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Solutions to Exercises in

Game Theory
Chapter 13

1. For the coalition structure {{1}, {2}, {3}}, the only feasible payoff vector (0, 0, 0) (together
with the coalition structure) belongs to the bargaining set, since there are no objections (no
two individuals in the same coalition of the structure).

For {{1, 2}, {3}}, the vector (5, 15, 0) is in the bargaining set: Objections of 1 against 2
must involve {1, 3} giving 3 less than 25, so that so that 2 has a counterobjection, aind con-
versely objections of 1 against 2 have counterobjections. For all other payoff vectors there
are objections without counterobjections (by the same argument).

For {{1, 3}, {2}} the same reasoning singles out (5, 0, 25) as belonging to the bargaining set,
and for {{2, 3}, {1} we obtain the payoff vector (0, 15, 25). For the coalition structure {{N}},
payoff vectors (x1, x2, x3) with x1 + x2 + x3 = 41 and xi + x j < v({i, j}) (such as (4, 14, 24)) are
in the bargaining set, since each objection as a counterobjection.

2. The upper vectors bvi of the bankruptcy game v are given by

bvi = E −max

E −
∑

j<N\{i}

c j, 0

 =

ci ci ≤ E
E otherwise,

for i ∈ N. For any coalition S , the gap function is then given by

gv(S ) =
∑
i∈S

bvi − v(S ) =
∑
i∈S

bvi −max

E −
∑
j<S

c j, 0

 ,
and λvi = minS :i∈S g

v(S ) = gv(N).
Assume ci < E for all i. Now the τ-value is found as the point on the line segment between

bv − λv =
(
max

{∑
j,i c j − E, 0

})
i∈N

and c at which the sum of coordinates is E.
If

∑
j,i ci > E for all i, then mi(N, E, c) = bvi − λ

v
i = 0, m̂i = ci, since ci < E, and

we have that bv − λv = 0, and A(N, E, c) = P(N, E, c). If
∑

j,i c j < E for some i, then
bvi − λ

v
i = mi(N, E, c) , 0 and the τ-value is found on the segment between m(N, E, c) and c,

which again is A(NE, c).
If ci > E for some i, the analysis proceeds similarly.

3. First of all, we check the Talmud rule in the simple case where N = {1, 2}. We claim that
with the game defined by

v({i}) = max{E − c j, 0}, i, j = 1, 2, i , j, v(N) = E,
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the Talmud rule can be written as

φi = v(N) − v({ j}) +
v(N) − v({1} − v({2})

2
. (1)

There are four possible cases: If c1
2 + c2

2 ≥ E, then either (i) c1 > E, c2 > E, so that v({i}) = 0,
i = 1, 2, (??) becomes equal to E/2, which is Ti({1, 2}, E, c) = λ with λ = E/2 < ci. If
(ii) c1 > E, c2 < E (the case c1 > E, c2 > E is treated similarly), then the expression (??)
becomes

φ1 = E +
E − c2 − E

2
= E −

c2

2
, φ2 = E − (E − c2) +

E − c2 − E
2

=
c2

2
,

which again is Ti({1, 2}, E, c) with λ = E − c2
2 < c1

2 . If c1
2 + c2

2 ≤ E, then the case (iii)
c1 > E, c2 < E we get the same expression for Ti({1, 2}, E, c), but now with λ = c1 −

(
E − c2

2

)
,

and finally (iv) c1 < E, c2 > E, in which case we get

φ1 = E − (E − c1) +
E − c1 + E − c2 − E

2
= c1 −

E − (c1 + c2)
2

, φ2 = c2 −
E − (c1 + c2)

2
,

which is Ti({1, 2}, E, c) with λ =
E−(c1+c2)

2 .
Next, we show that the Talmud rule satisfies consistency considered as solution to the

bankruptcy game.
Suppose first that

∑
i∈N ci ≥ E, choose an arbitrary player i0. Then the reduced bankruptcy

problem is one where the estate has been reduced to

Ei0 = E −min
{ci0

2
, λ

}
,

where λ is the balancing factor securing that
∑

i∈N min
{

ci
2 , λ

}
= E. By the definition of λ we

have that
∑

i,i0 ci = Ei0 . Then the Talmud rule applied to (N\{i0}, Ei0 , (ci)i,i0) gives the result
min

{
ci
2 , λ

i0
}
, where λi0 is such that the sum equals Ei0 . Clearly, λi0 = λ, and it follows that

Ti(N\{i0}, Ei0 , (ci)i,i0) = Ti(N, E, c) for all i , i0. The case of
∑

i∈N ci ≤ E is treated in the
same way.

We now have that the Talmud rule coincides with the prenucleolus for |N | = 2 and satisfies
consistency, so by consistency it coincides with the prenucleolus.

4. For the payoff vector z0 =
(

1
7 , . . . ,

1
7

)
, the excess of a coalition S containing one of the

specific mentioned sets is 1−
|S |
7

, and for any other coalition it is −
|S |
7

, consequently si j(z0) =

4
7 for each pair (i, j) with i , j, and z0 belongs to the kernel.

Next consider the payoff vector z1 =
(

1
3 ,

1
3 , 0,

1
3 , 0, . . . , 0

)
. Here the excesses are 0 for

coalitions containing {1, 2, 4}, 1
3 for coalitions containing one of the designated sets but only

two members of {1, 2, 4}, and 2
3 for coalitions containing a designated set but only one element

of {1, 2, 4}. For each pair (i, j) there is a designated set with excess 2
3 containing i but not j,

so si j(z1) = 1
3 for all pairs (i, j), and consequently z1 belongs to the kernel.

For any λ ∈ [0, 1], the payoff vector zλ = λz0 + (1 − λ)z1 assigns equal payment in the
interval

[
1
7 ,

1
3

]
to players 1,2 and 4, and equal payment in

[
0, 1

7

]
for the other players. The
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largest excesses still obtain for coalitions containing only one element of {1, 2, 4}, and all
si j(zλ) have the same size, so that also zλ belongs to the core.

It is easily seen that the same reasoning applies to any of the seven designated sets, show-
ing that for j = 2, . . . , 7, the payoff vector z j and the line segment [z0, z j] belong to the kernel.

For all other payoff vectors, there will be some player outweighing some other player, so
that only the payoff vectors exhibited above can be in the kernel of v.

5. We first check that z = (3, 2, 1) belongs to the kernel of v, we find the excesses

e({1}, z) = −3, e({2}, z) = −2, e({3}, z) = −1,
e({1, 2}, z) = −1, e({1, 3}) = −1, e({2, 3}, z) = −1, e(N, z) = 0,

and we find that si j(z) = −1 for all pairs (i, j) with i , j. Clearly, there is no case where i
outweighs j, so that (3, 2, 1) belongs to the kernel.

To see that (3, 2, 1) is the only element of the kernel, consider an imputation where some
player i gets more than in z. Then the excess of some coalition containing i must decrease
whereas the excess of some coalition not containing j must increase, and consequently j
outweights i, so that the imputation cannot belong to the kernel.

The reduced games are are:

({2, 3}, v1
z ) : v1

z ({2}) = 1, v1
z ({3}) = 0, v({2, 3}) = 3, e({2}, (2, 1)) = −1, e({3}, (2, 1)) = −1,

({1, 3}, v2
z ) : v2

z ({1}) = 2, v2
z ({3}) = 0, v({1, 3}) = 4, e({1}, (2, 1)) = −1, e({3}, (2, 1)) = −1,

({1, 2}, v3
z ) : v3

z ({1}) = 2, v3
z ({2}) = 1, v({1, 2}) = 5, e({1}, (2, 1)) = −1, e({2}, (2, 1)) = −1,

and with the same arguments as above, it is seen that (3, 2, 1) induces the unique kernel
element in the three reduced games.

6. For the graph game, the upper vector bv is given as bvi =
∑

h,k∈N whk−
∑

h,k∈N\{i} whk =
∑

k∈N wik

for i ∈ N. The gap function gv(S ) takes the form

gv(S ) =
∑
j∈S

bvj − v(S ) =
∑
h∈S

∑
k∈N

whk −
∑
h,k∈S

whk =
∑
h,k

∈ S +
∑

h∈S ,k<S

whk, (2)

in particular, gv(N) =
∑

h,k∈N whk > 0. The vector λv is found as

λvi = min
S :i∈S

gv(S ) = gv({i}) = bvi ,

since the minimum in (??) is attained where the coalition is as small as possible, and we find
the τ-value as

τi(v) = bvi −
gv(N)∑

i∈N bvi
bvi =

∑
j∈N

wi j −

∑
h,k∈N whk

2
∑

h,k∈N whk

∑
j∈N

wi j =
1
2

∑
j∈N

wi j.


