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Solutions to Exercises in
Game Theory

Chapter 16

1. If RN ∈ L(A)N and a is a Condorcet winner at RN , then |{i | a Ri b} > n
2 for all b , a,

and since a Ri b means that we cannot have b Ri a, it follows that a must be unique. However,
there are profiles such as

x y z
y z x
z x y

for which there are no Condorcet winners.
For RN ∈ Q(A)N , there can be more than one Condorcet winner: Suppose that x ∼ z (in

the sense that x Ri z and z Ri z) for the second individual in the profile above, then both x and
z are Condorcet winners.

Suppose that there is a unique Condorcet winner a at RN , but that there is a manipulation
at RN . This means that there is some profile QN with a Condorcet winner b such that b is
strictly preferred to a in RN (that is b Ri a and not a Ri b) for all i such that Qi , Ri (taking
account also for coalitional manipulation). Since b is not a Condorcet winner at RN , the set of
individuals i such that b Ri a cannot be a majority, and it follows that b cannot be a Condorcet
winner at QN , a contradiction.

2. Assume that h : Q(A)N → A can be implemented (understood here as full implementation)
in Nash equilibria, let RN ∈ Q(A)N be a profile with h(RN) = a, and consider a profile
R′N ∈ Q(A)N such that the set {a′ ∈ A | a′ R′i a} of alternatives at least as good as a in R′i is
contained in the set {a′ ∈ A | a′ Ri a} of alternatives at least as good as a in Ri, for all i ∈ N.

Suppose first that R′i differs from Ri only for one individual. Since h is implemented
in Nash equilibrium via some game form G = (N, (S i)i∈N , π), there is a strategy array s′ =

(s′1, . . . , s
′
n) which is a Nash equilibrium at R′N and satisfies π(s′) = b. If b Ri a, then b is also

a Nash equilibrium outcome at RN (with strategy array s′), contradicting that h(RN) = a. It
follows that a is strictly preferred to b at Ri and consequently at R′i , and if s = (s1, . . . , sn) is
a Nash equilibrium of G(RN) with π(s) = a, then s is also a Nash equilibrium in G(R′N), and
we conclude that b = a, which gives the desired result. The case where R′i differs from Ri for
more than one individual follows by successive application of the above result.

[For the converse, one needs an additional assumption of no veto power.]

3. Let E be the given effectivity function, and choose i ∈ N arbitrarily. Then one can define
an effectivity function E)i( : P(N\{i})→ P2(A) by

E)i((S ) = E(S ) ∪ E(S ∪ {i}), S ⊆ N\{i}.
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We check that E)i( is convex: Let T1,T2 be in P(N\{i}); the

E)i((T1) ∩ E)i((T2) = [E(T1) ∪ E(T1 ∪ {i})] [E(T2) ∪ E(T2 ∪ {i})]

⊆ E(T1 ∩ T2) ∪ E(T1 ∪ T2 ∪ {i}) ⊆ E)i((T1 ∩ T2) ∪ E)i((T1 ∪ T2),

so that E)i( is indeed convex.
Next, we show that if the core of E is empty, then so is the core of E)i(: Choose an arbitrary

profile RN and an alternative a. Then there is S ⊂ N such that E(S ) contains an alternative b
with b Ri a for all i ∈ S . It follows that E)i((S \{i}) contains an alternative b with b Ri a for all
i ∈ S \{i}, so that a is not in the core of E)i(.

Stability of convex effectivity functions now follows by successive reduction of E to a
convex effectivity function on a two-individual set, which is trivially stable.

4. Let E : P(A) → P2(A) be a representable effectivity function, and let G(N, (S i)i∈N , π) a
representation of E, so that E = EG

α .
If S ,T are two disjoint coalitions and B ∈ E(S ), C ∈ E(T ), then there is an S -strategy

(si)i∈S with si ∈ S i, each i ∈ S , such that π(si∈S , ti∈N\S ) ∈ B for all (ti)i∈N\S ∈
∏

i∈N\S S i, and T -
strategy (ti)i∈T with ti ∈ S i, each i ∈ T , such that π(ti∈T , si∈N\T ) ∈ C for all (si)i∈N\T ∈

∏
i∈N\S Ti.

It follows that π((si)i∈S , (ti)i∈T , (w j) j∈N\S∪T ) ∈ B∩C, so that E is indeed superadditive. Mono-
tonicity is straightforward: If S has a strategy which guarantees that outcome is in B, than
any T with S ⊆ T has a strategt which guarantees that outcome is in B and consequently in
any superset C of B.

To show the converse, assume that E is superadditive and monotonic. Let G be the game
form defined as follows: Choose a fixed linear order R on A, and for each i, let S i consist of
all pairs (S , B) ∈ P(N) × P(A) such that i ∈ S and B ∈ E(S ). Then π is defined by

π((S i, Bi)i∈N) = max
R
∩{B | ∃S : (S i, Bi) = (S , B), i ∈ S }

(with π((S i, Bi)i∈N) = maxR A if there are no sets of the above type). The outcome function
is well-defined by superadditivity of E, and for every S and B ∈ E(S ) the S -strategy array
where all individuals in S choose (S , B) will result in an element of B independent of the
choices of the remaining individuals.

5. We choose the version of the deferred acceptance algorithm, where at the first step each
college C send out proposals to the most preferred students to a number which is the smallest
of qC and the total number of students, and each student accepts the best college (preliminary)
having proposed and rejects the rest. In the kth step, the college sends out the maximal
possible number of proposals to students which have not rejected it so far, and the student
preliminary accepts the best of all previous proposals and rejects the rest. The algorithm stops
when there are no rejections.

The algorithm must stop after finitely many steps: For each college C, let S (1)
C be the set

of students at least as good as C itself (interpreted as the level below which admission of a
student is worse than no admission), and for k > 1, let S (k)

C similarly be the set of students at
least as good as C who have not yet rejected an admission from C. Then W (k)

C ⊆ W (k−1)
C for

k > 1, and it the algorithm does not stop, then some student must have rejected an admission
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from some college, so that
∑

C |W
(k)
C | <

∑
C |W

(k−1)
C |, which means that the sum be 0 after

finitely many steps.
We then check that the matching achieved by the algorithm is stable: First of all no

singleton can improve: Colleges send proposals only to students which are better than C, and
since at any step the student can choose among all proposals achieved, she will never have
accepted a college worse than no admission. If pairs (s,C) can improve, then the student s is
better for C then some s′ ∈ µ(C), and C is better for s than µ(s). However, since s is better
than s′ ∈ µ(C), s must have been among the proposals sent out by C at some step, and since
at each step s chooses the best from all proposals yet received, s would not have rejected C
and chosen µ(s). It follows that the matching obtained is stable.

6. An example of a room-mates problem which has no stable matching is the following

x y z w
y z x x
z x y y
w w w z
x y z w

(there are four persons x, y, z, w, and the table displays the preferences of the individuals
as columns). The result of a matching will be a partition of {x, y, z, w} into either 2-sets or
singletons. If there are singletons, then the matching cannot be stable, so there must be two
pairs, and one of these pairs must contain w. The other individual in this pair has been ranked
at top by another person different from w, and these two individuals can improve, so the
matching cannot be stable.

7. Suppose that µ is a stable matching in the marriage problem, and let m be such that
µ(m) = m. By stability, there is no w in W such that

um(w) > um(m), uw(m) > uw(µ(w)).

This means that all w better for m than m himself either are matched, and then to somebody
preferred to m, or prefer to be single. If in some other matching w would be paired to m′ with
uw(m′) < uw(m), then this matching could not be stable

If there is a stable matching µ′ where m is matched to some w1 = µ′(m) ∈ W, then
um(w1) > um(m) by stability of µ′, and then uw1(m1) > uw1(m), where m1 = µ(w1), by stability
of µ. Since µ′ is stable, we cannot have that um1(w1) > um1(w2), where w2 = µ′(m1), so
um1(w2) > um1(w1). Proceeding in this way and using the finiteness of M ∪W, we must reach
a situation where either µ′(mk) = wr or µ(wk) = mr for some r < k, a contradiction, so that
m cannot be matched to some w ∈ W. The same reasoning shows that if w is not matched in
some stable matching, then w is unmatched in all stable matchings.


