Solutions to Exercises in
 Game Theory Chapter 15

1. Consider the game $(\{1,2,3\}, V)$ with $V(\{i\})=\mathbb{R}_{-}$for $i=1,2,3$,

$$
\begin{aligned}
V(\{i, j\}) & =\left\{\left(z_{i}, z_{j}\right) \mid \exists\left(x_{i}, x_{j}\right) \in \mathbb{R}_{+}^{2}: \min \left\{x_{i}+4 x_{j}, 4 x_{i}+x_{j}\right\}=5\right\} \text { for } i, j \in\{1,2,3\}, i \neq j, \\
V(N) & =\left\{z \in \mathbb{R}^{3} \mid \exists x \in \mathbb{R}_{+}^{3}: \sum_{i=1}^{3} x_{i} \leq \frac{27}{8}, i=1,2,3\right\} .
\end{aligned}
$$

Then the core of $(\{1,2,3\}, V)$ is the set of all payoffs $\left(x_{1}, x_{2}, x_{3}\right)$ satisfying $x_{1}+x_{2}+x_{2}=\frac{27}{8}$ and the inequalities

$$
\min \left\{x_{i}+4 x_{j}, 2 x_{i}+x_{j}\right\}=5, i, j=1,2,3, i \neq j,
$$

which contains the point $\left(\frac{9}{8}, \frac{9}{8}, \frac{9}{8}\right)$, so it is nonempty. There is only one possible λ which can be used in the Shapley transfer principle, namely $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, so $v_{\lambda}(N)=\frac{9}{8}$ and $v_{\lambda}(\{i, j\})=\frac{5}{3}$ for each i, j with $i \neq j$. Clearly, $\operatorname{Core}\left(\{1,2,3\}, v_{\lambda}\right)$ is empty, and so is the NTU core.
2. The reasonableness of the payoff $\left(\frac{1}{2}, \frac{1}{2}, 0,\right)$ can be argued with reference to the fact that any other payoff vector in $V(N)$ could be improved by $\{1,2\}$ whereas this payoff vector cannot be improved by any coalition (it belongs to the core).

To show that $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is a Shapley NTU value of (N, V), we first notice, that $\lambda=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is normal to bd $V(N)$ at $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, and that $\left(N, v_{\lambda}\right)$ is given by

$$
v_{\lambda}(\{i\})=0, i=1,2,3, v(\{i, j\})=\frac{1}{3}, i, j=1,2,3, i \neq j, v_{\lambda}(N)=\frac{1}{3},
$$

and the Shapley value of v_{λ} is

$$
\phi_{i}\left(v_{\lambda}\right)=\frac{1}{6}\left(v_{\lambda}(\{i\})+\sum_{j \neq i}[v(\{i, j\})-v(\{i\})]+[v(N)-v(N \backslash\{i\})]\right)=\frac{1}{9}
$$

for each i. Using that units have been changed by $\frac{1}{3}$ when moving to v_{λ}, we obtain that $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ is an NTU Shapley value.

It may be argued that the equal division between players reflects the power of coalitions in a better way than the core for which the principal importance is the possibilities of coalitional improvements.
3. Since $v(p, \cdot)$ assigns a number to every coalition (the minimum is well-defined under the given assumptions), we have that $(N, v(p, \cdot))$ is a TU game.

To show that the payoff $M\left(u_{i}, p, x_{i}\right)_{i \in N}$ for an equilibrium $\left(x_{1}, \ldots, x_{n}, p\right)$ is the Shapley value of $(N, v(p, \cdot))$, we use the axiomatic approach to the Shapley value. First of all we notice that $v(p,\{i\})=M\left(u, p, x_{i}\right)=p \cdot x_{i}$, each $i \in N$ and $v(p, N)=\sum_{i \in N} p \cdot x_{i}$ in this situation, and that the payoff vector $\left(p \cdot x_{1}, \ldots, p \cdot x_{n}\right)$ is an imputation in $v(p, S)$. Now, the solution for games $(N, v(p, \cdot))$, where p is an equilibrium price vector, which gives the payoff vector ($p \cdot x_{1}, \ldots, p \cdot x_{n}$), clearly satisfies Pareto optimality, symmetry and the dummy axiom. Suppose that the economy is chosen such that x, x^{\prime} and $x^{\prime}+x^{\prime \prime}$ are equilibria with the same price vector p, giving rise to games $v(p, \cdot), v^{\prime}(p, \cdot)$ and $v(p, \cdot)+v^{\prime}(p$, ḑot), then the assignment of payoff vectors $\left(p \cdot x_{1}, \ldots, p \cdot x_{n}\right)$, and $\left(p \cdot x_{1}^{\prime}, \ldots, p \cdot x_{n}^{\prime}\right)$ and $\left(p \cdot\left(x_{1}+x_{1}^{\prime}\right), \ldots, p \cdot\left(x_{n}+x_{n}^{\prime}\right)\right)$ satisfy the additivity condition. It follows now that it must be equal to the Shapley value.

Consider the economy \mathcal{E} with two commodities and two consumers, where $u_{1}=u_{2}=u$ is given by $u\left(x_{1}, x_{2}\right)=x_{1} x_{2}$ for $x=\left(x_{1}, x_{2}\right) 1 \mathbb{R}_{+}^{2}$ and where $\omega_{1}=(3,1), \omega_{2}=(1,3)$, and let the price be $p=\left(\frac{1}{2}, \frac{1}{2}\right)$. For the allocation $x=\left(\omega_{1}, \omega_{2}\right)$ we have that $M\left(u_{i}, p, x_{i}\right)=(\sqrt{3}, \sqrt{3})$, and that $v(p,\{i\})=\sqrt{3}$ for $i=1,2$, whereas $v(p, S)=2 p \cdot(2,2)=4$. Since $\phi_{1}(v(p, \cdot))+\phi_{1}(v(p, \cdot))=$ 4, we cannot have that $M\left(u_{i}, p, x_{i}\right)=\phi_{i}(v(\cdot))$ for $i=1,2$.
4. The quantity $h(w, S)$ is well-defined by out assumption that $V(S)=K_{S}-\mathbb{R}_{+}^{S}$ for some compact set $K_{S} \subset \mathbb{R}^{S}$. Define a cooperative TU game v_{w} by $v_{w}(S)=h(w, S) w_{i}$ for $S \subseteq N$.Then $e(w, S)=e(S, h(w, N)) \sum_{i \in S} w_{i}$, where $e(S, \cdot)$ is the excess of the TU game v_{w} as defined in Chapter 13 (p.231). The construction corresponds to restricting the cooperative game to deal only with imputations on the ray defined by w.

The nucleolus with respect to w is then defined by assigning to each player the nucleolus of v_{w} multiplied by w. Since v_{w} has a nonempty set of imputations, the nucleolus of v_{w} is nonempty and singlevalued, and so is the nucleolus of (N, V) (with respect to w).

If the nucleolus w.r.t. w is not in the core, then there must be a coalition S such that $h(w ; N) w_{S}$ belongs to the interior of $V(S)$, a contradiction, so that the nucleolus must belong to the core.

