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Solutions to Exercises in
Game Theory

Chapter 12

1. Let the price of the output commodity be 1 and the endowment of input commodities
be ωi ∈ R

l
+.If the production function is g : Rl

+ → R+, then the coalition S can produce
g
(∑

i∈S ωi
)
. The game (N, v) with v(S ) = g

(∑
i∈S ωi

)
is a cooperative game, and it is superad-

ditive since

v(S ∪ T ) = g
(∑

i∈S∪T ωi
)
≥ g

(∑
i∈S ωi

)
+ g

(∑
i∈S ωi

)
= v(S ) + v(T )

for S ∪ T = ∅ (where we have assumed that the technology is additive, which it will be if the
set {(z, y) | y ≤ g(z)} is convex and satisfies constant returns to scale).

Let (cS )S∈C be a balanced family of coalitions in (N, v), so that
∑

S∈S:i∈S cS = 1 for each i.
Then ∑

S∈S cS v(S ) =
∑

S∈ScSg

∑
i∈S

ωi

 ≤ g ∑
S∈S

cS

∑
i∈S

ωi


= g

∑
i∈N

∑
S∈S

cSωi

 = g

∑
i∈N

ωi

 = v(N),

where we have used convexity and constant returns to scale of g. Thus, (N, v) is balanced.
The restriction of (N, v) to any coalition S ⊂ N is again a production game, and conse-

quently each subgame (S , v) is balanced.

2. The game ({1, 2, 3}, v) with

v({i}) = 0, i = 1, 2, 3, v({1, 2}) = v({2, 3}) = v({1, 3}) = v({1, 2, 3}) = 1

is superadditive, but and its core is empty: Indeed, if x is an imputation with x1 + x2 + x3 = 1,
then x ∈ Core({1, 2, 3}, v) would imply that xi + x j = 1 for i, j ∈ {1, 2, 3}, i , j, since otherwise
x could be improved by {i, j}. But then xi = 0 for each i, a contradiction.

We define (N, v̂) from (N, v) by

v̂(S ) = max{x | ∃T1, . . . ,Tk ⊆ S ,Ti ∩ T j = ∅, i, j ≤ k, i , j,
∑k

i=1 v(Ti) = x}.

Then (N, v̂) is superadditive: If S 1, S 2 ⊆ N with S ∩S ′ = ∅, then for i = 1, 2 there is a partition
T i

1, . . .T
i
ki

of S i with

v̂(S i) =

ki∑
j=1

v(T i
j), i = 1, 2.
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Then T 1
1 , . . .T

1
k1
,T 2

1 , . . .T
2
k2

is a partition of S 1 ∪ S 2, and consequently v̂(S 1 ∪ S 2) ≥ v̂(S 1) +

v̂(S 2). We conclude that (N, v̂) is superadditive.
Since v̂(S ) ≥ v(S ) for each coalition S , we have that Core(N, v̂) ⊂ Core(N, v). Next,

suppose that x ∈ Core(N, v). For each coalition S , if T1, . . .Tk is a partition of S , then
v(T j) ≤

∑
i∈T j

xi by the core property, so that
∑k

j=1 v(T j) ≤
∑

i∈S xi, and since the partition was
chosen arbitrarily, we have that v̂(S ) ≤

∑
i∈S xi, from which we get that x ∈ Core(N, v̂).

3. [Typos: The function U should be defined as U(z) =
∑

i∈S zi (for S = N, the selection
is trivial since any element in the core maximizes the function). Unfortunately, also the
statement of S -monotonicity is imprecise: A core selection φ is S -monotonic at v if for all
w with w(S ) > v(S ) and W(T ) = v(T ) for T , S , one has that for all x ∈ φ(v), there is
y ∈ φ(w) with yi ≥ xi, all i ∈ S .] Once the formulation has been set right, the S -monotonicity
of any φU for U(z) =

∑
i∈S zi at any v is straightforward: If w satisfies the assumptions, then

x ∈ φ)(v) ⊂ Core(v) implies that x ∈ φ(w), so that S -monotonicity is fulfilled trivially.
The selection φU′ withUi =

∑
i∈T zi where T ∩ S , ∅, T\S , ∅ ia not S -monotonic, since

the game v can be selected such that an isolated increase in the worth of S will lead to smaller
core payoff for individuals in S \T .

4. The pair (N, v), where v(S ) =
∑

i∈S c({i}) − c(S ) is the cost saving of the coalition S ⊆
N, is a TU game: Indeed, v has the properties of a characteristic function. Moreover, v is
superadditive: Let S 1, S 2 ∈ S be coalitions with S 1 ∩ S 2 = ∅. Then

v(S 1) + v(S 2) =
∑
i∈S 1

+
∑
i∈S 2

−[c(S 1) + c(S 2)] ≤
∑

i∈S 1∪S 2

+c(S 1 ∪ S 2) = v(S 1 ∪ S 2),

where we have used that c(S 1 ∪ S 2) ≤ c(S 1) + c(S 2) (subadditivity if cost) according to the
definition of c as the cost of providing the projects in S 1 ∪ S 2.

Let x be the cost allocation with

xi = si +
c({i}) − si∑

j∈N(c({ j}) − s j)

c(N) −
∑
j∈N

s j


for all i ∈ N (the separable cost plus a share in the cost savings from cooperation determined
by alternate cost avoided. Since c(N) ≤

∑
j∈N c({ j}), we get that

c(N) −
∑

j∈N s j∑
j∈N(c({ j}) − s j)

≤ 1,

so that

xi = si +
c({i}) − si∑

j∈N(c({ j}) − s j)

c(N) −
∑
j∈N

s j

 ≤ si + (c({i}) − si) = c({i}).

By subadditivity, we have that si − c({i}) = c(N) − c(N\{i}) − c({i}) ≤ 0 for all i. If the
semicore is non-empty, then there is some x with

∑
i∈N xi = c(N) such that

∑
j,i x j ≤ c(N\{i})

for all i, so that si = c(N) − c(N\{i} ≤ xi, all i, and therefore
∑

i∈N si ≤ c(N).
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Now, let x be determined by the alternative cost method and assume that the semicore is
nonempty, then

∑
j,i

x j = c(N) − xi = c(N) − [c(N) − c(N\{i})] −
c({i}) − si∑

j∈N(c({ j}) − s j)

c(N) −
∑
j∈N

s j


= c(N\{i}) −

c({i}) − si∑
j∈N(c({ j}) − s j)

c(N) −
∑
j∈N

s j

 ≤ c(N\{i})

since c(N) ≥
∑

j∈N s j.

5. In the game ({1, 2, 3, 4}, v), where v(S ) = 1/8 if 1 ∈ S and S , {1, 2, 3, 4}, and v(S ) =
‖S |
4

for all other coalitions, the marginal vector xid (where id is the identical permutation) given
by

xid =

(
1
8
, 0, 0,

9
10

)
is in the Weber set (the convex hull of all the marginal vectors) but not in the core, since it
can be improved by {2, 3} with v({2, 3}) = 1/2.

6. Let α be a given choice function, selecting a member of any coalition, and let mα(v) be the
selector value, assigning to each player i the payoff

mα
i (v) =

∑
S :α(S )=i

∆v(S ),

where ∆v(S ) is the Harsanyi dividend of the coalition S at the game v. Then from ∆v(N) =

v(N) −
∑

S⊂N ∆v(S ) we get that∑
i∈N

mα
i (v) =

∑
i∈N

∑
S :α(S )=i

∆v(S ) =
∑
S⊆N

∆v(S ) = v(N),

so that mα(v) is Pareto optimal and therefore a preimputation.
The game (N, v) with N = {1, 2, 3, 4} and v({i} = 0 for i ∈ N, v(S ) = 1 for S ⊆ N, |S | ≥ 2,

has empty core, and for α the choice function selecting the smallest index of the players in S ,
we trivially obtain that mα(v) does not belong to the core.

7. The Shapley-Shubik power index

φi(v) =
∑

S⊆N:i∈S

(
(s − 1)!(n − s)!

n!

)
[v(S ) − v(S \{i})

has the desired form with λs =

(
(s − 1)!(n − s)!

n!

)
, since

n∑
s=1

(
n − 1
s − 1

) (
(s − 1)!(n − s)!

n!

)
=

n∑
s=1

(s − 1)!(n − s)!(n − 1)!
n!(s − 1)!(n − s)!

=

n∑
s=1

1
n

= 1.
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The Banzhaf-Coleman index

ψi(v) =
∑

S⊆N:i∈S

1
2n−1 [v(S ) − v(S \{i})]

also has this form with λs =
1

2n−1 for all s, since

n∑
s=1

(
n − 1
s − 1

)
1

2n−1 =

n−1∑
t=0

(
n − 1

t

)
1

2n−1 = 1.


