Solutions to Exercises in

Game Theory

Chapter 14

1. Assume that (N, V) is convex, and let $S=\left\{i_{1}, \ldots, i_{k}\right\}$ be an arbitrary coalition. We must find an element of $\operatorname{Core}(N, V)$ which belongs to the boundary of S.

By Lemma 1 in Section 14.2 which tells us that ($\left.N \backslash\{i\}, V^{i(}\right)$ is convex for each $i \in N$. In the proof of Theorem 1, we have that if x^{1} belongs to the core of $\left(N \backslash\left\{i_{1}\right\}, V^{i_{1}(}\right)$, then $\left(x^{1}, a_{i_{1}}\right)$ with $a_{i_{1}}=\sup V\left(\left\{i_{1}\right\}\right)$ is in the core of (N, V), and clearly $a_{i_{1}}$ belongs to the boundary of $V\left(\left\{i_{1}\right\}\right)$. Proceeding with i_{2}, we find x^{2} such that $\left(x^{2}, a_{i_{2}}\right)$ is in the core of $V^{\left(i_{1}\right.}$, and consequently $\left(x^{2}, a_{i_{2}}, a_{i_{1}}\right)$ is in the core of (N, V), and $a_{2}=\sup V^{i_{1} 1}\left(\left\{i_{2}\right\}\right)$. It follows that $\left(a_{i_{2}}, a_{i_{1}}\right)$ is on the boundary of $V\left(\left\{i_{1}, i_{2}\right\}\right)$. Proceeding in this way, we find a core element $\left(x_{N \backslash S}, x_{S}\right)$ for (N, V) such that x_{S} belongs to the boundary of $V(S)$.
2. (a) The game ($\{1,2,3\}, V$) with $V\left(\{2\}=\{x \in \mathbb{R} \mid x \leq 1\}, V\left(\{1,2\}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R} 2 \mid x_{2} \leq 1\right\}\right.\right.$, $V(\{2,3\})=\left\{\left(x_{2}, x_{3}\right) \in \mathbb{R} 2 \mid x_{2} \leq 1\right\}, V\left(\{1,2,3\}=\left\{x \in \mathbb{R}^{3} \mid x_{i} \leq 1, i=1,2,3\right\}\right.$, and $V(S)=\mathbb{R}_{-}^{S}$ otherwise, is convex with

$$
\widetilde{V}(\{1,2\}) \cap \widetilde{V}(\{2,3\}) \subset \widetilde{V}(\{2\}),
$$

but the balanced family $\{\{1,2\},\{3\}\}$ and the payoff vector $x=(3,1,0)$ satisfies $x \in \widetilde{V}(\{1,2\}) \cap$ $\widetilde{V}(\{3\})$ but $x \notin V(\{1,2,3\})$.
(b) The game $(\{1,2,3\}, V)$ with $V(\{i\})=\{x \mid x \leq 1\}$ for $i=1,2,3, V(S)=\mathbb{R}_{\widetilde{V}}^{S}$ for $|S|=2$ and $V(\{1,2,3\})=\left\{x \in \mathbb{R}^{3} \mid \sum x_{i} \leq 3\right\}$ fails to be convex, since e.g. $\widetilde{V}(\{1\} \cup \widetilde{V}(\{2\})=\{x \mid$ $\left.x_{1} \leq 1, x_{2} \leq 1\right)$ fails to be contained in $V(\{1,2\})=\mathbb{R}_{-}^{2}$. It is balanced since the only nontrivial balanced family is $\{\{1\},\{2\},\{3\}\}$ and $\cup_{i} \widetilde{V}(\{i\})=\left\{x \in \mathbb{R}^{3} \mid x_{i} \leq 1, i=1,2,3\right\} \subset V(\{1,2,3\})$.
(c) Consider the game $(\{1,2,3\}, V)$ with $V(S)=\left\{x \in \mathbb{R}^{S} \mid \sum_{i \in S} x_{i}^{2} \leq 1\right\}$ for $S \neq\{1,2,3\}$ and $V(\{1,2,3\})=\left\{x \in \mathbb{R}^{3} \mid x_{i} \leq 1, i=1,2,3\right\}$. For each π, one can find a family \mathcal{B} of coalitions which is π-balanced and contains at most two singleton coalitions, so that $\cap_{S \in \mathcal{B}} \tilde{V}(S)$ contains a point x such that $x_{i}>1$ for some i with $\{i\} \notin \mathcal{B}$. Since $x \notin V(\{1,2,3\})$, the game is not π-balanced. However, $(1,1,1)$ belongs to the core of $(\{1,2,3\}, V)$, which therefore is nonempty.
3. If $x \in \operatorname{Core}\left(N, v_{q}\right)$ then $\sum_{i \in S} x_{i} \geq v_{q}(S)=\sup \left\{q_{S} \cdot x^{\prime \prime} \mid x^{\prime \prime} \in V(S)\right\}$. If $x \notin \operatorname{Core}(N, V)$, then there is $S \subset N$ and $x^{\prime} \in V(S)$ such that $x_{i}^{\prime}>x_{i}$ for all $i \in S$, so that $\sum_{i \in S} q_{S, i} x_{i}^{\prime}>q_{S} \cdot x_{S}>$ $\sup \left\{q_{S} \cdot x^{\prime \prime} \mid x^{\prime \prime} \in V(S)\right\}$ contradicting that $x^{\prime} \in V(S)$. We conclude that $x \in \operatorname{Core}(N, V)$.

To obtain the converse statement we need that for each coalition $S \subset N$, the projection of the Core (N, V) on \mathbb{R}^{S} can be separated from $V(S)$ by the linear form q^{S}.
4. The extended core is nonempty if the game $\left(N, V_{\lambda}\right)$ where $V(N)$ is blown up by the factor $\lambda>1$ to $\lambda V(N)$ has a nonempty core. Therefore conditions for a nonempty extended core can
be obtained from standard conditions on (N, V_{λ}): Suppose that there are π and λ such that for every π-balanced family \mathcal{B} of coalitions,

$$
\cap_{S \in \mathcal{B}} \widetilde{V}(S) \subseteq \lambda V(N)
$$

Then $\operatorname{Core}_{e}(N, V) \neq \emptyset$.
5. Let $\left(x_{1}, \ldots, x_{n}\right)$ be an allocation such that the corresponding equal-treatment allocation is in the core of any replica economy, and consider the set

$$
P=\left\{x_{i}^{\prime}-\omega_{i} \mid u_{i}\left(x_{i}^{\prime}\right)>u_{i}\left(x_{i}\right), i \in N\right\} .
$$

Suppose that $0 \in \operatorname{conv} P$. Then is $S \subset N$ and $\lambda_{i}>0$ for $i \in S$ with $\sum_{i \in S} \lambda_{i}=1$ such that

$$
\sum_{i \in S} \lambda_{i}\left(x_{i}^{\prime}-\omega_{u}\right)=0 .
$$

By continuity of the utility functions u_{i}, we may choose $x_{i}^{\prime \prime}$ close to x_{i}^{\prime} such that $u_{i}\left(x_{i}^{\prime \prime}\right)>u_{i}\left(x_{i}\right)$ for $i \in S$ and all the weights in the convex combination are rational numbers with common denominator N, i.e. such that

$$
\sum_{i \in S} \frac{s_{i}}{N}\left(x_{i}^{\prime}-\omega_{u}\right)=0
$$

with $s_{i} \in \mathbb{N}, s_{i} \in S$, and $N \in \mathbb{N}$. Choose now the replica economy with N agents of each type, and let S_{N} be a coalition in this economy consisting of s_{i} copies of the i th type. Then S_{N} has an improvement of the equal-treatment allocation defined by $\left(x_{1}, \ldots, x_{n}\right)$, a contradiction, and we conclude that $0 \notin$ conv P.

Using monotonicity of u, we have that conv $P \cap \mathbb{R}_{-}=\emptyset$, and by separation of convex sets there is $p \in \mathbb{R}_{+}^{l}, p \neq 0$, such that

$$
p \cdot\left(x_{i}^{\prime}-\omega_{i}\right)>0 \text { if } u_{i}\left(x_{i}^{\prime}\right)>u_{i}\left(x_{i}\right)
$$

for $i=1, \ldots, n$. It is easily checked that $p \cdot\left(x_{i}-\omega_{i}\right)=0$ for each i, so that $\left(x_{1}, \ldots, x_{n}, p\right)$ is a equilibrium.
6. [Warning: There is a typo in the definition of $V(S)$, which should be

$$
V(S)=\left\{\left(z_{i}\right)_{i \in S} \mid \exists x_{i} \in X_{i}, y_{i} \in Y_{i}, z_{i} \leq u_{i}\left(x_{i}\right), i \in S: \sum_{i \in S}\left(x_{i}-y_{i}\right)=\sum_{i \in S} \omega_{i}\right\}
$$

(the last sum is over members of S only)]
Let (N, V) be the market game with market $\mathcal{E}=\left(X_{i}, Y_{i}, \omega_{i}, u_{i}\right)_{i \in N}$. Let \mathcal{C} be a balanced family of coalitions with balancing weights $\left(\lambda_{S}\right)_{S \in C}$. If $z_{S} \in V(S)$ for each S, then there are x_{i}^{S}, y_{i}^{S} for $i \in S$ such that $\sum_{i \in S}\left(x_{i}^{S}-y_{i}^{S}\right)=\sum_{i \in S} \omega_{i}$. For each $i \in N$, let $z_{i}^{N}=\sum_{S \in C} \lambda_{S} z_{i}^{S}$, $x_{i}^{N}=\sum_{S \in C} \lambda_{S} x_{i}^{S}$ and $y_{i}^{N}=\sum_{S \in C} \lambda_{S} y_{i}^{S}$. Then $x_{i}^{N} \in X_{i}, y_{i}^{N} \in Y_{i}$ by convexity of X_{i} and $u_{i}\left(x_{i}^{N}\right) \geq z_{i}^{N}$ by convexity of the utility functions u_{i}, each $i \in S$. Moreover

$$
\begin{aligned}
\sum_{i \in N}\left(x^{N}-y^{N}\right) & =\sum_{i \in N} \sum_{S \in C} \lambda_{S}\left(x_{i}^{S}-u_{i}^{S}\right) \\
& =\sum_{S \in C} \sum_{i \in S} \lambda_{S}\left(x_{i}^{S}-y_{i}^{S}\right)=\sum_{S \in C} \sum_{i \in S} \lambda_{S} \omega_{i}=\sum_{i \in N} \omega_{i}
\end{aligned}
$$

from which we get that $\sum_{S \in C} \lambda \widetilde{V}(S) \subset V(N)$, so that $V(N)$ is cardinally balanced.
The second part follows directly from the first one, since the restriction of V to subcoalitions of S is the market game associated with the market $\left(X_{i}, Y_{i}, \omega_{i}, u_{i}\right)_{i \in S}$.

