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Abstract

We consider inference and testing in extended constant conditional correlation
GARCH models in the case where the true parameter vector is a boundary point
of the parameter space. This is of particular importance when testing for volatility
spillovers in the model. The large-sample properties of the QMLE are derived together
with the limiting distributions of the related LR, Wald, and LM statistics. Due to the
boundary problem, these large-sample properties become nonstandard. The size and
power properties of the tests are investigated in a simulation study. As an empirical
illustration we test for (no) volatility spillovers between foreign exchange rates.
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1 Introduction

Testing for volatility spillovers between time series has become an important tool in empir-
ical finance. Following the simple arguments of Ross (1989) that the (conditional) variance
of asset price changes is directly related to the rate of information flow, volatility spillovers
may be viewed as a way of measuring information transmissions in and between markets
and thereby their connectedness (Conrad and Weber, 2013). Typically, volatility spillovers
are defined in relation to multivariate conditional volatility models, such as multivariate
GARCH, for price changes. As an example, Conrad et al. (1991) applied bivariate GARCH
models to conclude that volatility surprises to large market value firms are important to the
future dynamics of the returns of smaller firms (but not conversely). Another example can
be found in Bali and Hovakimian (2009) who applied a similar technique to conclude that
there exist spillovers from option to equity markets. For other applications of multivariate
GARCH models for assessing spillovers we refer to Conrad and Weber (2013) and the ref-
erences therein. A multivariate GARCH model well suited for quantifying spillovers is the
extended constant conditional correlation (ECCC-) GARCH model of Jeantheau (1998),
considered in this paper. In the ECCC-GARCH model the matrices governing the ARCH
and GARCH dynamics - respectively, the matrices A and B introduced in the following
section - are allowed to be nondiagonal, and with the off-diagonal elements directly related
to the volatility spillovers. Specifically, testing for no volatility spillovers relies on testing
for whether the off-diagonal elements of the matrices are equal to zero.

In this paper we consider the properties of the quasi-maximum likelihood estimator
(QMLE) for the parameters in the ECCC-GARCH model in the case where some of the
elements of the A and B matrices are allowed to be zero under the null. For the ECCC-
GARCH model, the parameter space is typically restricted such that all elements of A
and B are nonnegative, which is assumed in the existing literature on the large-sample
properties of the QMLE, as in Jeantheau (1998, Definition 3.1), Ling and McAleer (2003,
Assumption 3), and Francq and Zakoïan (2012, p.183). The constraints are convenient as
they (partly) ensure that the conditional covariance matrix is positive definite, and hence
that the log-likelihood function is well-defined. However, as will be the main message
from this present paper, the constraints lead to complications if one wants to test for no
spillovers, and in particular one cannot rely on standard large-sample theory for QML
estimation. Technically, the parameter is on the boundary of the parameter space under
the null hypothesis of no spillovers. This implies that the limiting distribution of the
QMLE cannot be obtained by relying on arguments based on a Taylor expansion around
a zero-valued score.

We make the following contributions. First, we consider the asymptotic properties
of the QMLE in the case where the true parameter value is on the boundary of the
parameter space. In contrast to the standard case where the parameter value is an interior
point, the (suitably normalized) QMLE does not have a Gaussian limit, but instead its
limiting distribution is the given by the projection of a Gaussian vector (that occurs in the
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interior case) onto a set that depends on the true parameter. Second, in order to avoid
boundary issues when testing for spillovers in the ECCC-GARCH model, Nakatani and
Teräsvirta (2009) proposed a Lagrange multiplier (LM) statistic. We consider a modified
version of this statistic, that is based on left/right partial derivatives of the log-likelihood
function with respect to the parameters on the boundary, and moreover the test is a QML-
type that allows for an unknown distribution of the (independent) innovations, see White
(1996, Chapter 8). We also consider quasi-likelihood ratio (QLR) and Wald tests both
taking into account that the true parameter is a boundary point. Whereas the limiting
distribution of the QMLE for univariate GARCH models when the true parameter is on
the boundary has been considered by Andrews (1998, 2001) and Francq and Zakoïan (2007,
2009), we are not aware of any other papers considering this for the QMLE for multivariate
GARCH models. Some early considerations on testing when the null vector is a boundary
point of the maintained hypothesis can be found in Chernoff (1954) and Perlman (1969),
whereas Andrews (1999, 2001) provides a very general theory for estimators when the null
parameter vector is a boundary point of the parameter space.

The rest of the paper is structured as follows. In Section 2 we introduce the ECCC-
GARCH model and state some important properties of ECCC-GARCH processes. More-
over, we introduce the notion of spillovers and their relation to Granger causality. Section
3 introduces the QMLE and states the large-sample properties of the estimator, whereas
the associated QLR, Wald, and LM tests (for no-spillovers) are presented in Section 4,
which also contains an algorithm for determining critical values for the proposed tests.
Section 5 contains simulation studies that investigate the empirical size and power proper-
ties of the proposed tests, whereas Section 6 is devoted to an empirical illustration where
we test for no volatility spillovers between assets in foreign exchange markets. Section 7
concludes the paper. All technical derivations can be found in the appendix.

Some notation and definitions: Unless stated otherwise all limits are taken as T →∞.
Let w→ denote convergence in distribution. For a random vector X, L(X) denotes the
distribution of X. For n ∈ N, In is the (n× n) identity matrix, and the zero matrix 0m×n
is an (m× n) matrix with all elements equal to zero. With ⊗ denoting the Kronecker
product and � the Hadamard product, we introduce for a matrix A the notation A⊗p ..=
A⊗A⊗· · ·⊗A and A�p ..= A�A�· · ·�A (p factors). The Euclidean norm of a vector or
matrix is denoted ‖ · ‖. Let R+ denote the nonnegative real numbers, and let Sd++ denote
the space of (d× d) positive definite matrices. For any C ∈ Sd++ and any (d× 1) vectors
x and y let 〈x, y〉C ..= x′Cy and ‖x‖C ..= 〈x, x〉1/2C . Moreover, for Θ ⊂ Rd and θ ∈ Θ,
Θ− θ ..= {x− θ : x ∈ Θ}.

2 The ECCC-GARCH model and its properties

In this section we introduce the ECCC-GARCH model, state some important properties
of the ECCC-GARCH process, and introduce the notion of volatility spillovers and its
relation to Granger (non)causality.
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2.1 The model

We consider the ECCC-GARCH(1, 1) model of Jeantheau (1998) for t ∈ Z given by

Xt(θ) = Σ1/2
t (θ)ηt, (2.1)

Σt(θ) = D̃t(θ)R(θ)D̃t(θ), (2.2)

D̃2
t (θ) = diag[σ2

t (θ)], (2.3)

σ2
t (θ) = κ+AX�2

t−1(θ) +Bσ2
t−1(θ), (2.4)

with (ηt : t ∈ Z) an i.i.d. sequence of d-dimensional random variables with E[ηt] = 0d×1

and E[ηtη′t] = Id. Moreover, diag[σ2
t (θ)] is a diagonal matrix with the (d × 1) vector

σ2
t (θ) on the diagonal, R(θ) is a positive definite correlation matrix, and Σ1/2

t (θ) denotes
the square-root of Σt(θ) in the Choleski sense. The model is parametrized according
to θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′, where vech0(R) stacks the columns below the
principal diagonal downwards of R. The parameter space, Θ, is given by a subset of
(0,∞)d × [0,∞)2d2 × (−1, 1)d(d−1)/2 ⊂ Rs0 with s0 ..= d+ 2d2 + (d(d− 1)/2. Observe that
the parameter space is defined such that the elements of A and B are nonnegative. This
condition, together with the restriction κ ∈ (0,∞)d, ensures that σ2

t (θc) ∈ (0,∞)d almost
surely, which, combined with the fact that R(θ) ∈ Sd++, implies that Σt(θ) ∈ Sd++ almost
surely for all θ ∈ Θ.

Remark 2.1. When the matrices A and B are restricted to be diagonal, the ECCC-GARCH
model simplifies to the CCC-GARCH model proposed by Bollerslev (1990).

2.2 Properties of the ECCC-GARCH process

For a fixed θ ∈ Θ, equations (2.1)-(2.4) yield an ECCC-GARCH process (Xt : t ∈ Z).
The properties of such a process have been studied several places in the literature, in-
cluding Jeantheau (1998), Boussama (1998, Chapter 5), Ling and McAleer (2003), He
and Teräsvirta (2004), and Francq and Zakoïan (2010, Chapter 11). Importantly, by
Francq and Zakoïan (2010, Theorem 11.6), under suitable conditions, it holds that the
process has a unique strictly stationary and ergodic solution if and only if γ ..= inf{E[(n+
1)−1 log(‖Ξ0Ξ−1 · · ·Ξ−n‖)] : n ∈ N} < 0, where Ξt ..= {A diag[(R1/2ηt)�2] + B}. Here
γ is the so-called top Lyapunov exponent of the sequence (Ξt : t ∈ Z). Notice that an
ECCC-GARCH process satisfying this strict stationarity condition may not have any fi-
nite (high-order) moments. In Section 3 it will be assumed that Xt has finite sixth-order
moments when the asymptotic distribution of the QMLE is derived, and hence it is useful
to have conditions on the distribution of ηt and θ ensuring these moment restrictions.
Such conditions can be found in Lemmas B.7 and B.8 in Appendix B containing novel
results for the ECCC-GARCH process. Specifically, from Lemma B.7 if for some p ∈ N it
holds that ηt has a strictly positive density on Rd with E[‖(η�2

t )⊗p‖] <∞, if the diagonal
elements of A0 are strictly positive, and if ρ(E[(Ξt)⊗p]) < 1, with ρ(·) denoting the spectral
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radius, then (Xt : t ∈ Z) is geometrically β-mixing with E[‖(X�2
t )⊗p‖] < ∞. Moreover,

from Lemma B.8, E[‖(X�2
t )⊗p‖] <∞ implies that ρ(E[(Ξt)⊗p]) < 1.

2.3 Volatility spillovers and Granger noncausality

The main objective of this paper is to consider tests concerning spillovers in ECCC-
GARCH processes. As clarified below, volatility spillovers (or interactions) are quantified
by the off-diagonal elements of the matrices A and B, and thereby testing for spillovers
relies on testing if certain of the off-diagonal elements of A and B are equal to zero.

Consider, as an example, the bivariate process with Xt
..= (Xt,1, Xt,2)′ and

ht =
(
ht,1

ht,2

)
=
(
κ1 +A11X

2
t−1,1 +A12X

2
t−1,2 +B11ht−1,1 +B12ht−1,2

κ2 +A21X
2
t−1,1 +A22X

2
t−1,2 +B21ht−1,1 +B22ht−1,2

)
.

Here the coefficients A12 and A21 quantify the effects of the past squared shocks X2
t−1,2

and X2
t−1,1 on the conditional variances ht,1 and ht,2, respectively. These effects are often

referred to as the ARCH spillovers, see e.g. Conrad and Weber (2013). Likewise, the
coefficients B12 and B21 measure the GARCH spillovers from the conditional variances
ht−1,2 and ht−1,1 to ht,1 and ht,2, respectively.

Remark 2.2. As discussed in Conrad and Karanasos (2010) and Nakatani and Teräsvirta
(2008), when considering the ECCC-GARCHmodel one may allow some of the off-diagonal
elements of A and B to be negative, and thereby introduce the notion of negative volatility
spillovers, see also Section 2.3. To our knowledge the large-sample behavior of the QMLE
is unknown when allowing for such negative parameter values, and we do not allow for
such (milder) parameter restrictions in this paper.

Intuitively, the spillovers characterize some of the dependence between Xt,1 and Xt,2,
and, as explained next, the spillovers are closely related to Granger causality. With FXt ..=
σ(Xs : s ≤ t) and FX1

t
..= σ(Xs,1 : s ≤ t), we consider the following notion of second-order

Granger noncausality, introduced by Granger et al. (1986): Xt,2 is said not to second-order
Granger cause Xt,1 (with respect to FXt−1) if

E{(Xt,1 − E[Xt,1|FXt−1])2|FXt−1} − E{(Xt,1 − E[Xt,1|FXt−1])2|FX1
t−1} = 0 a.s. ∀t ∈ Z.

If the quantity on the left-hand side is nonzero (with strictly positive probability) then
Xt,2 is said to second-order Granger cause Xt,1.

Suppose that (Xt : t ∈ Z) is strictly stationary, which implies that ρ(B) < 1 (Francq
and Zakoïan, 2010, pp.290-291), then

ht = (I2 −B)−1κ+
∞∑
i=0

(BiA)X�2
t−1−i.

It holds that E[Xt,1|FXt−1] = 0 a.s., so that E{(Xt,1 − E[Xt,1|FXt−1])2|FXt−1} = ht,1 a.s.
Hence, in light of the above definition, Xt,2 does not second-order Granger cause Xt,1 if
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ht,1 = E[ht,1|FX1
t−1] a.s. which is the case if B12 = A12 = 0. These restrictions on the

matrices A and B thereby yield a sufficient condition for Xt,2 not to second-order Granger
cause Xt,1. Likewise, Xt,1 does not second-order Granger cause Xt,2 if B21 = A21 = 0, and
we have that there is no second-order causation in the process if A and B are diagonal.
Notice that the above definition of Granger causality differs from, and is simpler than, the
original notion of Granger causality stated in terms of the conditional distribution of Xt,1,
see e.g. Granger (1969) and Engle et al. (1983). However, for practical purposes the above
definition is much more operational, as discussed in e.g. Granger (1980, Section 3). We
refer to Comte and Lieberman (2000), Hafner and Herwartz (2008), and Woźniak (2015)
for additional considerations about Granger causality in multivariate GARCH processes.

3 Estimation and large-sample properties of the QMLE

In the following we consider large-sample inference in the ECCC-GARCH model where we
allow elements of A and B to be equal to zero. Throughout the remainder of the paper, let
∂f(θ)/∂θ denote the vector of left/right partial derivatives of the function f : Θ→ R with
respect to the vector θ, and let ∂2f(θ)/∂θ∂θ′ denote the matrix of left/right second-order
partial derivatives as defined in Andrews (1999, pp.1350-1351).

Given a realization (Xt : t = 0, 1, ..., T ) of the ECCC-GARCH model, the QMLE, θ̂T ,
of θ is defined as

θ̂T = arg inf
θ∈Θ

L̂T (θ) ,

with the feasible log-likelihood function, L̂T (θ), given by

L̂T (θ) ..= 1
T

T∑
t=1

l̂t (θ) , (3.1)

l̂t (θ) ..= log
{

det
[
Ĥt (θ)

]}
+X ′tĤ

−1
t (θ)Xt, (3.2)

Ĥt (θ) ..= D̂t(θ)R(θ)D̂t(θ),

D̂2
t (θ) ..= diag

[
ĥt(θ)

]
, (3.3)

ĥt(θ) ..= κ+AX�2
t−1 +Bĥt−1(θ), (3.4)

with ĥ0(θ) = ĥ0 ∈ (0,∞)d fixed. Next, we consider the asymptotic properties of the
QMLE.

For the probability analysis of the QMLE we let θ0 denote the true parameter vector
such that Xt

..= Xt(θ0). The derivation of the limiting distribution of the QMLE relies on
the following assumptions.

Assumption 1. θ0 ∈ Θ and Θ is compact.

Assumption 2. The sequence (Xt : t ∈ Z) is strictly stationary and ergodic.

Assumption 3. For all θ ∈ Θ, ρ (B) < 1 and R is a positive definite correlation matrix.
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In light of Assumption 2, consider the (infeasible) ergodic version of the log-likelihood
function, i.e. for the strictly stationary and ergodic sequence (Xt : t ∈ Z) we define for
t ∈ Z and θ ∈ Θ,

LT (θ) ..= 1
T

T∑
t=1

lt (θ)

lt (θ) ..= log [det (Ht (θ))] +X ′tH
−1
t (θ)Xt (3.5)

Ht (θ) ..= Dt(θ)R(θ)Dt(θ)

D2
t (θ) ..= diag (ht(θ)) (3.6)

ht(θ) ..= κ+AX�2
t−1 +Bht−1(θ). (3.7)

Assumption 4. For θ ∈ Θ, {ht (θ) = ht(θ0) a.s. and R = R0} implies that θ = θ0.

Remark 3.1. Assumption 4 is a high-level identification condition. Primitive conditions
are discussed in e.g. Jeantheau (1998), Ling and McAleer (2003), and Francq and Zakoïan
(2010, 2012). In particular, for the simulation study in Section 5, all data generating
processes can be shown to be minimal in the sense of Jeantheau (1998, Definition 3.3)
which (under some additional mild regularity conditions) ensures identification.

Remark 3.2. The above assumptions are standard and imply that θ̂T = θ0 + o(1) almost
surely. If one additionally assumes that θ0 ∈

◦
Θ, i.e. θ0 is an interior point of Θ, and that

ηt has finite fourth moments, then
√
T (θ̂T − θ0) has a Gaussian limit with zero mean and

covariance J−1ΣJ−1 with J and Σ given in (3.13) below. Both results are established in
Francq and Zakoïan (2012).

As mentioned, we are interested in the case where some of the elements of A0 and
B0 are equal to zero, implying that θ0 is not an interior point of Θ. Let β denote the
(s1 × 1) vector containing the s1 ≥ 0 elements of A and B that take value zero under the
null, i.e. with true parameter value equal to zero, and let δ denote the (s2 × 1) vector
of the remaining s2 ..= (s0 − s1) parameters of θ. Without loss of generality we consider
throughout the remainder of the paper a reparametrized version of the ECCC-GARCH
model such that

θ
(s0×1)

=

 β
(s1×1)

δ
(s2×1)

 , (3.8)

and with Θ defined accordingly. Notice that for the case where s1 = 0, we have that θ = δ.
We also consider accordingly a partition of the true parameter value θ0 = (β′0, δ′0)′, and
by definition β0 = 0s1×1. For the case s1 > 0, with the QMLE θ̂T = (β̂′T , δ̂′T )′, it holds
that

√
T (β̂T − β0) =

√
T β̂T ∈ [0,∞)s1 which cannot have a Gaussian limit. Hence the

theory for the QMLE for the case where θ0 is an interior point, as described in Remark
3.2, is no longer applicable. We deal with the boundary problem by making two additional
Assumptions 5 and 6.

First, we make the following assumption about θ0 and Θ.
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Assumption 5. The set Θ − θ0 is locally equal to Λ ..= Λβ × Λδ = Rs1+ × Rs2, i.e. there
exists an ε > 0 such that Λ ∩ C(0, ε) = Θ ∩ C(0, ε), where C(x, ε) ⊂ Rd denotes an open
cube centered at x ∈ Rd and with side length 2ε.

Remark 3.3. Assumption 5 is essentially a special case of Assumption 22∗ in Andrews
(1999, 2001) and has several purposes. First, it prevents the true parameter value δ0

from reaching the bounds of Θ, which keeps things as simple as possible, as our main
interest is to consider hypotheses where elements of β are equal to zero (i.e. take value
at the lower bound of Θ). Second, this assumption allows us to make a Taylor-type
expansion based on left/right partial derivatives of the log-likelihood function around θ0,
see Andrews (1999, Appendix A) for details. Moreover, the assumption is important for
approximating the quantity

√
T (θ̂T − θ0), see specifically the proof of Theorem 3.1 in

the appendix. Although the assumption imposes additional structure on the parameter
space it is compatible with the parameter restrictions given in Assumption 3. As in
Francq and Zakoïan (2007), let θ0(ε) be defined as the vector obtained by replacing all
zero elements of θ0 by ε > 0. For some sufficiently small ε, θ0(ε) belongs to the interior
of Θ. Consider the case where B0 is diagonal. Provided that Assumptions 1 and 3 hold,
ρ(B0) < 1. For a real m×m matrix with nonnegative entries, it holds that C = [Cij ] ≥ 0,
ρ(C) ≤ min

{
maxi=1,...,m

∑m
j=1Cij ,maxj=1,...,m

∑m
i=1Cij

}
. Hence for a sufficiently small

ε > 0, ρ(B0ε) < 1, where B0ε is B evaluated at θ0(ε).
Another example is the bivariate case where

B0 =
(
B11,0 0
B21,0 B22,0

)
,

and B11,0 and B22,0 are strictly positive. Here the eigenvalues of B0ε are

1
2(B11,0 +B22,0)± 1

2

√
(B11,0 −B22,0)2 + 4B21,0ε.

Since ρ(B0) < 1 we know that B11,0 and B22,0 are strictly less than one, so for a sufficiently
small ε > 0, ρ(B0ε) < 1.

Second, deriving the asymptotic distribution of
√
T (θ̂T −θ0) typically relies on, among

other things, verifying a condition such as

E
[
sup
θ∈Θ

∣∣∣∣∣∂2lt (θ)
∂θi∂θj

∣∣∣∣∣
]
<∞ (3.9)

or, given that θ0 ∈
◦
Θ, i.e. θ0 is an interior point,

E
[

sup
θ∈V(θ0)

∣∣∣∣∣ ∂3lt (θ)
∂θi∂θj∂θk

∣∣∣∣∣
]
<∞

for all i, j, k = 1, ..., s0 and for some neighborhood V(θ0) around θ0. With ht,i1 (θ) denoting
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element i1 of ht(θ), the latter condition it usually verified by showing that

E

 sup
θ∈V(θ0)

∣∣∣∣∣ 1
ht,i1 (θ)

∂ht,i1 (θ)
∂θi

∣∣∣∣∣
3
 <∞ (3.10)

for all i1 = 1, .., d and all i = 1, ..., s0, and a similar property with ∂ht,i1 (θ) /∂θi replaced
with ∂2ht,i1 (θ) /∂θi∂θj and ∂3ht,i1 (θ) /∂θi∂θj∂θk. Consider, for simplicity, the case with
B = 02×2 on Θ, i.e. with no GARCH effects. Then

ht(θ) =
(
ht,1(θ)
ht,2(θ)

)
=
(
κ1 +A11X

2
t−1,1 +A12X

2
t−1,2

κ2 +A21X
2
t−1,1 +A22X

2
t−1,2

)
,

and hence
1

ht,1 (θ)
∂ht,1 (θ)
∂A12

=
X2
t−1,2

κ1 +A11X2
t−1,1 +A12X2

t−1,2
. (3.11)

For the case where θ0 ∈
◦
Θ, one can choose V(θ0) such that the elements of A are bounded

away from zero on V(θ0), see Francq and Zakoïan (2012, pp.199-202). This implies that
the fraction in (3.11) is bounded on V(θ0) by supθ∈V(θ0)A

−1
12 < ∞, and hence that any

moment of (3.11) is finite on V(θ0). However, such argument cannot be applied to bound
the moments of the derivatives of the log-likelihood function in the case where some of the
elements of A0 can take zero value. Suppose additionally that A0 is diagonal, then

1
ht,1(θ0)

∂ht,1(θ0)
∂A12

=
X2
t−1,2

κ1,0 +A11,0X2
t−1,1

,

which is not bounded by a constant. The asymptotic properties derived in this paper rely
on establishing condition (3.9), which is done by imposing the condition that E[‖Xt‖6] <
∞, similar to Francq and Zakoïan (2007, Assumption A7).

Assumption 6. E[‖Xt‖6] <∞.

Remark 3.4. As mentioned in Subsection 2.2, Lemmas B.7-B.8 provide necessary and
sufficient conditions for Assumption 6 to hold.

We are now able to state the limiting distribution of the QMLE.

Theorem 3.1. Under Assumptions 1-6,

√
T (θ̂T − θ0) w→ λΛ (3.12)

where λΛ = arg infλ∈Λ ‖Z − λ‖2J , with ‖Z − λ‖2J ..= (Z − λ)′J(Z − λ), and where Λ is
defined in Assumption 5, Z is a random vector with distribution L(Z) = N(0, J−1ΣJ−1),
and

J ..= E[∂2lt(θ0)/∂θ∂θ′] ∈ Ss0++, Σ ..= E[(∂lt(θ0)/∂θ)(∂lt(θ0)/∂θ′)]. (3.13)

The theorem states that the limiting distribution of the normalized QMLE is given by
λΛ which by definition is the projection of the N(0, J−1ΣJ−1)-distributed Z onto the set
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Λ with respect to the metric induced by the inner product 〈·, ·〉J , where we recall that for
x, y ∈ Rs0 , 〈x, y〉J = x′Jy. Since Λ is convex according to Assumption 5, it holds that
λΛ is unique. In the case where θ0 is not a boundary point, s1 = 0, such that Λ = Rs0

and the limiting distribution of
√
T (θ̂T − θ0) is Z, as mentioned in Remark 3.2. Notice

that the matrices J and Σ are stated in terms of left/right-derivatives, as discussed in
Andrews (1999, Appendix A). Moreover, Andrews (1999, pp.1367-1370) provides closed-
form expressions for λΛ, and gives an outline of how to make draws of the distribution of
λΛ based on numerical methods. The next section is devoted to testing hypotheses about
the parameters in A and B.

4 Testing

In this section we introduce Lagrange multiplier, Wald, and likelihood ratio statistics
suitable for testing hypotheses about the matrices A and B. In particular, these tests allow
us to test for volatility and second-order Granger noncausality, as discussed in Subsection
2.3. Subsection 4.1 states the test statistics and their limiting distributions. In Subsection
4.2 we provide an algorithm for determining critical values for the proposed tests.

4.1 Test statistics

We consider testing hypotheses where some of the parameters in the matrices A and B

take zero value. With β defined according to the partition of θ in (3.8), we consider the
partition of β given by

β
(s1×1)

=


β1

(s̃1×1)

β2
(s̃2×1)

 (4.1)

for some s̃1 ≤ s1 and s̃2 ..= s1 − s̃1. Notice that, by convention, β = β1 when s̃1 = s1. We
are interested in testing whether β1 takes value zero, i.e. in terms of the true parameter
value θ0 = (β′0, δ′0)′ = (β′1,0, β′2,0, δ′0)′, we want to test the hypothesis

H0 : β1,0 = 0s̃1×1.

We test H0 against the alternative β1,0 6= 0s̃1×1 and with the maintained hypothesis that
θ0 ∈ Θ. Notice that under H0 it might be that some of the remaining parameters of A
and B are equal to zero, which is the case when s̃2 = s1− s̃1 > 0, and we may consider β2

as nuisance parameters attaining the zero bound of Θ under H0.
With L̂T (θ) the feasible log-likelihood function defined in (3.1), let θ̃T be the con-

strained estimator given by

θ̃T = arg inf
θ∈Θ0

L̂T (θ) , with Θ0 ..= {θ = (β′1, β′2, δ′)′ ∈ Θ : β1 = 0s̃1×1}. (4.2)

We propose three statistics for testing H0. The first statistic is a quasi-likelihood ratio

10



(QLR) statistic,
QLRT ..= 2T [L̂T (θ̃T )− L̂T (θ̂T )].

Next, let

ĴT (θ) ..= 1
T

T∑
t=1

∂2 l̂t (θ)
∂θ∂θ′

, Σ̂T (θ) ..= 1
T

T∑
t=1

∂l̂t (θ)
∂θ

∂l̂t (θ)
∂θ′

, ŜT (θ) ..= 1
T

T∑
t=1

∂l̂t (θ)
∂θ

. (4.3)

Moreover, with s0 the dimension of the parameter vector θ, s1 the dimension β given in
(3.8), and s̃1 the dimension of the vector β1 defined in (4.1), let

K ..= (Is1 , 0s1×(s0−s1)) and K1 ..= (Is̃1 , 0s̃1×(s0−s̃1)). (4.4)

The second statistic is the Wald statistic,

WT
..= T θ̂′TK

′
1[K1ĴT (θ̂T )−1K ′1]−1K1θ̂T ,

and the last statistic is a Lagrange multiplier (LM) statistic,

LMT
..= T ŜT (θ̃T )′ĴT (θ̃T )−1K ′1[K1ĴT (θ̃T )−1Σ̂T (θ̃T )ĴT (θ̃T )−1K ′1]−1K1ĴT (θ̃T )−1ŜT (θ̃T ).

Remark 4.1. In addition to the QLRT andWT statistics, one could also consider a directed
Lagrange multiplier statistic, that exploits that the true parameter is on the boundary
under the null, similar to Andrews (2001, Section 7). We focus here on the first two
statistics together with the “classical” Lagrange multiplier statistic, LMT , that, although
it is based on partial left/right derivatives, does not take any boundary issues into account.

In order to derive the limiting distribution of these statistics, we assume, similar to
Assumption 3, that θ0 and Θ0 satisfy the following conditions.

Assumption 7. θ0 ∈ Θ0 and Θ0 − θ0 is locally equal to Λ0 ..= Λ0,β1 × Λβ2 × Λδ =
{0s̃1×1} × Rs̃2+ × Rs2.

Similar to λΛ defined in Theorem 3.1, we consider λΛ0 as the projection of random
vector Z with distribution N(0, J−1ΣJ−1) onto Λ0, i.e.

λΛ0 = (λΛ0′
β , λΛ0′

δ )′ ∈ Λ0 satisfies λΛ0 = arg inf
λ∈Λ0

‖Z − λ‖2J . (4.5)

The following theorem states the limiting distributions of the proposed test statistics.

Theorem 4.1. Let the matrices K and K1 be given by (4.4), and let J be given by (3.13).
Under Assumptions 1-7 and H0,

QLRT
w→ ‖λΛ

β‖2(KJ−1K′)−1 − ‖λΛ0
β ‖

2
(KJ−1K′)−1 , (4.6)

where λΛ = (λΛ′
β , λ

Λ′
δ )′ = (λΛ′

β1
, λΛ′

β2
, λΛ′

δ )′ is defined in Theorem 3.1, and λΛ0
β is defined in

11



(4.5).
Moreover,

WT
w→ ‖λΛ

β1‖
2
(K1J−1K′1)−1 . (4.7)

Suppose in addition that Σ, defined in (3.13), is positive definite. Then

LMT
w→ χ2

s̃1 , (4.8)

where χ2
s̃1 is a chi-squared random variable with s̃1 degrees of freedom, with s̃1 the dimen-

sion of β1.

Remark 4.2. Theorem 4.1 states that the limiting distribution of the QLRT depends on
the minimizer of the quadratic form ‖Z − λ‖2J over Λ and Λ0, respectively. From Lemma
B.6 it holds that infλ∈Λ ‖Z − λ‖2J = infλβ∈Λβ1×Λβ2

‖Zβ − λβ‖2(KJ−1K′)−1 , and by similar
arguments infλ∈Λ0 ‖Z−λ‖2J = infλβ∈{0s̃1×1}×Λβ2

‖Zβ−λβ‖2(KJ−1K′)−1 , where Zβ is defined
from the partition Z = (Z ′β, Z ′δ)′. Thereby the limiting distribution of QLRT depends in
general on the cone Λβ2 , i.e. whether there are nuisance parameters (in A0 and B0) taking
zero value. A similar observation applies to WT , as λΛ

β1
is a part of λΛ and hence requires

knowledge about the shape of Λ. This issue appears to be an important topic within the
field of testing on the boundary. We refer to Ketz (2014) for some recent considerations
regarding hypothesis tests regarding a single parameter at the boundary with nuisance
parameters potentially taking values on the boundary of the parameter space.

Remark 4.3. Unlike the QLRT and WT statistics, the limiting distribution of the LMT

statistic is pivotal and does not depend on nuisance parameters.

Remark 4.4. In the case where (KJ−1K ′)−1 is block diagonal, i.e. K2(KJ−1K ′)−1K̄ ′2 =
0s̃1×s̃2 where K2 ..= (Is̃1 , 0s̃1×s̃2) and K̄2 ..= (0s̃2×s̃1 , Is̃2), it can be shown (by applying the
arguments from Remark 4.2 and the proof of Lemma B.6) that, with Zβ = (Z ′β1

, Z ′β2
)′,

inf
λβ∈Λβ1×Λβ2

‖Zβ − λβ‖2(KJ−1K′)−1 = inf
λβ1∈Λβ1

‖Zβ1 − λβ1‖2K2(KJ−1K′)−1K′2

+ inf
λβ2∈Λβ2

‖Zβ2 − λβ2‖2K̄2(KJ−1K′)−1K̄′2
.

This implies that the limiting distributions of WT and QLRT do not depend on Λ2 and
thereby not on whether the nuisance parameters take zero value. In particular we have
that

QLRT
w→ ‖λΛβ1‖2K2(KJ−1K′)−1K′2

,

with λΛβ1 = arg infλβ1∈Λβ1
‖Zβ1 − λβ1‖2K2(KJ−1K′)−1K′2

. Moreover, for this case the limit-
ing distribution of WT is given by ‖λΛβ1‖2(K1J−1K′1)−1 . Notice that the block diagonality
property of (KJ−1K ′)−1 does not appear to hold in general.

The following corollary is immediate from Theorem 4.1 and states that the limiting
distributions of QLRT and WT are the same in the case where there are no nuisance
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parameters (in A and B) taking zero value.

Corollary 4.1. Under the same assumptions as in Theorem 4.1, suppose that s̃1 = s1

such that β1,0 = β0 = 0s1×1, i.e there are no nuisance parameters on the lower bound of
Θ. Then the limiting distributions of QLRT and WT are both given by ‖λΛ

β‖2(KJ−1K′)−1.

Remark 4.5. In the context of testing for diagonality of A0 and B0, and under the assump-
tion that the innovations are Gaussian, i.e. L(ηt) = N(0, Id), Nakatani and Teräsvirta
(2009) propose the LM statistic,

LMECCC = 1
2T ŜT (θ̃T )′K ′1[K1ĴT (θ̃T )−1K ′1]K1ŜT (θ̃T ).

Similar to our assumption about the parameter space Θ, Nakatani and Teräsvirta (2009)
derive the limiting distribution of this statistic under the assumptions that the elements of
A and B are nonnegative (Nakatani and Teräsvirta, 2009, footnote on p.149). Moreover,
they assume that the true parameter vector is an interior point of the parameter space
(Nakatani and Teräsvirta, 2009, Assumption 3.1). In Proposition C.1 in the appendix we
state the limiting distribution of the LMECCC statistic under the same assumptions as in
Theorem 4.1. Specifically, provided that L(ηt) = N(0, Id), and that s̃1 = s1, the LMECCC

statistic has an asymptotic χ2
s̃1 distribution. In the more general cases where s1 − s̃1 > 0,

i.e. with nuisance parameters attaining the zero bound of Θ, and where ηt may not be
Gaussian, the limiting distribution will not be χ2

s̃1 , as also stated in Proposition C.1.

In the next section we provide an algorithm for calculating critical values for the
proposed tests for the case with no nuisance parameters in A and B taking zero value.

4.2 Calculating critical values

Following Andrews (1999, pp.1367-1370), we can obtain draws from the limiting distribu-
tion of the WT and QLRT statistics according to the following algorithm.1

Algorithm 1. Let J̄T and Σ̄T be consistent estimators for, respectively, the matrices J
and Σ stated in (3.13). Suppose that s̃1 = s1, i.e. there are no nuisance parameters (in A
and B) taking zero value, such that Corollary 4.1 applies. A critical value c for WT and
QLRT yielding a test with asymptotic size α can be obtained as follows:

1. Draw ε? randomly from N(0, Is1) and compute Z?β = [KJ̄−1
T Σ̄T J̄

−1
T K ′]1/2ε?.

2. Find λ̃?β that minimizes ‖Z?β − λβ‖2(KJ̄−1
T K′)−1 = (Z?β − λβ)′(KJ̄−1

T K ′)−1(Z?β − λβ)
over λβ ∈ Λβ = Rs1+ , and compute ‖λ̃?β‖2(KJ̄−1

T K′)−1.

3. Repeat steps 1.-2. N times (with N very large), and let {xi : i = 1, ..., N} denote
the sequence of the N independent draws of ‖λ̃?β‖2(KJ̄−1

T K′)−1. Then c is given by the
(1− α) percentile of {xi : i = 1, ..., N}.

1We here use Lemma B.6 stating that λΛ
β is equal to λΛβ , λΛβ = arg infλβ∈Λβ

‖Zβ − λβ‖2(KJ−1K′)−1 ,
where Λβ = Rs1

+ .
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Remark 4.6. The minimization problem in point 2. of Algorithm 1 is a quadratic program-
ming problem. Most programming languages have a build-in function that can deal with
such problems, and for a fairly small amount of restrictions, i.e. for small s1, the minimiza-
tion is solved quickly. For the simulations and the empirical illustration in the following
sections, the minimization problem is carried out by the solveQP function in OxMetrics
7.0. An alternative way of making draws of λΛ

β , and hence drawing from the distribution
of ‖λΛ

β‖2(KJ−1K′)−1 , is given by Andrews (1999, Section 6.3) where a closed-form expression
for λΛ

β is provided. Moreover, throughout the simulations and the empirical illustration,
we use ĴT (θ̂T ) and Σ̂T (θ̂T ) as estimators for J and Σ, respectively, where θ̂T is the QMLE
and ĴT (θ) and Σ̂T (θ) are defined in (4.3). These estimators are consistent according to
Lemma B.1.

5 Simulations

In this section we investigate the empirical size and power properties of the proposed test
statistics.

5.1 Size simulations

We consider the size properties of the proposed test statistics, including the LMECCC

mentioned in Remark 4.5, for the bivariate ECCC-GARCH model. Specifically, we con-
sider tests where the matrices A and B are diagonal under the null. In order to keep
things simple we consider cases where no nuisance parameters in A and B take zero value.
We consider the data-generating processes (DGPs) stated in Table 1, where DGP 1-3 cor-
respond to DGP 1,2, and 4 in Nakatani and Teräsvirta (2009), respectively. Recall from
Theorem 3.1 that we imposed finite sixth-order moments of Xt (Assumption 6) in order to
derive the limiting distribution of the QMLE. For all the DGPs we impose, for simplicity,
that the innovation ηt is Gaussian. This condition implies that ηt has a strictly positive
density on Rd with E[‖ηt‖6] <∞, and hence from Lemmas B.7 and B.8, E[‖Xt‖6] <∞ if
and only if

Ψ6 ..= ρ(E{[A0 diag((R1/2
0 ηt)�2) +B0]⊗3}) < 1. (5.1)

Using Monte Carlo integration we have computed the value of Ψ6 for each DGP, as also
stated in Table 1. Whereas DGP 3-5 satisfy condition (5.1), DGP 1-2 do not. Although
our theoretical results are not expected to hold for DGP 1 and 2, we have included the
simulations results in order to compare with the results for the DGPs that do satisfy the
moment condition. Moreover, for all the DGPs for the empirical size and power simulations
it holds that the conditions in Jeantheau (1998, Definition 3.1.3 and Assumptions B1-B2)
are satisfied, which by Jeantheau (1998, Proposition 3.4) implies that the identification
condition in Assumption 4 holds. These above restrictions on the DGPs imply together
that Corollary 4.1 holds for the processes (up to the sixth-order moment condition of Xt

in the case of DGP 1-2).
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Table 1: DGPs for size simulations
DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

A0

[
0.1 0
0 0.2

] [
0.04 0

0 0.05

] [
0.1 0
0 0.2

] [
0.1 0
0 0.2

] [
0.07 0

0 0.08

]

B0

[
0.8 0
0 0.7

] [
0.95 0

0 0.9

] [
0.45 0

0 0.6

] [
0.70 0

0 0.75

] [
0.80 0

0 0.85

]
r0 0.3 0.9 0.9 0.9 0.9

Ψ6 1.223 1.337 0.387 0.944 0.953
For all DGPs κ0 = (0.1, 0.2)′ and L(ηt) = N(0, I2).

Table 2 contains the actual rejection frequencies of our proposed tests based on the
5% nominal level and on empirically relevant sample sizes of 1,000, 5,000, and 10,000
observations. All simulations are based on 2,000 replications with a burn-in period of 1,000
observations. The critical value of the QLRT and WT tests are carried out according to
Algorithm 1 and Remark 4.6. For each replication the critical value is based on 100,000
draws from ‖λΛ

β‖2(KJ−1K′)−1 . The critical values for the LMT and LMECCC are based on
a χ2

4-distribution, in line with Theorem 4.1 and Proposition C.1. We refer to Appendix D
for additional technical details about the simulations.

Table 2: Size simulations
T LMT WT QLRT LMECCC

DGP 1 1,000 0.0277 0.00877 0.0411 0.1886
5,000 0.0552 0.0326 0.0577 0.1068
10,000 0.0436 0.0276 0.0461 0.0657

DGP 2 1,000 0.0194 0.0187 0.0406 0.2710
5,000 0.0460 0.0490 0.0555 0.1090
10,000 0.0505 0.0545 0.0610 0.0790

DGP 3 1,000 0.0277 0.0164 0.0507 0.1638
5,000 0.0477 0.0271 0.0432 0.0974
10,000 0.0455 0.0345 0.0460 0.0760

DGP 4 1,000 0.0353 0.0243 0.0487 0.1764
5,000 0.0551 0.0406 0.0561 0.0966
10,000 0.0455 0.0360 0.0495 0.0680

DGP 5 1,000 0.0137 0.0180 0.0416 0.2270
5,000 0.0445 0.0310 0.0506 0.1036
10,000 0.0390 0.0365 0.0445 0.0685

Actual rejection frequencies based on the 5% nominal level.

From Table 2 we notice that LMT seems to be slightly under-sized for a sample size
of 1,000 observations, whereas the test seems to have very reasonable size properties for
larger sample sizes. The LMECCC test seems to be over-sized for sample sizes of 1,000
and 5,000 observations, but only slightly over-sized for 10,000 observations.2 Moreover,
the Wald test appears to be slightly conservative for most of the DGPs and in particular
for sample sizes of 1,000 observations. The quasi-likelihood ratio test has very reasonable

2The rejection frequencies for the LMECCC test reported in Nakatani and Teräsvirta (2009, Table 2)
seem more favorable than the ones reported in Table 2. A correspondence with Tomoaki Nakatani and
a careful inspection of the R code used to generate the results in Nakatani and Teräsvirta (2009) have,
unfortunately, not enabled us to detect the source of the difference.
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size properties for all sample sizes under consideration. Notice that even though the
DGPs 1 and 2 do not satisfy the moment condition in (5.1), and hence that our derived
theory is not expected to apply for these processes, the violation of the condition does not
seem to have any severe effect on the performance of the tests. Lastly, in similar studies
(not reported here) we investigated the size properties of the tests for the case of 50,000
observations, and when testing for the single restriction B12 = 0. These studies yielded
qualitatively the same conclusions as the simulations reported above.

5.2 Power simulations

Next, we consider the power properties of the proposed tests. The power simulations
are based on DGP 5 from the previous subsection, and we consider the data generating
processes, deviating from the null of diagonality of the matrices A0 and B0, stated in Table
3. The DGPs are inspired by the ones used in Nakatani and Teräsvirta (2009, Table 3).

Table 3: DGPs for power simulations
DGP 5.1 DGP 5.2 DGP 5.3 DGP 5.4

A0

[
0.07 0.001
0.004 0.08

] [
0.07 0.001
0.004 0.08

] [
0.07 0.01
0.02 0.08

] [
0.07 0.01
0.02 0.08

]

B0

[
0.80 0.004
0.002 0.85

] [
0.80 0.04
0.03 0.85

] [
0.80 0.004
0.002 0.85

] [
0.80 0.04
0.03 0.85

]
DGP 5.5 DGP 5.6 DGP 5.7 DGP 5.8

A0

[
0.07 0.001
0.004 0.08

] [
0.07 0.01
0.02 0.08

] [
0.07 0

0 0.08

] [
0.07 0

0 0.08

]

B0

[
0.80 0

0 0.85

] [
0.80 0

0 0.85

] [
0.80 0.004
0.002 0.85

] [
0.80 0.04
0.03 0.85

]
For all DGPs κ0 = (0.1, 0.2)′, r0 = 0.9 and L(ηt) = N(0, I2).

Table 4 states the rejection frequencies of the tests when the null is incorrect according
to the DGPs given in Table 4. The simulations are based on 2,000 replications, a burn-
in period of 1,000 observations, and the same seed values as the size simulations. The
reported powers are size corrected in the sense that the critical value for the tests (at the
5% nominal level) is chosen as the 95 percentile of the simulated test values from the size
simulations.

From Table 4 we see that the power of the tests is low whenever the off-diagonal
elements of A and B are all close to zero. In particular, even for a sample size of 10,000
observations the power is not impressive for any of the test statistics for the DGPs 5.1, 5.5
and 5.7. For all other DGPs the test statistics seem to have great power as T increases.
Moreover, the proposed Wald and likelihood ratio tests have better power properties than
the other tests for all choices of DGP and for all sample lengths.
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Table 4: Empirical power
DGP 5.1 DGP 5.2

T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .0493 .0898 .134 .0286 .254 .397 .619 .0654
5,000 .107 .278 .320 .0590 .983 .999 1.00 .954
10,000 .256 .514 .533 .173 1.00 1.00 1.00 1.00

DGP 5.3 DGP 5.4
T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .301 .484 .570 .0675 .639 .749 .895 .133
5,000 .971 .998 .997 .929 1.00 1.00 1.00 1.00
10,000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DGP 5.5 DGP 5.6
T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .0404 .0742 .0829 .0410 .288 .477 .522 .0675
5,000 .0605 .122 .130 .0520 .956 .995 .996 .891
10,000 .0875 .202 .198 .0730 1.00 1.00 1.00 .999

DGP 5.7 DGP 5.8
T LMT WT QLRT LMECCC LMT WT QLRT LMECCC

1,000 .0383 .0618 .0938 .0284 .206 .341 .542 .0704
5,000 .0665 .134 .174 .0465 .966 .996 .997 .911
10,000 .118 .266 .291 .0845 1.00 1.00 1.00 1.00

Actual rejection frequencies based on the size-corrected critical values at the 5% nominal level.

6 Empirical illustration

In this section we provide an empirical application of the proposed tests for volatility
spillovers. We apply the same data set as in Nakatani and Teräsvirta (2009) and investigate
the volatility spillovers between a pair of foreign exchange rates. The exchange rates are
daily noon buying rates of the Japanese yen (JPY) and the Swiss franc (CHF) against the
U.S. dollar (USD). The series go from 2 January 1975 to 2 December 2005, with a total
of 7,766 observations in each series. Descriptive statistics of the data series are contained
in Nakatani and Teräsvirta (2009, Tables 7 and 8).3

Table 5: Estimation results
Model κ A B r LMT WT QLRT LMECCC

CCC JPY 2.1 0.0513 0.9460 0.5416 8.87 52.57 76.21 40.23
CHF 7.8 0.0574 0.9285 (0.0645) (0.0285) (0.0097) (0.000)

ECCC JPY 1.2 0.0449 0.0037 0.9493 0.0000 0.5417
CHF 6.7 0.0000 0.0588 0.0080 0.9229

Point estimates of parameters in the restricted ECCC-GARCH model (CCC) and in the unrestricted
ECCC-GARCH model (ECCC). The estimates of the elements of κ are multiplied by 1,000. The p-values
of the LMT , WT , QLRT , and LMECCC test for diagonality of A and B are reported in parentheses. The
p-values for WT and QLRT are obtained according to Algorithm 1 and Remark 4.6 based on 1,000,000
draws. The p-values for LMT and LMECCC are based on a χ2

4-distribution.

We fit a bivariate ECCC-GARCH model to the return series and test whether the
matrices A and B are diagonal. The tests are based on the assumption that the diagonal
elements of A and B are strictly positive under the null, such that no nuisance parameters

3We have left out any empirical illustration containing the equity pairs investigated in Nakatani and
Teräsvirta (2009), as standard Box-Pierce tests revealed significant auto-correlation of order 5 for these
series, suggesting that a raw ECCC-GARCH model, i.e. with no VAR(MA) component, may not be
suitable for capturing the dynamics of these return series.
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take zero value. This enables us to determine the critical values of the tests according to Al-
gorithm 1 and Remark 4.6. For each individual series of the standardized residuals, based
on a Jarque-Bera test, we rejected the null of normality, suggesting that the LMECCC

test based on a χ2
4 limiting distribution, as performed in Nakatani and Teräsvirta (2009),

may not be appropriate for testing for no spillovers in the return series, as mentioned
in Remark 4.5. Table 5 contains the estimation results. First, we notice that the point
estimates of the off-diagonal elements of A and B are fairly small. Second, based on the
LMT statistic we fail to reject the null of no spillovers, whereas the null is rejected based
on the LMECCC test with the p-value based on a χ2

4-distribution. The latter is in line
with the findings in Nakatani and Teräsvirta (2009), but, as the standardized residuals, as
mentioned, did not appear to be normally distributed, the validity of the LMECCC test is
dubious. Based on the QLRT and WT tests, we reject the null of no spillovers. In light of
the very reasonable size properties and superior power properties of these tests compared
to LMT , we find evidence for volatility spillovers between the JPY/USD and CHF/USD
rates, in line with the findings in Nakatani and Teräsvirta (2009).

7 Concluding remarks and future research directions

We have considered the large-sample properties of the quasi-maximum likelihood estimator
(QMLE) for the extended constant conditional correlation GARCH model in the case
where the true parameter is on the boundary of the parameter space. This case is of great
importance in empirical finance where one is typically interested in testing for volatility
spillovers between assets and markets. In contrast to the “standard” case, where the
true parameter is an interior point, the limiting distribution is given by a projection of
a Gaussian vector onto a set determined by the true parameter vector. Moreover, we
proposed Lagrange multiplier (LM), Wald, and quasi-likelihood ratio statistics (QLR)
suitable for testing for volatility spillovers. Similar to the QMLE, the Wald and QLR
statistics do also have nonstandard limiting distributions, however, as we demonstrate,
these distributions are (under suitable conditions) straightforward to make draws from.

A simulation study showed that, in particular, the QLR test has very reasonable
empirical size properties. Moreover, simulations showed that the Wald and QLR tests
have superior empirical power properties compared to the LM test.

Lastly, in an empirical illustration the proposed tests were applied to returns on foreign
exchange rates. For the sample period from 2 January 1975 to 2 December 2005, based
on the Wald and QLR tests we rejected the null of no volatility spillovers between the
Japanese Yen/U.S. dollar and the Swiss Franc/U.S. dollar rates, in line with the findings
of Nakatani and Teräsvirta (2009).

An important topic for future research is to investigate the limiting distributions of the
proposed Wald and QLR statistics in more detail. Specifically, the limiting distributions
appear, in general, to depend on nuisance parameters taking zero value, hence it is of
particular interest to consider other tests, or corrections, that are pivotal to such boundary
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properties, as e.g. considered in recent work by Ketz (2014).
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A Proofs of theorems

Throughout the proofs let C and φ denote positive, finite generic constants always with
φ < 1. Moreover, all Taylor-type expansions are based on partial left/right derivatives
according to Andrews (1999, Appendix A), where all derivatives with respect to parameters
at the boundary of Θ are right derivatives. Furthermore, for the proofs of the theorems as
well as the lemmas stated in the next section, it will be convenient to consider the following
partitions. With J and Σ the matrices defined in (3.13) and G and Z the random vectors
given by L(G) = N(0,Σ) and Z = J−1G, define according to the partition θ = (β′, δ′)′

J =
[
Jββ Jβδ

Jδβ Jδδ

]
, G =

[
Gβ

Gδ

]
, and Z =

[
Zβ

Zδ

]
, (A.1)

where Jββ is (s1 × s1) and Gβ is (s1 × 1) and so forth.

Proof of Theorem 3.1. The asymptotic distribution of
√
T (θ̂T − θ0) is derived along

the lines of Andrews (1999, Proof of Theorem 3) and Francq and Zakoïan (2007, Proof
of Theorem 2). Initially, notice that θ̂T is strongly consistent for θ0, as mentioned in
Section 3. Moreover, Θ−θ0 is locally equal to a union of orthants, Λ, (Assumption 3) and
L̂T (θ) has continuous left/right partial derivative of order 2 on Θ. Due to Andrews (1999,
Theorem 6) we are able to make a second-order Taylor-type expansion of L̂T (θ) around
θ0 such that for any point θ ∈ Θ there exists a point θ? between θ and θ0

L̂T (θ) = L̂T (θ0) + ∂LT (θ0)
∂θ′

(θ − θ0) + 1
2(θ − θ0)′∂

2LT (θ0)
∂θ∂θ′

(θ − θ0) +RT (θ) +R?T (θ) ,

where

RT (θ) =
(
∂L̂T (θ0)
∂θ′

− ∂LT (θ0)
∂θ′

)
(θ − θ0) + 1

2(θ − θ0)′
[
∂2L̂T (θ0)
∂θ∂θ′

− ∂2LT (θ0)
∂θ∂θ′

]
(θ − θ0),

(A.2)
and

R?T (θ) = 1
2(θ − θ0)′

[
∂2L̂T (θ?)
∂θ∂θ′

− ∂2L̂T (θ0)
∂θ∂θ′

]
(θ − θ0). (A.3)

Moreover, with

JT ..= ∂2LT (θ0)
∂θ∂θ′

and
ZT ..= −J−1

T

√
T
∂LT (θ0)
∂θ

, (A.4)

we have, by definition, that

L̂T (θ) = L̂T (θ0)− 1
2T ‖ZT ‖

2
JT

+ 1
2T ‖ZT −

√
T (θ − θ0)‖2JT +RT (θ) +R?T (θ) . (A.5)

Notice that in the definition of ZT in (A.4) we have used that JT = J +o(1) almost surely
with J nonsingular, as proved below. So, technically, ZT might only exist almost surely
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for T sufficiently large. It suffices to establish the following points:

1.
√
T∂LT (θ0)/∂θ w→ G with L (G) = N (0,Σ) and JT = J + op(1), where the matrices

J ∈ Ss0++ and Σ are given by (3.13).

2.
√
T (θ̂T − θ0) = Op (1).

3. For any θ̄T ∈ Θ such that
√
T (θ̄T − θ0) = Op (1), R?T (θ̄T ) = op(T−1) and RT (θ̄T ) =

op(T−1).

4.
√
T (θ̂T − θ0) = λ̂T + op (1), where λ̂T ∈ cl (Λ) satisfies ‖ZT − λ̂T ‖2JT = infλ∈Λ‖ZT −

λ‖2JT with Λ defined in Assumption 5

5. λ̂T
w→ λΛ, where λΛ ∈ cl (Λ) satisfies ‖Z − λΛ‖2J = infλ∈Λ ‖Z − λ‖2J , Z ..= −J−1G.

First, it follows from Lemma B.3 that Σ is finite. Expressions for ∂lt(θ)/∂θi, i = 1, ..., s,
are given in the proof of Lemma B.4 below. As in Francq and Zakoïan (2012, p 200), by a
central limit theorem for strictly stationary and ergodic martingale difference sequences,
see e.g. Brown (1971),

√
T∂LT (θ0)/∂θ w→ G. Moreover, the ergodic theorem implies that

JT = J + o (1) almost surely. The positive definiteness of J is established in Francq and
Zakoïan (2012, pp.203-204), and we conclude that 1. holds.
From the derivation of 1. we have that ‖ · ‖JT is almost surely a norm for T sufficiently
large due to the fact that J is positive definite. With RT (θ) defined in (A.2), it follows by
Lemma B.5 that

RT (θ̂T ) = op(T−1/2‖θ̂T − θ0‖) + op(‖θ̂T − θ0‖2) = op(T−1/2‖θ̂T − θ0‖JT ) + op(‖θ̂T − θ0‖2JT ).
(A.6)

For sufficiently large T , by Lemma B.5, [∂2L̂T (θ?) /∂θ∂θ′−∂2L̂T (θ0)/∂θ∂θ′] = [∂2LT (θ?) /∂θ∂θ′−
∂2LT (θ0)/∂θ∂θ′] + op (1). Also by Lemma B.5, [∂2LT (θ?) /∂θ∂θ′ − ∂2LT (θ0)/∂θ∂θ′] =
E[∂2lt (θ?) /∂θ∂θ′] − E[∂2lt(θ0)/∂θ∂θ′] + op (1), so by the continuity of E[∂2lt (θ) /∂θ∂θ′]
on Θ and the consistency of θ̂T ,

R?T (θ̂T ) = op(‖θ̂T − θ0‖2JT ), (A.7)

with R?T (θ) defined in (A.3). Now from (A.5), (A.6)-(A.7), and the fact that θ̂T minimizes
L̂T (θ),

L̂T (θ̂T )− L̂T (θ0) = 1
2T [‖ZT −

√
T (θ̂T − θ0)‖2JT − ‖ZT ‖

2
JT

] +RT (θ̂T ) +R?T (θ̂T )

= 1
2T [‖ZT −

√
T (θ̂T − θ0)‖2JT − ‖ZT ‖

2
JT

]

+op(‖θ̂T − θ0‖2JT ) + op(T−1/2‖θ̂T − θ0‖JT ) ≤ 0. (A.8)

Since ‖ · ‖JT is a norm for T sufficiently large almost surely, it follows from 1. that
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‖ZT ‖JT = Op (1). This fact together with (A.8) yields

‖ZT −
√
T (θ̂T − θ0)‖2JT ≤ ‖ZT ‖2JT + op(‖

√
T (θ̂T − θ0)‖2JT ) + op(

√
T‖θ̂T − θ0‖JT )

≤ (‖ZT ‖JT + op(
√
T‖θ̂T − θ0‖JT ))2. (A.9)

The triangle inequality and (A.9) imply that

√
T‖θ̂T − θ0‖JT ≤ ‖ZT −

√
T (θ̂T − θ0)‖JT + ‖ZT ‖JT

≤ 2‖ZT ‖JT + op(
√
T‖θ̂T − θ0‖JT ).

We conclude that
√
T‖θ̂T − θ0‖JT [1 + op (1)] ≤ Op (1) , and hence that 2. holds.

Result 3. is verified by arguments similar to the ones used to verify 2. together with
Lemma B.5.
Turning to 4., notice that when s1 = 0, i.e. when θ0 ∈ Θ, it holds that λ̂T = ZT , and
the result follows immediately by the consistency of θ̂T and Lemma B.5. Let θ̂q satisfy
‖ZT −

√
T (θ̂q − θ0)‖2JT = infθ∈Θ ‖ZT −

√
T (θ − θ0)‖2JT . It holds that

‖
√
T (θ̂q − θ0)‖JT ≤ ‖ZT −

√
T (θ̂q − θ0)‖JT + ‖ZT ‖JT

= inf
θ∈Θ
‖ZT −

√
T (θ − θ0)‖JT + ‖ZT ‖JT

≤ 2‖ZT ‖JT = Op (1) ,

where the first inequality is due to the triangle inequality, the second inequality follows
from the fact that θ0 ∈ Θ, and the last equality follows from 1. Similar to the derivations
above, we conclude that

√
T (θ̂q − θ0) = Op (1). From (A.5), using that θ̂T minimizes

L̂T (θ) , and that θ̂q minimizes ‖ZT −
√
T (θ − θ0)‖2JT , together with results 2. and 3., we

have that

0 ≥ T [L̂T (θ̂T )− L̂T (θ̂q)]

= 1
2‖ZT −

√
T (θ̂T − θ0)‖2JT −

1
2‖ZT −

√
T (θ̂q − θ0)‖2JT

+T [R?T (θ̂T ) +RT (θ̂T )−R?T (θ̂q)−RT (θ̂q)]

≥ T [R?T (θ̂T ) +RT (θ̂T )−R?T (θ̂q)−RT (θ̂q)] = op (1) . (A.10)

Hence, using (A.5) and (A.10),

‖ZT −
√
T (θ̂T − θ0)‖2JT = ‖ZT −

√
T (θ̂q − θ0)‖2JT + op (1) . (A.11)

Note that infθ∈Θ ‖ZT −
√
T (θ− θ0)‖2JT = infλ∈√T (Θ−θ0) ‖ZT −λ‖

2
JT

, where
√
T (Θ− θ0) ..=

{λ ∈ Rs0 : λ =
√
T (θ − θ0), θ ∈ Θ}. Moreover 1. and the fact that Λ is a cone (Remark

3.3) imply, due to Andrews (1999, Lemma 2), that

inf
λ∈
√
T (Θ−θ0)

‖ZT − λ‖2JT = inf
λ∈Λ
‖ZT − λ‖2JT + op (1) . (A.12)
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Let λ̂T ∈ Λ satisfy ‖ZT − λ̂T ‖2JT = infλ∈Λ‖ZT − λ‖2JT . Then combining (A.11) and (A.12)
yields

‖ZT −
√
T (θ̂T − θ0)‖2JT = ‖ZT − λ̂T ‖2JT + op (1) . (A.13)

Observe that

‖ZT −
√
T (θ̂T − θ0)‖2JT = ‖

√
T (θ̂T − θ0)− λ̂T ‖2JT + ‖ZT − λ̂T ‖2JT

+2
〈
ZT − λ̂T , λ̂T −

√
T (θ̂T − θ0)

〉
JT
. (A.14)

Using that
√
T (θ̂T − θ0) ∈ Λ and that Λ is closed for s1 > 0, it follows from Zarantonello

(1971, Lemma 1.1), 〈
ZT − λ̂T , λ̂T −

√
T (θ̂T − θ0)

〉
JT
≥ 0. (A.15)

Combining (A.14) and (A.15) yields

‖ZT −
√
T (θ̂T − θ0)‖2JT ≥ ‖

√
T (θ̂T − θ0)− λ̂T ‖2JT + ‖ZT − λ̂T ‖2JT . (A.16)

In light of (A.13) and (A.16), we conclude that 4. holds.
In line with Andrews (1999, p.1379), since Λ is convex, λ̂T is unique. Moreover, since λ̂T
satisfies ‖ZT − λ̂T ‖2JT = infλ∈Λ‖ZT − λ‖2JT , λ̂T = f(ZT , JT ) with some implicitly given
function f . The function f is continuous at all points (ZT , JT ) where JT is nonsingular.
Since J is nonsingular, the continuous mapping theorem implies that λ̂T = f(ZT , JT ) w→
f(Z, J) = λΛ, and we conclude that 5. holds.

Proof of Theorem 4.1. From the proof of Theorem 3.1,

T [L̂T (θ̂T )− L̂T (θ0)] = −1
2‖ZT ‖

2
JT

+ 1
2‖ZT − λ̂T ‖

2
JT

+ op (1) ,

so the continuous mapping theorem together with points 1. and 5. from the proof of
Theorem 3.1 imply that

2T
[
L̂T

(
θ̂T
)
− L̂T (θ0)

]
w→ −‖Z‖2J + inf

λ∈Λ
‖Z − λ‖2J . (A.17)

Next, with λΛ
β defined in Theorem 4.1, with Zβ, Gδ, and Jδδ defined according to the

partitions in (A.1), and with λΛβ satisfying ‖Zβ − λΛβ‖2(KJ−1K′)−1 = infλβ∈Λβ ‖Zβ −
λβ‖2(KJ−1K′)−1 , it holds that

−‖Z‖2J + inf
λ∈Λ
‖Z − λ‖2J = −‖Zβ‖2(KJ−1K′)−1 − ‖Gδ‖2J−1

δδ

+ inf
λ∈Λ
‖Z − λ‖2J

= −‖Zβ‖2(KJ−1K′)−1 − ‖Gδ‖2J−1
δδ

+ ‖Zβ‖2(KJ−1K′)−1 − ‖λΛβ‖2(KJ−1K′)−1

= −‖Gδ‖2J−1
δδ

− ‖λΛ
β‖2(KJ−1K′)−1 , (A.18)

where the first equality follows from Lemma B.6.1. The second equality follows from
Lemma B.6.2 and Perlman (1969, Lemma 4.1), and the third equality follows from Lemma
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B.6.3. Combining (A.17) and (A.18) yields

2T [L̂T (θ̂T )− L̂T (θ0)] w→ −‖λΛ
β‖2(KJ−1K′)−1 − ‖Gδ‖2J−1

δδ

. (A.19)

Notice that since θ0 ∈ Θ0 ⊂ Θ and Λ0 = Λ0,β1 × Λβ2 × Λδ = {0s̃1×1} × Rs̃2+ × Rs2 , it is
possible, due to Assumption 7, to derive points 1.-6. in the proof of Theorem 3.1 with θ̂T ,
λ̂T , λΛ, and Λ replaced by θ̃T , λ̃T , λΛ0 , and Λ0, respectively. In particular, and similar to
the derivations above,

2T [L̂T (θ̃T )− L̂T (θ0)] w→ −‖λΛ0
β ‖

2
(KJ−1K′)−1 − ‖Gδ‖2J−1

δδ

. (A.20)

The convergence of (A.19) and (A.20) holds jointly, since the convergence of the two terms
are due to point 1. in the proof of Theorem 3.1. This joint convergence and the Cramér-
Wold theorem yield the limiting distribution of QLRT .
Next, (4.7) follows by (3.12), Theorem B.1, and the continuous mapping theorem.
Lastly, we turn to the limiting distribution of LMT . It holds, due to the consistency of
θ̃T , Lemma B.1, and the invertibility of J (Theorem 3.1), ĴT (θ̃T )−1 = J−1 + op(1). By a
Taylor-type expansion and Lemma B.5.1

√
T ŜT (θ̃T ) =

√
TST (θ0) + ĴT (θ?)

√
T (θ̃T − θ0) + op(1),

where θ? is between θ̃T and θ0 as in Jensen and Rahbek (2004, Proof of Lemma 1). By
Lemma B.1 and by using that θ? = θ0 + op(1), it holds that ĴT (θ?) = J + op (1). Hence,
using that

√
TST (θ0) and

√
T (θ̃T − θ0) are both Op (1),

√
TK1ĴT (θ̃T )−1ŜT (θ̃T ) = K1J

−1
[√
TST (θ0) + J

√
T (θ̃T − θ0)

]
+ op (1)

= K1J
−1√TST (θ0) +K1

√
T (θ̃T − θ0) + op (1) .

Since K1(θ̃T −θ0) = β1,0 = 0s̃1×1, by Slutsky’s lemma and the fact that
√
T∂LT (θ0)/∂θ w→

G,

√
TK1ĴT (θ̃T )−1ŜT (θ̃T ) = K1J

−1√TST (θ0) + op (1)
w→ N

(
0,K1J

−1ΣJ−1K ′1

)
. (A.21)

By Lemma B.1 and the fact that
√
T (θ̃T − θ0) = Op (1),

K1ĴT (θ̃T )−1Σ̂T (θ̃T )ĴT (θ̃T )−1K ′1 = K1J
−1ΣJ−1K ′1 + op (1) . (A.22)

Hence (4.8) follows by combining (A.21) and (A.22) and applying Slutzky’s lemma and
the continuous mapping theorem.
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B Lemmas

Lemma B.1. With J and Σ given in (3.13) and ĴT (θ) and Σ̂T (θ) given in (4.3), let
θ̄T ∈ Θ satisfy θ̄T = θ0 + op(1). Under the assumptions of Theorem 3.1,

ĴT (θ̄T ) = J + op (1) . (B.1)

Additionally, suppose that
√
T (θ̄T − θ0) = Op (1). Then

Σ̂T (θ̄T ) = Σ + op (1) . (B.2)

Proof. The proof is quite similar to the arguments given in Ling and McAleer (2010,
p.100). Define, JT (θ) ..= T−1∑T

t=1 ∂
2lt (θ) /∂θ∂θ′, where lt(θ) is given by (3.5). Lemma

B.5 implies that ĴT (θ̄T ) = JT (θ̄T )+op(1), so in order to establish (B.1) it remains to show
that JT (θ̄T ) = J + op(1). This property follows directly from Lemma B.5, the consistency
of θ̄T , and the fact that E[∂2lt (θ) /∂θ∂θ′] is continuous as θ0.
Next, we seek to prove (B.2). Notice that with l̂t(θ) given by (3.2),

Σ̂T (θ̄T ) = 1
T

T∑
t=1

∂lt(θ0)
∂θ

∂lt(θ0)
∂θ′

+ 1
T

T∑
t=1

∂lt(θ0)
∂θ

[
∂l̂t(θ̄T )
∂θ′

− ∂lt(θ0)
∂θ′

]

+ 1
T

T∑
t=1

[
∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

]
∂lt(θ0)
∂θ′

+ 1
T

T∑
t=1

[
∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

] [
∂l̂t(θ̄T )
∂θ′

− ∂lt(θ0)
∂θ′

]
. (B.3)

The ergodic theorem implies that T−1∑T
t=1[∂lt(θ0)/∂θ][∂lt(θ0)/∂θ′] = Σ + op(1), so it

remains to show that the other terms in (B.3) vanish with probability approaching one.
It suffices to establish that

1
T

T∑
t=1

[
∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

]
∂l̂t(θ̄T )
∂θ′

= op(1) (B.4)

and
1
T

T∑
t=1

[
∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

]
∂lt(θ0)
∂θ′

= op(1). (B.5)

A Taylor-type expansion yields

T−1/2
T∑
t=1

[∂l̂t(θ̄T )/∂θ] = T−1/2
T∑
t=1

[∂l̂t(θ0)/∂θ] + ĴT (θ?T )
√
T (θ̄T − θ0),

where θ?T is between θ̄T and θ0. By Lemma B.5.1 and point 1. in the proof of Theorem
3.1, T−1/2∑T

t=1 ∂l̂t(θ0)/∂θ = Op(1), and using arguments similar to the ones used to show
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(B.1), ĴT (θ?T ) = J + op(1). Hence, using that
√
T (θ̄T − θ0) = Op (1),

1√
T

T∑
t=1

∂l̂t(θ̄T )
∂θ

= Op(1). (B.6)

Moreover, also by a Taylor-type expansion,

∂l̂t(θ̄T )
∂θ

− ∂lt(θ0)
∂θ

=
[
∂l̂t(θ0)
∂θ

− ∂lt(θ0)
∂θ

]
+
{[

∂2 l̂t(θ?T )
∂θ∂θ′

− ∂2lt(θ?T )
∂θ∂θ′

]
+ ∂2lt(θ?T )

∂θ∂θ′

}
(θ̄T − θ0).

(B.7)
For any ε > 0 and some r > 0, by Boole’s and the generalized Chebyshev inequalities,

P
(

max
t∈N

∥∥∥∥∥∂lt(θ0)
∂θ

− ∂l̂t(θ0)
∂θ

∥∥∥∥∥ > ε
√
T

)
≤ 1
εrT (r/2)

∞∑
t=1

E
[
sup
θ∈Θ

∥∥∥∥∥∂lt(θ)∂θ
− ∂l̂t(θ)

∂θ

∥∥∥∥∥
r]

= o(1),

(B.8)
where we have used Lemma B.4.1. Likewise, using Lemma B.4.3, we have that

1√
T

max
t∈N

∥∥∥∥∥∂2 l̂t(θ?T )
∂θ∂θ′

− ∂2lt(θ?T )
∂θ∂θ′

∥∥∥∥∥ = op(1), (B.9)

and using Lemma B.4.4,
1√
T

∥∥∥∥∥∂2lt(θ?T )
∂θ∂θ′

∥∥∥∥∥ = op(1). (B.10)

Combining (B.6), (B.7), (B.8), (B.9), (B.10), and that (θ̄T − θ0) = op (1) yields (B.4).
Similar arguments yield (B.5).

Lemma B.2. Let ĥt (θ) and ht (θ) be given by (3.4) and (3.7), respectively, and let D̂t(θ)
and Dt(θ) be given by (3.3) and (3.6), respectively. Suppose that the assumptions of
Theorem 3.1 are satisfied. It holds that for all t ∈ N0, i, j = 1, ..., d+2d2, and some k ≥ 0,

E[sup
θ∈Θ
‖ht (θ)‖3] <∞, E

[
sup
θ∈Θ

∥∥∥∥∂ht (θ)
∂θi

∥∥∥∥3]
<∞, E

sup
θ∈Θ

∥∥∥∥∥∂2ht (θ)
∂θi∂θj

∥∥∥∥∥
3
 <∞,

E[sup
θ∈Θ

∥∥∥ĥt (θ)
∥∥∥3

] <∞, E

sup
θ∈Θ

∥∥∥∥∥∂ĥt (θ)
∂θi

∥∥∥∥∥
3
 <∞, E

sup
θ∈Θ

∥∥∥∥∥∂2ĥt (θ)
∂θi∂θj

∥∥∥∥∥
3
 <∞,

sup
θ∈Θ
‖R−1(θ)‖ ≤ C, sup

θ∈Θ
‖D−1

t (θ)‖ ≤ C, sup
θ∈Θ
‖D̂−1

t (θ)‖ ≤ C,

E[sup
θ∈Θ
‖ht (θ)− ĥt (θ) ‖] = O(tkφt),

E
[
sup
θ∈Θ

∥∥∥∥∥∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

∥∥∥∥∥
]

= O(tkφt), E
[
sup
θ∈Θ

∥∥∥∥∥∂2ht (θ)
∂θi∂θj

− ∂2ĥt (θ)
∂θi∂θj

∥∥∥∥∥
]

= O(tkφt).
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Proof. Notice that since ρ (B) < 1 on Θ, and Θ is compact

sup
θ∈θ
‖Bt‖ ≤ Cφt. (B.11)

Since ρ (B) < 1, recursions give that ht (θ) =
∑∞
i=0B

i(κ + AX�2
t−1−i), so by repeated use

of Minkowski’s inequality, the compactness of Θ, (B.11), and the fact that E[‖Xt‖6] <∞
yield that

E[sup
θ∈Θ
‖ht (θ) ‖3] <∞. (B.12)

Moreover, ĥt (θ) =
∑t−1
i=0 B

i(κ + AX�2
t−1−i) + Btĥ0, so similar arguments and the fact

that ĥ0 is fixed yield that for all t ∈ N0, E[supθ∈Θ ‖ĥt (θ) ‖3] < ∞. Next, we consider
the partial derivatives (potentially of the left/right type) of ht(θ). For convenience, we
differentiate with respect to the standard parametrization as introduced in subsection 2.1,
i.e. without loss of generality we let θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′. Let r̃2 ..= d+d2

and r̃1 ..= d+ 2d2. Using that ρ (B) < 1,

∂ht (θ)
∂θi

=
∞∑
j=0

Bi ∂κ

∂θi
for i = 1, ..., d,

∂ht (θ)
∂θi

=
∞∑
j=0

Bi ∂A

∂θi
X�2
t−1−i for i = d+ 1, ..., r̃2,

∂ht (θ)
∂θi

=
∞∑
j=0

Bi∂B

∂θi
ht−1−i for i = r̃2 + 1, ..., r̃1.

So repeated use of Minkowski’s inequality, E[‖Xt‖6] < ∞, (B.12), (B.11), and the com-
pactness of Θ yield that

E
[
sup
θ∈Θ

∥∥∥∥∂ht (θ)
∂θi

∥∥∥∥3]
<∞ (B.13)

for i = 1, ..., r̃1. By similar arguments,

E

sup
θ∈Θ

∥∥∥∥∥∂2ht (θ)
∂θi∂θj

∥∥∥∥∥
3
 <∞, E

sup
θ∈Θ

∥∥∥∥∥∂ĥt (θ)
∂θi

∥∥∥∥∥
3
 <∞, E

sup
θ∈Θ

∥∥∥∥∥∂2ĥt (θ)
∂θi∂θj

∥∥∥∥∥
3
 <∞,

(B.14)
for all i, j = 1, ..., r̃1. Moreover, supθ∈Θ ‖R−1(θ)‖ ≤ C, supθ∈Θ ‖D−1

t (θ)‖ ≤ C, and
supθ∈Θ ‖D̂−1

t (θ)‖ ≤ C follow by arguments given in Francq and Zakoïan (2012, p.195).
We have that ht (θ) − ĥt (θ) = Bt[h0 (θ) − ĥ0], so (B.11), (B.12) and the fact that ĥ0 is
fixed give that E[supθ∈Θ ‖ht (θ)− ĥt (θ) ‖] = O(φt). Similarly,

∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

= Bt

[
∂h0 (θ)
∂θi

− ∂ĥ0 (θ)
∂θi

]
for i = 1, ..., r̃2,

∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

= ∂Bt

∂θi

[
h0 (θ)− ĥ0

]
+Bt

[
∂h0 (θ)
∂θi

− ∂ĥ0 (θ)
∂θi

]
for i = r̃2 + 1, ..., r̃1,
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and we conclude, using (B.13), that

E
[
sup
θ∈Θ

∥∥∥∥∥∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

∥∥∥∥∥
]

= O(tφt) for i = 1, ..., r̃1. (B.15)

Likewise, using (B.14),

E
[
sup
θ∈Θ

∥∥∥∥∥∂2ht (θ)
∂θi∂θj

− ∂2ĥt (θ)
∂θi∂θj

∥∥∥∥∥
]

= O(t2φt) for i, j = 1, ..., r̃1. (B.16)

Lemma B.3. Under the assumptions of Theorem 3.1, the matrix Σ defined in (3.13) is
finite.

Proof. Due to Hölder’s inequality, it suffices to show that E{[∂lt(θ0)/∂θi)]2} < ∞ for all
i = 1, ..., s0, where s0 is the dimension of θ. Similar to the proof of Lemma B.2, we consider
(without loss of generality) differentiation with respect to the standard parametrization
where θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′. We define r̃2 ..= d + d2 and r̃1 ..= d + 2d2.
From Francq and Zakoïan (2012, p.198), it holds that

∂lt(θ0)
∂θi

= tr
{

(Id −R−1
0 εtε

′
t)
∂D0t
∂θi

D−1
0t + (Id − εtε′tR−1

0 )D−1
0t
∂D0t
∂θi

}
for i = 1, ..., r̃1, where the “0” indicates that the functions are evaluated at θ0, and
εt ..= R

1/2
0 Zt. It holds that for i = 1, ..., r̃1,

∂Dt

∂θi
= 1

2D
−1
t diag

(
∂ht(θ)
∂θi

)
, (B.17)

so by Lemma B.2, it holds that E[‖∂D0t/∂θi‖3] <∞. Since ∂D0t/∂θi and εtε′t are indepen-
dent, and E[‖εt‖6] <∞, we conclude using Hölder’s inequality that E{[∂lt(θ0)/∂θi]2} <∞
for i = 1, ..., r̃1. Moreover, from Francq and Zakoïan (2012, p.198), it holds that

∂lt(θ0)
∂θi

= tr
{

(Id −R−1
0 εtε

′
t)
(
R−1

0
∂R0
∂θi

)}

for i = r̃1+1, ..., s0. Using similar arguments as above, we conclude that E{[∂lt(θ0)/∂θi]2} <
∞ for i = r̃1 + 1, ..., s0.

Lemma B.4. Suppose that the assumptions of Theorem 3.1 hold. Then with l̂t(θ) and
lt(θ) given by (3.2) and (3.5), respectively, the following statements are true.

1. For some k ≥ 0 and some u > 0,

E
[
sup
θ∈Θ

∥∥∥∥∥∂lt(θ)∂θ
− ∂l̂t(θ)

∂θ

∥∥∥∥∥
u]

= O(tkφt) ∀t ∈ N.
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2. For some k ≥ 0 and some u > 0,

E
[
sup
θ∈Θ

∣∣∣lt(θ)− l̂t(θ)∣∣∣r
]

= O(tkφt) ∀t ∈ N.

3. For some k ≥ 0 and some u > 0,

E
[
sup
θ∈Θ

∥∥∥∥∥∂2lt(θ)
∂θ∂θ′

− ∂l̂2t (θ)
∂θ∂θ′

∥∥∥∥∥
u]

= O(tkφt) ∀t ∈ N.

4. E[supθ∈Θ ‖∂2lt(θ)/∂θ∂θ′‖] <∞.

Proof. Similar to the proof of Lemma B.2, we consider differentiation with respect to the
standard parametrization where θ = (κ′, vec(A)′, vec (B)′ , vech0(R)′)′, and define r̃2 ..=
d + d2 and r̃1 ..= d + 2d2. From Francq and Zakoïan (2012, p.198) it holds that for
i = 1, ..., r̃1,

∂lt(θ)
∂θi

= tr
{
D−1
t

[
2Id −

(
XtX

′
tD
−1
t R−1D−1

t +D−1
t XtX

′
tD
−1
t R−1

)] ∂Dt

∂θi

}
= ξ′t

[
D−1
t ⊗ Id

]
vec

(
∂Dt

∂θi

)
with

ξt ..= vec
[
2Id −

(
XtX

′
tD
−1
t R−1D−1

t +D−1
t XtX

′
tD
−1
t R−1

)]
. (B.18)

Similarly,
∂l̂t(θ)
∂θi

= ξ̂′t[D̂−1
t ⊗ Id] vec

(
∂D̂t

∂θi

)
,

with ξ̂t ..= vec[2Id − (XtX
′
tD̂
−1
t R−1D̂−1

t + D̂−1
t XtX

′
tD̂
−1
t R−1)]. Hence,

∂lt(θ)
∂θi

− ∂l̂t(θ)
∂θi

= ξ′t

[
D−1
t ⊗ Id

]
vec

(
∂Dt

∂θi

)
− ξ̂′t[D̂−1

t ⊗ Id] vec
(
∂D̂t

∂θi

)

= (ξ′t − ξ̂′t)
[
D−1
t ⊗ Id

]
vec

(
∂Dt

∂θi

)
+ξ̂′t[(D−1

t − D̂−1
t )⊗ Id] vec

(
∂Dt

∂θi

)
+ξ̂′t[D̂−1

t ⊗ Id]
[
vec

(
∂Dt

∂θi

)
− vec

(
∂D̂t

∂θi

)]
.

It holds that

ξt − ξ̂t = vec
[
XtX

′
t(D̂−1

t −D−1
t )R−1D̂−1

t

]
− vec

[
XtX

′
tD
−1
t R−1(D−1

t − D̂−1
t )

]
+ vec

[
D̂−1
t XtX

′
t(D̂−1

t −D−1
t )R−1

]
− vec

[
(D−1

t − D̂−1
t )XtX

′
tD
−1
t R−1

]
,

and
‖D̂−1

t −D−1
t ‖ = ‖D̂−1

t (D̂t −Dt)D−1
t ‖ ≤ C‖D̂ −Dt‖,
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where we have used Lemma B.2. By the same lemma for some k ≥ 0,

E[sup
θ∈Θ
‖ht (θ)− ĥt (θ) ‖] = O(tkφt),

so we have that for some for some ũ > 0 and some k ≥ 0,

E[sup
θ∈Θ
‖D̂−1

t −D−1
t ‖ũ] = O(tkφt). (B.19)

Consequently, by Hölder’s inequality for some u? > 0,

E[sup
θ∈Θ
‖ξt − ξ̂t‖u

? ] = O(tkφt)

For i = 1, ..., r̃1,
∂Dt

∂θi
= 1

2D
−1
t diag

(
∂ht
∂θi

)
,

and due to (B.19) and

E
[
sup
θ∈Θ

∥∥∥∥∥∂ht (θ)
∂θi

− ∂ĥt (θ)
∂θi

∥∥∥∥∥
]

= O(tkφt),

by Lemma B.2, it holds that for some u? > 0,

E

sup
θ∈Θ

∥∥∥∥∥vec
(
∂Dt

∂θi

)
− vec

(
∂D̂t

∂θi

)∥∥∥∥∥
u?
 = O(tkφt).

Consequently, by Hölder’s inequality we have that for i = 1, ..., r̃1 and some u > 0

E
[
sup
θ∈Θ

∣∣∣∣∣∂lt(θ)∂θi
− ∂l̂t(θ)

∂θi

∣∣∣∣∣
u]

= O(tkφt)

For i = r̃1 + 1, ..., s0,

∂lt(θ)
∂θi

= tr
(
R−1 ∂R

∂θi

)
− vec(D−1

t )′
[
(XtX

′
t)⊗

(
R−1 ∂R

∂θi
R−1

)]
vec(D−1

t )

and
∂l̂t(θ)
∂θi

= tr
(
R−1 ∂R

∂θi

)
− vec(D̂−1

t )′
[
(XtX

′
t)⊗

(
R−1 ∂R

∂θi
R−1

)]
vec(D̂−1

t ),

so by similar arguments as above, using (B.19) and Lemma B.2,

E
[
sup
θ∈Θ

∣∣∣∣∣∂lt(θ)∂θi
− ∂l̂t(θ)

∂θi

∣∣∣∣∣
u]

= O(tkφt)

i = r̃1 + 1, ..., s0. Using the cr-inequality, we conclude that 1. holds.
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Turning to 2., from Francq and Zakoïan (2012, pp.195-196),

sup
θ∈Θ

∣∣∣lt(θ)− l̂t(θ)∣∣∣ ≤ sup
θ∈Θ

∣∣∣tr{XtX
′
t(H−1

t − Ĥ−1
t )

}∣∣∣ (B.20)

+ sup
θ∈Θ

∣∣∣log {det(Ht)} − log
{

det(Ĥt)
}∣∣∣ .

It holds that

sup
θ∈Θ

∣∣∣tr{XtX
′
t(H−1

t − Ĥ−1
t )

}∣∣∣ ≤ ∥∥XtX
′
t

∥∥ sup
θ∈Θ

∥∥∥H−1
t − Ĥ−1

t

∥∥∥ ,
Since

H−1
t − Ĥ−1

t = H−1
t (Ĥt −Ht)Ĥ−1

t

= D−1
t R−1D−1

t [(D̂t −Dt)RD̂t +DtR(D̂t −Dt)]D̂−1
t R−1D̂−1

t ,

it follows from Lemma B.2 and Hölder’s inequality that for some u? > 0,

E[sup
θ∈Θ
|tr{XtX

′
t(H−1

t − Ĥ−1
t )}|u? ] = O(tkφt). (B.21)

Next let hit and ĥit denote the ith element (i = 1, .., d) of ht (θ) and ĥt (θ) respectively.
Consider the second term in (B.20). From Ling and McAleer (2003, p.302),

| log{det(Ht)} − log{det(Ĥt)}| = | log{det(D2
t D̂
−2
t )}|

= | log(
d∏
i=1

hit/ĥit)| = |
d∑
i=1

log(hit/ĥit)|,

where we have used that hit and ĥit have a positive lower bound for each i uniformly on
Θ. Since log (1 + x) ≤ x for x > −1, we have that

| log{det(Ht)} − log{det(Ĥt)}| ≤
d∑
i=1
| log{1 + (hit − ĥit)ĥ−1

it }| ≤
d∑
i=1
|(hit − ĥit)ĥ−1

it |,

so, using Lemma B.2, for some u? > 0,

E[sup
θ∈Θ

∣∣∣log{det(Ht)} − log{det(Ĥt)}
∣∣∣u? ] = O(tkφt). (B.22)

By combining (B.20), (B.21), (B.22), and Hölder’s inequality, we conclude that point 2.
holds.
Turning to point 3., expressions for ∂2lt(θ)/∂θi∂θj for different choices of i and j are
stated in Francq and Zakoïan (2012, pp.200-201) (note that in Francq and Zakoïan (2012)
εt corresponds to Xt here). By similar arguments as above, relying on Lemma B.2, we
conclude that 3. holds.
In order to establish 4. it suffices to show that E[supθ∈Θ |∂2lt(θ)/∂θi∂θj |] < ∞ for all
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i, j = 1, ..., s0. Again, by relying on expressions for ∂2lt(θ)/∂θi∂θi for different choices of
i and j are stated in Francq and Zakoïan (2012, pp.200-201), it is seen that this moment
restriction holds due to Lemma B.2 and Hölder’s inequality.

Lemma B.5. Under the assumptions of Theorem 3.1, with l̂t(θ) and lt(θ) given by (3.2)
and (3.5), respectively,

1. supθ∈Θ ‖ 1
T

∑T
t=1 ∂lt(θ)/∂θ − 1

T

∑T
t=1 ∂l̂t(θ)/∂θ‖ = op(T−1/2).

2. supθ∈Θ | 1T
∑T
t=1 lt(θ)− 1

T

∑T
t=1 l̂t(θ)| = op(T−1).

3. supθ∈Θ ‖ 1
T

∑T
t=1 ∂

2lt(θ)/∂θ∂θ′ − 1
T

∑T
t=1 ∂

2 l̂t(θ)/∂θ∂θ′‖ = o (1) a.s.

4. supθ∈Θ ‖ 1
T

∑T
t=1 ∂

2lt(θ)/∂θ∂θ′ − E[∂2lt(θ)/∂θ∂θ′]‖ = o (1) a.s.

Proof. In order to show 1., we use arguments similar to the ones given in Pedersen and
Rahbek (2014, Proof of Lemma B.11), see also Hafner and Preminger (2009, Proof of
Lemma 4). For any ε > 0 and some u > 0, by the generalized Chebyshev inequality,

P
(
√
T sup
θ∈Θ

∥∥∥∥∥ 1
T

T∑
t=1

[
∂lt(θ)
∂θ

− ∂l̂t(θ)
∂θ

]∥∥∥∥∥ > ε

)
≤ T (u−2)/2

εr

T∑
t=1

E
[
sup
θ∈Θ

∥∥∥∥∥∂lt(θ)∂θ
− ∂l̂t(θ)

∂θ

∥∥∥∥∥
u]

= o(1),

choosing u < 2, where we have used Lemma B.4.1.
Using similar arguments and Lemma B.4.2, we conclude that point 2. holds.
Turning to point 3., for any ε > 0 and some ũ > 0, by the generalized Chebyshev inequality,

∞∑
t=0

P
(

sup
θ∈Θ

∥∥∥∥∥∂2lt(θ)
∂θ∂θ′

− ∂2 l̂t(θ)
∂θ∂θ′

∥∥∥∥∥ > ε

)
≤ ε−ũ

∞∑
t=0

E

sup
θ∈Θ

∥∥∥∥∥∂2lt(θ)
∂θ∂θ′

− ∂2 l̂t(θ)
∂θ∂θ′

∥∥∥∥∥
ũ
 <∞,

where we have used Lemma B.4.3. The Borel-Cantelli lemma then implies that almost
surely

sup
θ∈Θ

∥∥∥∥∥∂2lt(θ)
∂θ∂θ′

− ∂2 l̂t(θ)
∂θ∂θ′

∥∥∥∥∥→ 0 as t→∞,

and point 3. then follows by Cesàro’s mean theorem.
The proof of 4. follows by Lemma B.4.4 and a uniform law of large numbers for ergodic
processes, see e.g. Ranga Rao (1962).

Lemma B.6. Let Zβ, Gδ, and Jδδ be defined according to (A.1). Moreover, with Λ = Λβ×
Λδ defined in Assumption 5, let λΛ = (λΛ′

β , λ
Λ′
δ )′satisfy ‖Z − λΛ‖2J = infλ∈Λ ‖Z − λ‖2J and

let λΛβ satisfy ‖Zβ−λΛβ‖2(KJ−1K′)−1 = infλβ∈Λβ ‖Zβ−λβ‖2(KJ−1K′)−1. Under Assumptions
1-6,

1. Z ′JZ = Z ′β(KJ−1K ′)−1Zβ +G′δJ
−1
δδ Gδ,

2. ‖Z − λΛ‖2J = ‖Zβ − λΛβ‖2(KJ−1K′)−1 = ‖Zβ − λΛ
β‖2(KJ−1K′)−1,

3. λΛ
β = λΛβ .
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Proof. The proof follows the lines of Andrews (1999, Proof of Theorem 4). First, recall
that for matrices A ∈ Rm×m, B ∈ Rm×n, C ∈ Rn×m, and D ∈ Rn×n satisfying that

E ..=
[
A B

C D

]
, D, and (A−BD−1C) are nonsingular, then

E−1 =
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

]
.(B.23)

Define the matrices

M ..=
[

Is1

−J−1
δδ Jδβ

]
, P⊥ ..= MK, P ..= Is0 − P⊥.

Observe that by orthogonality

(Px1)′J(P⊥x2) = 0 ∀x1, x2 ∈ Rs0 . (B.24)

By (B.23),
KJ−1K ′ = (Jββ − JβδJ−1

δδ Jδβ)−1, (B.25)

and, moreover,
M ′JM = Jββ − JβδJ−1

δδ Jδβ,

so
M ′JM = (KJ−1K ′)−1. (B.26)

Let K̄ ..= (0s2×s1 , Is2). By definition Is0 = (K ′, K̄ ′)′, so

PJ−1G =
[
KPJ−1G

K̄PJ−1G

]
. (B.27)

It holds that

KP = K(Is0 −MK)

= K −KMK

= K − [Is1 , 0s1×s2 ]
[

Is1

−J−1
δδ Jδβ

]
K

= 0s1×s0 , (B.28)

so
KPJ−1G = 0s1×1.

Furthermore, make the following partition J−1 =
[
J (1) J (2)

J (3) J (4)

]
according to (B.23) such

that J (1) ..= (Jββ − JβδJ−1
δδ Jδβ)−1, J (2) ..= −J (1)JβδJ

−1
δδ , J (3) ..= −J−1

δδ JδβJ
(1), and J (4) ..=
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J−1
δδ + J−1

δδ JδβJ
(1)JβδJ

−1
δδ , with Jββ , Jβδ, Jδβ, and Jδδ defined according to (A.1). Then

JδδKPJ
−1G = JδδK̄(Is1+s2 −MK)J−1G

= Jδδ([0s2×s1 , Is2 ]− K̄M [Is1 , 0s1×s2 ])
[
J (1) J (2)

J (3) J (4)

]
G

= Jδδ([J (3), J (4)]− K̄M [J (1), J (2)])G

= Jδδ

(
[J (3), J (4)]− K̄

[
Is1

−J−1
δδ Jδβ

]
[J (1), J (2)]

)
G

= Jδδ

(
[J (3), J (4)]− [0s2×s1 , Is2 ]

[
[J (1), J (2)]

−J−1
δδ Jδβ[J (1), J (2)]

])
G

= Jδδ([J (3), J (4)] + J−1
δδ Jδβ[J (1), J (2)])G

= ([JδδJ (3), JδδJ
(4)] + Jδβ[J (1), J (2)])G

Hence,

JδδK̄PJ
−1G = ([−JδβJ (1), Ir + JδβJ

(1)JβδJ
−1
δδ ] + [JδβJ (1),−JδβJ (1)JβδJ

−1
δδ ])G

= [0s2×s1 , Is2 ]G (B.29)

= Gδ.

Combining (B.27), (B.32), and (B.29) yields

PJ−1G =
[

0s1×1

J−1
δδ Gδ

]
. (B.30)

Now (B.24) implies that

Z ′JZ = (PZ)′ J (PZ) + (P⊥Z)′J(P⊥Z).

This combined with (B.26), (B.30), and that Z = −J−1G (by definition) proves 1.
For λ = (λ′β, λ′δ) ∈ Λβ × Λδ it holds that

Pλ =
[

0s1×1

λδ + J−1
δδ Jδβλβ

]
. (B.31)

Using (B.24), (B.31), (B.30), and (B.26) gives

‖Z − λ‖2J = ‖P (Z − λ)‖2J + ‖P⊥ (Z − λ) ‖2J

=
∥∥∥∥∥
[

0s1×1

J−1
δδ Gδ

]
−
[

0s1×1

λδ + J−1
δδ Jδβλβ

]∥∥∥∥∥
2

J

+ ‖K (Z − λ)‖2M ′JM

= ‖J−1
δδ Gδ − λδ − J

−1
δδ Jδβλβ‖

2
Jδδ

+ ‖Zβ − λβ‖2(KJ−1K′)−1 . (B.32)
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Since Λ = Λβ × Λδ and Λδ = Rs2 , for any λβ ∈ Λβ

inf
λδ∈Λδ

‖J−1
δδ Gδ − λδ − J

−1
δδ Jδβλβ‖

2
Jδδ

= inf
λδ∈Rr

‖J−1
δδ Gδ − λδ − J

−1
δδ Jδβλβ‖

2
Jδδ

= 0,

so
inf
λ∈Λ
‖Z − λ‖2J = inf

λβ∈Λβ
‖Zβ − λβ‖2(KJ−1K′)−1 ,

which proves the first equality of 2. holds. Turning to the second equality of 2., notice
that

0 ≤ ‖Zβ − λΛ
β‖2(KJ−1K′)−1 − ‖Zβ − λΛβ‖2(KJ−1K′)−1

≤ ‖Zβ − λΛ
β‖2(KJ−1K′)−1 + ‖J−1

δδ Gδ − λ
Λ
δ − J−1

δδ Jδβλ
Λ
β‖2Jδδ − ‖Zβ − λ

Λβ‖2(KJ−1K′)−1

= ‖Z − λΛ‖2J − ‖Zβ − λΛβ‖2(KJ−1K′)−1 = 0,

where we have used (B.32) and the first equality of 2.
Point 3. follows from 2, and the fact that λΛβ is unique due to the convexity of Λβ.

Lemma B.7. Let {Yt : t ∈ N0}, Yt = (X�2′
t , σ2′

t )′, be the Markov chain generated by
the ECCC-GARCH model (2.1)-(2.4) for t ≥ 1, with fixed initial values X0 ..= x ∈ Rd

and σ2
0

..= h ∈ (0,∞)d, and with fixed θ = [κ′0, vec(A0)′, vec(B0)′, vech0(R0)′]′. Suppose
that ρ(B0) < 1 and that the diagonal elements of A0 are strictly positive. Let p ∈ N, and
suppose that the distribution, Γ, of εt ..= R

1/2
0 ηt admits a probability density strictly positive

on Rd with E[(ε�2
t )⊗p] <∞, and ρ(E{[A0diag(ε�2

t ) + B0]⊗p}) < 1. Then {Yt : t ∈ N0} is
geometrically ergodic on [0,∞)d × (0,∞)d, and the associated strictly stationary process
{Yt : t ∈ Z} is geometrically β-mixing with E[(X�2

t )⊗p] <∞.

Proof. The proof is similar to Pedersen (2015, Proof of Lemma B.8). Consider the process
{σ2

t : t ∈ N0} given by σ2
t = κ0 + [A0 diag(ε�2

t−1) + B0]σ2
t−1, with σ2

0 = h. Relying on the
theory of Boussama et al. (2011), it follows from Pedersen (2015, Proof of Lemma B.8)
that {σ2

t : t ∈ N0} is a Markov chain which is aperiodic and ψ-irreducible on (0,∞)d,
see Meyn and Tweedie (2009, Section 4.2). These properties of the Markov chain allow
us, due to Tjøstheim (1990), to consider a k-step drift criterion for the Markov chain for
some k ∈ N. Specifically, with B((0,∞)d) the Borel σ-field of (0,∞)d, we want to show
that there exists a small set K ∈ B((0,∞)d), positive constants a < 1 and b < ∞, and a
Lyapunov function Vσ : (0,∞)d → [1,∞) such that for some fixed k ∈ N,

E
[
Vσ(σ2

k)|σ2
0 = h

]
≤ aVσ (h) + b · 1(h ∈ K) ∀h ∈ (0,∞)d.

With ιdp a (dp × 1) vector of ones, consider the function Vσ (h) ..= 1 + ι′dph
⊗p, and, for

some constant m sufficiently large, the set K ..= {h ∈ (0,∞)d : ι′dph⊗p ≤ m}.
For t ∈ N, it holds that (σ2

t+1)⊗p = Ct,p + [A0 diag(ε�2
t ) + B0]⊗p(σ2

t )⊗p, where for p ≥ 2

35



Ct,p ..= {Ct,p−1 ⊗ σ2
t + [A0 diag(ε�2

t ) +B0]⊗p−1 ⊗ κ0} and Ct,1 ..= κ0. Recursions give that

(σ2
t+k)⊗p =

k−1∑
i=0

i∏
j=1

[A0 diag(ε�2
t+k−j)+B0]⊗pCt+k−1−i,p+

k∏
i=1

[A0 diag(ε�2
t+k−i)+B0]⊗p(σ2

t )⊗p.

Observe that

E
[
Vσ(σ2

k)|σ2
0 = h

]
= 1 + ι′dpC̃ + ι′dp(E{[A0 diag(ε�2

t ) +B0]⊗p})kh⊗p

1 + ι′dph
⊗p Vσ (h) ,

where we have used that {εt} is i.i.d. and where C̃ contains terms of h of lower order
than p. Since ρ(E{[A0 diag(ε�2

t ) + B0]⊗p}) < 1 and choosing k sufficiently large, there
exists an m large enough such that for h ∈ K{, Vσ (h) ≥ 1 + ι′dpC̃ + ι′dp(E{[A0 diag(ε�2

t ) +
B0]⊗p})kh⊗p. We conclude that suitable constants a and b exist. In line with Boussama
et al. (2011, Section 4.6) it can be shown that K is small. It then holds that {σ2

t : t ∈ N0}
is Vσ-geometrically ergodic. From Meitz and Saikkonen (2008, Proposition 1 and the
comments immediately after) we conclude that {Yt : t ∈ N0} is VY -geometrically ergodic,
for some suitable function VY : [0,∞)d×(0,∞)d → [1,∞), and that the associated strictly
stationary process {Yt : t ∈ Z} is geometrically β-mixing. Moreover, E[‖(σ2

t )⊗p‖] ≤
CE[Vσ(σ2

t )] <∞, and by using that E[(ε�2
t )⊗p] <∞, we have that E[(X�2

t )⊗p] <∞.

Lemma B.8. Let {Xt : t ∈ Z}, be a strictly stationary process generated by the ECCC-
GARCH model (2.1)-(2.4) with fixed θ = [κ′0, vec(A0)′, vec(B0)′, vech0(R0)′]′ ∈ Θ. For
p ∈ N suppose that E[(X�2

t )⊗p] < ∞. Then ρ(E{[A0 diag(ε�2
t ) + B0]⊗p}) < 1, where

εt ..= R
1/2
0 ηt.

Proof. The proof is similar to that of Ling and McAleer (2002, Proof of Theorem 2.1).
Notice that E[(ε�2

t )⊗p] < ∞ is necessary for E[(X�2
t )⊗p] < ∞, and that E[(σ2

t )⊗p] < ∞.
Similar to the proof of Lemma B.7, we obtain for k ∈ N

(σ2
t )⊗p =

k−1∑
i=0

i∏
j=1

[A0 diag(ε�2
t−j) +B0]⊗pCt−1−i,⊗p +

k∏
i=1

[A0 diag(ε�2
t−i) +B0]⊗p(σ2

t−k)⊗p.

Since
∏k
i=1[A0 diag(ε�2

t−i) +B0]⊗p(σ2
t−k)⊗p ≥ 0 ∀k and Ct−1−i,⊗p ≥ κ⊗p0 , we obtain

∞ > E[(σ2
t )⊗p] ≥

∞∑
i=0

(
E
{

[A0 diag(ε�2
t ) +B0]⊗p

})i
κ⊗p0 . (B.33)

Since (E{[A0 diag(ε�2
t ) + B0]⊗p}) ≥ 0 and κ⊗p0 ∈ (0,∞)dp , we have, in light of (B.33),

that
∑∞
i=0(E{[A0 diag(ε�2

t ) + B0]⊗p})i converges, which is necessary and sufficient for
ρ(E{[A0 diag(ε�2

t ) +B0]⊗p}) < 1.
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C The LMECCC statistic of Nakatani and Teräsvirta (2009)

Proposition C.1. Let ĴT (θ) and ŜT (θ) be defined by (4.3), let K1 be defined by (4.4),
and let θ̃T be the constrained estimator given in (4.2). Consider the test statistic given by

LMECCC = 1
2T ŜT (θ̃T )′K ′1[K1ĴT (θ̃T )−1K ′1]K1ŜT (θ̃T ).

With the matrices J and Σ defined in (3.13) and λΛ0 defined in (4.5), let L(G) = N(0,Σ)
and consider the partitions of J , G, and λΛ0, according to θ = (β′1, β′2, δ′)′, given by

J =


Jβ1β1 Jβ1β2 Jβ1δ

Jβ2β1 Jβ2β2 Jβ2δ

Jδβ1 Jδβ2 Jδδ

 , G =


Gβ1

Gβ2

Gδ

 , and λΛ0 =


λΛ0
β1

λΛ0
β2

λΛ0
δ

 .
Under Assumptions 1-7 and H0,

LMECCC
w→ 1

2‖ζ‖
2
(K1J−1K′1), (C.1)

where ζ ..= Gβ1 − Jβ1δJ
−1
δδ Gδ + (Jβ1β2 − Jβ1δJ

−1
δδ Jδβ2)λΛ0

β2
.

Suppose in addition that s̃1 = s1 and that Σ is positive definite. Then

LMECCC
w→

m∑
i=1

ξiχ
2
mi , (C.2)

where ξi, i = 1, ...,m, are the m distinct eigenvalues of (1/2)Ω1/2(K1J
−1K ′1)Ω1/2, with

Ω1/2 the positive definite matrix square root of the (s1 × s1) matrix Ω, given by

Ω = Σββ − JβδJ−1
δδ Σδβ − ΣβδJ

−1
δδ Jδβ + JδβJ

−1
δδ ΣββJ

−1
δδ Jδβ,

and χ2
mi, i = 1, ...,m are mutually independent, and mi is the multiplicity of ξi.

Finally, suppose furthermore that L(ηt) = N(0, Id), then

LMECCC
w→ χ2

s1 . (C.3)

Proof. Similar to the derivations in proof of Theorem 4.1 we obtain from a Taylor-type
expansion,

√
TK1ŜT (θ̃T ) =

√
T
L̂T (θ0)
∂β1

+ ∂2L̂T (θ?)
∂β1∂θ′

√
T (θ̃T − θ0)

=
√
T
L̂T (θ0)
∂β1

+ ∂2L̂T (θ?)
∂β1∂β′2

√
T (β̃2,T − β2,0) + ∂2L̂T (θ?)

∂β1∂δ′

√
T (δ̃T − δ0)

where θ? is between θ̃T and θ0, and where the second equality follows from the fact that
β̃1,T − β1,0 = 0s̃1×1. Since δ0 does not attain the bounds of Θ, we have by a Taylor-type
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expansion that

0s2×1 = L̂T (θ0)
∂δ

+ ∂2L̂T (θ??)
∂δ∂θ′

(θ̃T − θ0)

= L̂T (θ0)
∂δ

+ ∂2L̂T (θ??)
∂δ∂β′2

(β̃2,T − β2,0) + ∂2L̂T (θ??)
∂δ∂δ′

(δ̃T − δ0), (C.4)

where θ?? is between θ̃T and θ0. Hence

(δ̃T − δ0) = −
(
∂2L̂T (θ??)
∂δ∂δ′

)−1 [
L̂T (θ0)
∂δ

+ ∂2L̂T (θ??)
∂δ∂β′2

(β̃2,T − β2,0)
]
, (C.5)

and substituting (C.5) into (C.4) and rearranging yield

√
TK1ŜT (θ̃T ) =

√
T
L̂T (θ0)
∂β1

− ∂2L̂T (θ?)
∂β1∂δ′

(
∂2L̂T (θ??)
∂δ∂δ′

)−1√
T
L̂T (θ0)
∂δ

+

∂2L̂T (θ?)
∂β1∂β′2

− ∂2L̂T (θ?)
∂β1∂δ′

(
∂2L̂T (θ??)
∂δ∂δ′

)−1
∂2L̂T (θ??)
∂δ∂β′2

√T (β̃2,T − β2,0).

From Lemma B.5, using that
√
T (θ̃T − θ0) and

√
TST (θ0) are Op(1),

√
TK1ŜT (θ̃T ) =

√
T
LT (θ0)
∂β1

− Jβ1δJ
−1
δδ

√
T
LT (θ0)
∂δ

+
[
Jβ1β2 − Jβ1δJ

−1
δδ Jδβ2

]√
T (β̃2,T − β2,0) + op(1)

w→ Gβ1 − Jβ1δJ
−1
δδ Gδ + (Jβ1β2 − Jβ1δJ

−1
δδ Jδβ2)λΛ0

β2
, (C.6)

where we have used that the terms converge jointly due to point 1. of the proof of Theorem
3.1, and that

√
T (θ̃T − θ0) w→ λΛ0 . Moreover, Lemma B.5 and the consistency of θ̃T imply

that
K1ĴT (θ̃T )−1K ′1 = K1J

−1K ′1 + op(1). (C.7)

Hence by combining (C.6) and (C.7) and by applying the continuous mapping theorem,
we have shown that (C.1) holds.
Next, for the case s̃1 = s1, we have that β2 vanishes such that

√
TK1ŜT (θ̃T ) =

√
T
LT (θ0)
∂β1

− Jβ1δJ
−1
δδ

√
T
LT (θ0)
∂δ

+ op(1)

= (Is1 ,−Jβ1δJ
−1
δδ )
√
T
LT (θ0)
∂θ

+ op(1)
w→ (Is1 ,−Jβ1δJ

−1
δδ )G, (C.8)

where we have used arguments similar to the ones given above. It holds that

L[(Is1 ,−Jβ1δJ
−1
δδ )G] = N(0,Ω). (C.9)
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Combining (C.7)-(C.9) and using White (1996, Theorem 8.6), we conclude that (C.2)
holds. In the case where s̃1 = s1 and L(ηt) = N(0, Id), the information equality implies
that 2Σ = J and it is straightforward, using (B.23) and the continuous mapping theorem,
to establish that (C.3) holds.

D Additional details about the simulations

This section contains some additional details about the simulations reported in Section 5.

• The simulations are carried out in OxMetrics 7.0.

• All replications are based on a burn-in period of 1,000 observations, and all simula-
tions are based on the same seed value.

• The computation of the QMLE θ̂T and the constrained QMLE θ̃T is based on max-
imization of the log-likelihood function according to the MaxSQP function.
For the computation of θ̂T we use the starting values:

κ =
[
1.0
1.0

]
, A =

[
0.10 0.05
0.05 0.11

]
, B =

[
0.85 0.05
0.05 0.80

]
, ρ = 0.5.

For the computation of θ̃T we use the starting values:

κ =
[
1.0
1.0

]
, A =

[
0.10

0.11

]
, B =

[
0.85

0.80

]
, ρ = 0.5.

• For the computation of the log-likelihood function, we use as initial value ĥ0 =
T−1∑T

t=1X
�2
t .

• The following constraints are imposed on the parameters for the optimization: With
κ = (κ1, κ2)′, κ1, κ2 ≥ 0.000001, ρ ∈ [−0.99999, 0.99999], and all elements of the
matrices A and B are nonnegative.

• All derivatives of the log-likelihood function are obtained by numerical techniques.

• If a replication yields an estimate ĴT (θ̂T ) or ĴT (θ̃T ) that is found to be (numerically)
singular, this replication is discarded from the calculations. The singularity of the
matrices was mainly an issue for the replications with T = 1,000 observations.
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