Solutions to Exercises in
 Game Theory
 Chapter 12

1. Let the price of the output commodity be 1 and the endowment of input commodities be $\omega_{i} \in \mathbb{R}_{+}^{l}$. If the production function is $g: \mathbb{R}_{+}^{l} \rightarrow \mathbb{R}_{+}$, then the coalition S can produce $g\left(\sum_{i \in S} \omega_{i}\right)$. The game (N, v) with $v(S)=g\left(\sum_{i \in S} \omega_{i}\right)$ is a cooperative game, and it is superadditive since

$$
v(S \cup T)=g\left(\sum_{i \in S \cup T} \omega_{i}\right) \geq g\left(\sum_{i \in S} \omega_{i}\right)+g\left(\sum_{i \in S} \omega_{i}\right)=v(S)+v(T)
$$

for $S \cup T=\emptyset$ (where we have assumed that the technology is additive, which it will be if the set $\{(z, y) \mid y \leq g(z)\}$ is convex and satisfies constant returns to scale).

Let $\left(c_{S}\right)_{S \in C}$ be a balanced family of coalitions in (N, v), so that $\sum_{S \in S: i \in S} c_{S}=1$ for each i. Then

$$
\begin{aligned}
\sum_{S \in \mathcal{S}} c_{S} v(S)=\sum_{S \in \mathcal{S}} c_{S} g\left(\sum_{i \in S} \omega_{i}\right) \leq g\left(\sum_{S \in \mathcal{S}} c_{S} \sum_{i \in S} \omega_{i}\right) \\
=g\left(\sum_{i \in N} \sum_{S \in \mathcal{S}} c_{S} \omega_{i}\right)=g\left(\sum_{i \in N} \omega_{i}\right)=v(N),
\end{aligned}
$$

where we have used convexity and constant returns to scale of g. Thus, (N, v) is balanced.
The restriction of (N, v) to any coalition $S \subset N$ is again a production game, and consequently each subgame (S, v) is balanced.
2. The game ($\{1,2,3\}, v$) with

$$
v(\{i\})=0, i=1,2,3, v(\{1,2\})=v(\{2,3\})=v(\{1,3\})=v(\{1,2,3\})=1
$$

is superadditive, but and its core is empty: Indeed, if x is an imputation with $x_{1}+x_{2}+x_{3}=1$, then $x \in \operatorname{Core}(\{1,2,3\}, v)$ would imply that $x_{i}+x_{j}=1$ for $i, j \in\{1,2,3\}, i \neq j$, since otherwise x could be improved by $\{i, j\}$. But then $x_{i}=0$ for each i, a contradiction.

We define (N, \hat{v}) from (N, v) by

$$
\hat{v}(S)=\max \left\{x \mid \exists T_{1}, \ldots, T_{k} \subseteq S, T_{i} \cap T_{j}=\emptyset, i, j \leq k, i \neq j, \sum_{i=1}^{k} v\left(T_{i}\right)=x\right\} .
$$

Then (N, \hat{v}) is superadditive: If $S_{1}, S_{2} \subseteq N$ with $S \cap S^{\prime}=\emptyset$, then for $i=1,2$ there is a partition $T_{1}^{i}, \ldots T_{k_{i}}^{i}$ of S_{i} with

$$
\hat{v}\left(S_{i}\right)=\sum_{j=1}^{k_{i}} v\left(T_{j}^{i}\right), i=1,2 .
$$

Then $T_{1}^{1}, \ldots T_{k_{1}}^{1}, T_{1}^{2}, \ldots T_{k_{2}}^{2}$ is a partition of $S_{1} \cup S_{2}$, and consequently $\hat{v}\left(S_{1} \cup S_{2}\right) \geq \hat{v}\left(S_{1}\right)+$ $\hat{v}\left(S_{2}\right)$. We conclude that (N, \hat{v}) is superadditive.

Since $\hat{v}(S) \geq v(S)$ for each coalition S, we have that $\operatorname{Core}(N, \hat{v}) \subset \operatorname{Core}(N, v)$. Next, suppose that $x \in \operatorname{Core}(N, v)$. For each coalition S, if $T_{1}, \ldots T_{k}$ is a partition of S, then $v\left(T_{j}\right) \leq \sum_{i \in T_{j}} x_{i}$ by the core property, so that $\sum_{j=1}^{k} v\left(T_{j}\right) \leq \sum_{i \in S} x_{i}$, and since the partition was chosen arbitrarily, we have that $\hat{v}(S) \leq \sum_{i \in S} x_{i}$, from which we get that $x \in \operatorname{Core}(N, \hat{v})$.
3. [Typos: The function \mathcal{U} should be defined as $\mathcal{U}(z)=\sum_{i \in S} z_{i}$ (for $S=N$, the selection is trivial since any element in the core maximizes the function). Unfortunately, also the statement of S-monotonicity is imprecise: A core selection ϕ is S-monotonic at v if for all w with $w(S)>v(S)$ and $W(T)=v(T)$ for $T \neq S$, one has that for all $x \in \phi(v)$, there is $y \in \phi(w)$ with $y_{i} \geq x_{i}$, all $i \in S$.] Once the formulation has been set right, the S-monotonicity of any $\phi_{\mathcal{U}}$ for $\mathcal{U}(z)=\sum_{i \in S} z_{i}$ at any v is straightforward: If w satisfies the assumptions, then $x \in \phi)(v) \subset \operatorname{Core}(v)$ implies that $x \in \phi(w)$, so that S-monotonicity is fulfilled trivially.

The selection $\phi_{\mathcal{U}^{\prime}}$ with $\mathcal{U}_{i}=\sum_{i \in T} z_{i}$ where $T \cap S \neq \emptyset, T \backslash S \neq \emptyset$ ia not S-monotonic, since the game v can be selected such that an isolated increase in the worth of S will lead to smaller core payoff for individuals in $S \backslash T$.
4. The pair (N, v), where $v(S)=\sum_{i \in S} c(\{i\})-c(S)$ is the cost saving of the coalition $S \subseteq$ N, is a TU game: Indeed, v has the properties of a characteristic function. Moreover, v is superadditive: Let $S_{1}, S_{2} \in \mathcal{S}$ be coalitions with $S_{1} \cap S_{2}=\emptyset$. Then

$$
v\left(S_{1}\right)+v\left(S_{2}\right)=\sum_{i \in S_{1}}+\sum_{i \in S_{2}}-\left[c\left(S_{1}\right)+c\left(S_{2}\right)\right] \leq \sum_{i \in S_{1} \cup S_{2}}+c\left(S_{1} \cup S_{2}\right)=v\left(S_{1} \cup S_{2}\right),
$$

where we have used that $c\left(S_{1} \cup S_{2}\right) \leq c\left(S_{1}\right)+c\left(S_{2}\right)$ (subadditivity if cost) according to the definition of c as the cost of providing the projects in $S_{1} \cup S_{2}$.

Let x be the cost allocation with

$$
x_{i}=s_{i}+\frac{c(\{i\})-s_{i}}{\sum_{j \in N}\left(c(\{j\})-s_{j}\right)}\left(c(N)-\sum_{j \in N} s_{j}\right)
$$

for all $i \in N$ (the separable cost plus a share in the cost savings from cooperation determined by alternate cost avoided. Since $c(N) \leq \sum_{j \in N} c(\{j\})$, we get that

$$
\frac{c(N)-\sum_{j \in N} s_{j}}{\sum_{j \in N}\left(c(\{j\})-s_{j}\right)} \leq 1,
$$

so that

$$
x_{i}=s_{i}+\frac{c(\{i\})-s_{i}}{\sum_{j \in N}\left(c(\{j\})-s_{j}\right)}\left(c(N)-\sum_{j \in N} s_{j}\right) \leq s_{i}+\left(c(\{i\})-s_{i}\right)=c(\{i\}) .
$$

By subadditivity, we have that $s_{i}-c(\{i\})=c(N)-c(N \backslash\{i\})-c(\{i\}) \leq 0$ for all i. If the semicore is non-empty, then there is some x with $\sum_{i \in N} x_{i}=c(N)$ such that $\sum_{j \neq i} x_{j} \leq c(N \backslash\{i\})$ for all i, so that $s_{i}=c(N)-c\left(N \backslash\{i\} \leq x_{i}\right.$, all i, and therefore $\sum_{i \in N} s_{i} \leq c(N)$.

Now, let x be determined by the alternative cost method and assume that the semicore is nonempty, then

$$
\begin{aligned}
\sum_{j \neq i} x_{j} & =c(N)-x_{i}=c(N)-[c(N)-c(N \backslash\{i\})]-\frac{c(\{i\})-s_{i}}{\sum_{j \in N}\left(c(\{j\})-s_{j}\right)}\left(c(N)-\sum_{j \in N} s_{j}\right) \\
& =c(N \backslash\{i\})-\frac{c(\{i\})-s_{i}}{\sum_{j \in N}\left(c(\{j\})-s_{j}\right)}\left(c(N)-\sum_{j \in N} s_{j}\right) \leq c(N \backslash\{i\})
\end{aligned}
$$

since $c(N) \geq \sum_{j \in N} s_{j}$.
5. In the game $(\{1,2,3,4\}, v)$, where $v(S)=1 / 8$ if $1 \in S$ and $S \neq\{1,2,3,4\}$, and $v(S)=\frac{\| S \mid}{4}$ for all other coalitions, the marginal vector $x^{\text {id }}$ (where id is the identical permutation) given by

$$
x^{\mathrm{id}}=\left(\frac{1}{8}, 0,0, \frac{9}{10}\right)
$$

is in the Weber set (the convex hull of all the marginal vectors) but not in the core, since it can be improved by $\{2,3\}$ with $v(\{2,3\})=1 / 2$.
6. Let α be a given choice function, selecting a member of any coalition, and let $m^{\alpha}(v)$ be the selector value, assigning to each player i the payoff

$$
m_{i}^{\alpha}(v)=\sum_{S: \alpha(S)=i} \Delta_{v}(S),
$$

where $\Delta_{v}(S)$ is the Harsanyi dividend of the coalition S at the game v. Then from $\Delta_{v}(N)=$ $v(N)-\sum_{S \subset N} \Delta_{v}(S)$ we get that

$$
\sum_{i \in N} m_{i}^{\alpha}(v)=\sum_{i \in N} \sum_{S: \alpha(S)=i} \Delta_{v}(S)=\sum_{S \subseteq N} \Delta_{v}(S)=v(N),
$$

so that $m^{\alpha}(v)$ is Pareto optimal and therefore a preimputation.
The game (N, v) with $N=\{1,2,3,4\}$ and $v(\{i\}=0$ for $i \in N, v(S)=1$ for $S \subseteq N,|S| \geq 2$, has empty core, and for α the choice function selecting the smallest index of the players in S, we trivially obtain that $m^{\alpha}(v)$ does not belong to the core.
7. The Shapley-Shubik power index

$$
\phi_{i}(v)=\sum_{S \subseteq N: i \in S}\left(\frac{(s-1)!(n-s)!}{n!}\right)[v(S)-v(S \backslash\{i\})
$$

has the desired form with $\lambda_{s}=\left(\frac{(s-1)!(n-s)!}{n!}\right)$, since

$$
\sum_{s=1}^{n}\binom{n-1}{s-1}\left(\frac{(s-1)!(n-s)!}{n!}\right)=\sum_{s=1}^{n} \frac{(s-1)!(n-s)!(n-1)!}{n!(s-1)!(n-s)!}=\sum_{s=1}^{n} \frac{1}{n}=1
$$

The Banzhaf-Coleman index

$$
\psi_{i}(v)=\sum_{S \subseteq N: i \in S} \frac{1}{2^{n-1}}[v(S)-v(S \backslash\{i\})]
$$

also has this form with $\lambda_{s}=\frac{1}{2^{n-1}}$ for all s, since

$$
\sum_{s=1}^{n}\binom{n-1}{s-1} \frac{1}{2^{n-1}}=\sum_{t=0}^{n-1}\binom{n-1}{t} \frac{1}{2^{n-1}}=1
$$

