13
2 , 2

)
(5, 1)

The mixed strategy for player 1 with equal weights 1
2 on T and M gives 7 if 2 chooses L and

6 if 2 chooses R, so that it dominates B. However, neither T nor M dominates B.

4.. Let n2 be the number of pure strategies of player 2, and let U1 be the set of points in Rn2

which are ≤ some point in the convex hull of the points (u1(s1, s1
2), . . . , u1(s1, s

n2
2 )), s1 ∈ S 1.

Then s1 is not dominated by a pure or mixed strategy if and only if s1 is a point on the
boundary of U1.

By (weak) separation of convex sets, there is a linear form p ∈ Rn2
+ such that p attains

its maximum over U at the point (u1(s1, s1
2), . . . , u1(s1, s

n2
2 )). Normalizing p such that p ·

(1, . . . , 1) = 1, we may identify p with a mixed strategy on S 2, and clearly s1 gives the
maximal expected utility to player 1 given this mixed strategy of player 2, so that s1 is a best
response to p.

Suppose now that after iterated elimination of dominated strategies, player i is left with
the set S ′i of pure strategies. Then by the above, each si ∈ S ′i is a best response to some mixed
strategy in ∆S ′j, j , i, and by the characterization theorem for rationalizable strategies, the
(∆S ′i)

2
i=1 is the set of rationalizable strategies in Γ.

5. The pair (T, L) where player 1 chooses T and player 2 chooses L, is a Nash equilibrium.
It is easily seen that there are no other Nash equilibria, neither pure nor mixed, since in that
case one it would contain a dominated strategy for at least one of the players, a contradiction.

For an evolutionary stable equilibrium, we must first define the matrix

A =

(
a b
c d

)
of fitness coefficients. Now q = (q1, q2) ∈ ∆{1, 2} is evolutionary stable if (q, q) is a Nash
equilibrium of the game, which means that q = (1, 0), and q is stable in the sense that p ·Aq =

q · Aq and p , q implies q · Ap > p · Ap. In our case we have that

p · A
(
1
0

)
= p1a + (1 − p1)c = a =

(
1 0

)
A

(
1//0

)
implies that p1 = 1, so the stability condition is fulfilled trivially.

6. It is easily checked that no array of pure strategies can be a Nash equilibrium. If there is a
Nash equlibrium in mized strategies, then the equations system

5q + (1 − q) = 3q + 2(1 − q)
p + 4(1 − p) = 5p + 3(1 − p)
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should have a solution (p, q). The equations have the unique solution p = 1
3 , q = 1

5 , so the
mixed strategies

((
1
5 ,

4
5

)
,
(

1
3 ,

2
3

))
gives the unique Nash equilibrium.

For a correlated strategy (pT L, pTR, pBL, pBR) in ∆({T, B} × {L,R}) to be a correlated equi-
librium, it must satisfy the inequalities

pT L(5 − 3) + pTR(1 − 2) ≥ 0
pBL(3 − 5) + pBR(2 − 1) ≥ 0

pT L(1 − 5)) + pBL(4 − 3) ≥ 0
pTR(5 − 1) + pBR(3 − 4) ≥ 0

The equations can be reduced to

pBR ≥ 2pBL ≥ 8pT L ≥ 4pTR ≥ pBR,

which shows that all ≥ must be equalities. It follows that only the Nash equilibrium gives
rise to a correlated equilbrium (if there was another one satisfying the equalities, then all con-
vex combinations of this correlated strategy and that Nash equilibrium would be correlated
equilibria as well, but they would violate the equalities).

7. Consider the following game (a version of Chicken):

L R

T (0, 0) (7, 2)

B (2, 7) (6, 6)

The game has no pure strategy Nash equilibria and a unique mixed strategy Nas equilibrium((
1
3 ,

2
3

)
,
(

1
3 ,

2
3

))
. Consider the correlated strategy(1

3
1
3

1
3 0

)
.

We claim that this correlated strategy is a correlated equilibrium. Indeed, if player 1 is ordered
to play T and defects playing B, then expected change in payoff is 6−7 = −1 (player 1 knows
that if he ist told to play T, then player 2 is told to play B), and if player 1 should choose B
but instead selects T, the expected gain is 1

2 (7−6)(0−2) + 1
2 (0−2) = −1

2 (player 1 knows that
player 2 has equal probability to choose L or B). Thus, player 1 has no incentive to deviate,
and by symmetry, neither has player 2.


