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Abstract

We consider inference and testing in extended constant conditional correlation
GARCH models in the case where the true parameter vector is a boundary point
of the parameter space. This is of particular importance when testing for volatility
spillovers in the model. The large-sample properties of the QMLE are derived together
with the limiting distributions of the related LR, Wald, and LM statistics. Due to the
boundary problem, these large-sample properties become nonstandard. The size and
power properties of the tests are investigated in a simulation study. As an empirical

illustration we test for (no) volatility spillovers between foreign exchange rates.
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1 Introduction

Testing for volatility spillovers between time series has become an important tool in empir-
ical finance. Following the simple arguments of Ross (1989) that the (conditional) variance
of asset price changes is directly related to the rate of information flow, volatility spillovers
may be viewed as a way of measuring information transmissions in and between markets
and thereby their connectedness (Conrad and Weber, 2013). Typically, volatility spillovers
are defined in relation to multivariate conditional volatility models, such as multivariate
GARCH, for price changes. As an example, Conrad et al. (1991) applied bivariate GARCH
models to conclude that volatility surprises to large market value firms are important to the
future dynamics of the returns of smaller firms (but not conversely). Another example can
be found in Bali and Hovakimian (2009) who applied a similar technique to conclude that
there exist spillovers from option to equity markets. For other applications of multivariate
GARCH models for assessing spillovers we refer to Conrad and Weber (2013) and the ref-
erences therein. A multivariate GARCH model well suited for quantifying spillovers is the
extended constant conditional correlation (ECCC-) GARCH model of Jeantheau (1998),
considered in this paper. In the ECCC-GARCH model the matrices governing the ARCH
and GARCH dynamics - respectively, the matrices A and B introduced in the following
section - are allowed to be nondiagonal, and with the off-diagonal elements directly related
to the volatility spillovers. Specifically, testing for no volatility spillovers relies on testing
for whether the off-diagonal elements of the matrices are equal to zero.

In this paper we consider the properties of the quasi-maximum likelihood estimator
(QMLE) for the parameters in the ECCC-GARCH model in the case where some of the
elements of the A and B matrices are allowed to be zero under the null. For the ECCC-
GARCH model, the parameter space is typically restricted such that all elements of A
and B are nonnegative, which is assumed in the existing literature on the large-sample
properties of the QMLE, as in Jeantheau (1998, Definition 3.1), Ling and McAleer (2003,
Assumption 3), and Francq and Zakoian (2012, p.183). The constraints are convenient as
they (partly) ensure that the conditional covariance matrix is positive definite, and hence
that the log-likelihood function is well-defined. However, as will be the main message
from this present paper, the constraints lead to complications if one wants to test for no
spillovers, and in particular one cannot rely on standard large-sample theory for QML
estimation. Technically, the parameter is on the boundary of the parameter space under
the null hypothesis of no spillovers. This implies that the limiting distribution of the
QMLE cannot be obtained by relying on arguments based on a Taylor expansion around
a zero-valued score.

We make the following contributions. First, we consider the asymptotic properties
of the QMLE in the case where the true parameter value is on the boundary of the
parameter space. In contrast to the standard case where the parameter value is an interior
point, the (suitably normalized) QMLE does not have a Gaussian limit, but instead its

limiting distribution is the given by the projection of a Gaussian vector (that occurs in the



interior case) onto a set that depends on the true parameter. Second, in order to avoid
boundary issues when testing for spillovers in the ECCC-GARCH model, Nakatani and
Terasvirta (2009) proposed a Lagrange multiplier (LM) statistic. We consider a modified
version of this statistic, that is based on left/right partial derivatives of the log-likelihood
function with respect to the parameters on the boundary, and moreover the test is a QML-
type that allows for an unknown distribution of the (independent) innovations, see White
(1996, Chapter 8). We also consider quasi-likelihood ratio (QLR) and Wald tests both
taking into account that the true parameter is a boundary point. Whereas the limiting
distribution of the QMLE for univariate GARCH models when the true parameter is on
the boundary has been considered by Andrews (1998, 2001) and Francq and Zakoian (2007,
2009), we are not aware of any other papers considering this for the QMLE for multivariate
GARCH models. Some early considerations on testing when the null vector is a boundary
point of the maintained hypothesis can be found in Chernoff (1954) and Perlman (1969),
whereas Andrews (1999, 2001) provides a very general theory for estimators when the null
parameter vector is a boundary point of the parameter space.

The rest of the paper is structured as follows. In Section 2 we introduce the ECCC-
GARCH model and state some important properties of ECCC-GARCH processes. More-
over, we introduce the notion of spillovers and their relation to Granger causality. Section
3 introduces the QMLE and states the large-sample properties of the estimator, whereas
the associated QLR, Wald, and LM tests (for no-spillovers) are presented in Section 4,
which also contains an algorithm for determining critical values for the proposed tests.
Section 5 contains simulation studies that investigate the empirical size and power proper-
ties of the proposed tests, whereas Section 6 is devoted to an empirical illustration where
we test for no volatility spillovers between assets in foreign exchange markets. Section 7
concludes the paper. All technical derivations can be found in the appendix.

Some notation and definitions: Unless stated otherwise all limits are taken as T' — oc.
Let % denote convergence in distribution. For a random vector X, £(X) denotes the
distribution of X. For n € N, I,, is the (n x n) identity matrix, and the zero matrix 0y, xn
is an (m x n) matrix with all elements equal to zero. With ® denoting the Kronecker
product and ® the Hadamard product, we introduce for a matrix A the notation A®? :=
ARA®---®@Aand AP .= A©OA®---®A (p factors). The Euclidean norm of a vector or
matrix is denoted || - ||. Let R denote the nonnegative real numbers, and let S% , denote
the space of (d x d) positive definite matrices. For any C € S1, and any (d x 1) vectors
z and y let (z,y), = 2/Cy and ||z]|c = <:p,x>é/2. Moreover, for © C R% and 0 € ©,
©—0:={zx—0:2¢c06}

2 The ECCC-GARCH model and its properties

In this section we introduce the ECCC-GARCH model, state some important properties
of the ECCC-GARCH process, and introduce the notion of volatility spillovers and its

relation to Granger (non)causality.



2.1 The model

We consider the ECCC-GARCH(1, 1) model of Jeantheau (1998) for ¢ € Z given by

Xu0) = = O)m, (2.1)
Y1 (0) = Dy(0)R(0)Dy(), (2.2)
D} () = diag[o7(0)], (2.3)
03(9) = /-4+AX821(9)—|—BU752_1(9), (2.4)

with (1 : t € Z) an i.i.d. sequence of d-dimensional random variables with E[n;] = 04x1
and E[nm}] = I;. Moreover, diaglo?(6)] is a diagonal matrix with the (d x 1) vector
02(6) on the diagonal, R(f) is a positive definite correlation matrix, and Z% / 2(9) denotes
the square-root of ¥;(#) in the Choleski sense. The model is parametrized according
to 0 = (K, vec(A),vec (B)",vech®(R)"), where vech®(R) stacks the columns below the
principal diagonal downwards of R. The parameter space, ©, is given by a subset of
(0,00)% x [0, 00)24” x (—1,1)4d=1D/2 ¢ R%0 with sg := d + 2d2 + (d(d — 1)/2. Observe that
the parameter space is defined such that the elements of A and B are nonnegative. This
condition, together with the restriction x € (0,00)?, ensures that o2(6,) € (0, 00)¢ almost
surely, which, combined with the fact that R(#) € S1_, implies that ;(0) € S%, almost
surely for all € ©.

Remark 2.1. When the matrices A and B are restricted to be diagonal, the ECCC-GARCH
model simplifies to the CCC-GARCH model proposed by Bollerslev (1990).

2.2 Properties of the ECCC-GARCH process

For a fixed 6 € ©, equations (2.1)-(2.4) yield an ECCC-GARCH process (X; : t € 7Z).
The properties of such a process have been studied several places in the literature, in-
cluding Jeantheau (1998), Boussama (1998, Chapter 5), Ling and McAleer (2003), He
and Terdsvirta (2004), and Francq and Zakoian (2010, Chapter 11). Importantly, by
Francq and Zakoian (2010, Theorem 11.6), under suitable conditions, it holds that the
process has a unique strictly stationary and ergodic solution if and only if v := inf{E[(n +
D og(|Z0Z_1---E_4]])] : n € N} < 0, where Z; := {Adiag[(R"?1,)®%] + B}. Here
~v is the so-called top Lyapunov exponent of the sequence (Z; : t € Z). Notice that an
ECCC-GARCH process satisfying this strict stationarity condition may not have any fi-
nite (high-order) moments. In Section 3 it will be assumed that X; has finite sixth-order
moments when the asymptotic distribution of the QMLE is derived, and hence it is useful
to have conditions on the distribution of 7; and 6 ensuring these moment restrictions.
Such conditions can be found in Lemmas B.7 and B.8 in Appendix B containing novel
results for the ECCC-GARCH process. Specifically, from Lemma B.7 if for some p € N it
holds that 7; has a strictly positive density on R? with E[[|(nS?)®P||] < oo, if the diagonal
elements of Ay are strictly positive, and if p(E[(Z)®?]) < 1, with p(-) denoting the spectral



radius, then (X; : t € Z) is geometrically S-mixing with E[||(X%)®P||] < co. Moreover,
from Lemma B.8, E[[|(X?)®P||] < oo implies that p(E[(Z;)®?]) < 1.

2.3 Volatility spillovers and Granger noncausality

The main objective of this paper is to consider tests concerning spillovers in ECCC-
GARCH processes. As clarified below, volatility spillovers (or interactions) are quantified
by the off-diagonal elements of the matrices A and B, and thereby testing for spillovers
relies on testing if certain of the off-diagonal elements of A and B are equal to zero.

Consider, as an example, the bivariate process with X; := (X; 1, X 2)" and

. (hm) B <f€1 + AnX? 1+ AwpX? o+ Buhiaa + BIth—172>
¢ = = .
ht.2 K2 + A21X,52_1,1 + A22X,52_1,2 + Bo1hi—1,1 + Bashi—12

Here the coefficients A2 and As; quantify the effects of the past squared shocks Xt2—1,2
and Xt271,1 on the conditional variances h; 1 and hy 2, respectively. These effects are often
referred to as the ARCH spillovers, see e.g. Conrad and Weber (2013). Likewise, the
coefficients Byz and By; measure the GARCH spillovers from the conditional variances
hi—1,2 and hy_11 to hy1 and hy2, respectively.

Remark 2.2. As discussed in Conrad and Karanasos (2010) and Nakatani and Terésvirta
(2008), when considering the ECCC-GARCH model one may allow some of the off-diagonal
elements of A and B to be negative, and thereby introduce the notion of negative volatility
spillovers, see also Section 2.3. To our knowledge the large-sample behavior of the QMLE
is unknown when allowing for such negative parameter values, and we do not allow for

such (milder) parameter restrictions in this paper.

Intuitively, the spillovers characterize some of the dependence between X;; and X o,
and, as explained next, the spillovers are closely related to Granger causality. With .7-"tX =
o(X,:5<t)and F;'* == 0(X, : s <t), we consider the following notion of second-order
Granger noncausality, introduced by Granger et al. (1986): X, 2 is said not to second-order

Granger cause X;1 (with respect to FX,) if
E{(Xe1 — EX0a |FED?F ) - B{(Xe — EXG [ FO)?IFD) = Oas VEEZ

If the quantity on the left-hand side is nonzero (with strictly positive probability) then
X2 is said to second-order Granger cause Xy 1.

Suppose that (X; : t € Z) is strictly stationary, which implies that p(B) < 1 (Francq
and Zakoian, 2010, pp.290-291), then

he= (I = B) "'k + ) (B'A)X .
i=0

It holds that E[X;1|F ;] = 0 as., so that E{(X;1 — E[X;1|F2 )2 FE ) = hea as.

Hence, in light of the above definition, X;92 does not second-order Granger cause X; 1 if



hip = E[ht,l\fﬁll] a.s. which is the case if Bia = A1 = 0. These restrictions on the
matrices A and B thereby yield a sufficient condition for X; 2 not to second-order Granger
cause X; 1. Likewise, X; 1 does not second-order Granger cause X; o if Byy = Az = 0, and
we have that there is no second-order causation in the process if A and B are diagonal.
Notice that the above definition of Granger causality differs from, and is simpler than, the
original notion of Granger causality stated in terms of the conditional distribution of X; i,
see e.g. Granger (1969) and Engle et al. (1983). However, for practical purposes the above
definition is much more operational, as discussed in e.g. Granger (1980, Section 3). We
refer to Comte and Lieberman (2000), Hafner and Herwartz (2008), and Wozniak (2015)

for additional considerations about Granger causality in multivariate GARCH processes.

3 Estimation and large-sample properties of the QMLE

In the following we consider large-sample inference in the ECCC-GARCH model where we
allow elements of A and B to be equal to zero. Throughout the remainder of the paper, let
0f(0)/06 denote the vector of left /right partial derivatives of the function f : © — R with
respect to the vector 0, and let 9% f(6)/0006" denote the matrix of left /right second-order
partial derivatives as defined in Andrews (1999, pp.1350-1351).

Given a realization (X, : ¢ = 0,1,...,T) of the ECCC-GARCH model, the QMLE, 07,
of 6 is defined as

r = axg juf L1 (6)

with the feasible log-likelihood function, Ly (f), given by

. 1 L.

Lp(0) = let(a)’ (3.1)
t=1

I (0) = log {det |H, (0)| } + X;H; 1 (0) X, (3.2)

1,(0) = Dy(0)R(6)Dy(6),

DY) = diag [hu(0)], (3.3)

h(0) = K+ AXP% + Bhy_1(0), (3.4)

with EO(Q) = ho € (0,00)% fixed. Next, we consider the asymptotic properties of the
QMLE.

For the probability analysis of the QMLE we let 6y denote the true parameter vector
such that X; := X¢(6p). The derivation of the limiting distribution of the QMLE relies on

the following assumptions.
Assumption 1. 0y € O and © is compact.
Assumption 2. The sequence (X; : t € Z) is strictly stationary and ergodic.

Assumption 3. For all§ € ©, p(B) < 1 and R is a positive definite correlation matriz.



In light of Assumption 2, consider the (infeasible) ergodic version of the log-likelihood
function, i.e. for the strictly stationary and ergodic sequence (X; : t € Z) we define for
teZand 6 c 0O,

1 T
Lp(8) = let(m

t=1
L (0) = logldet (H; (6))] + X/ H; ' () X, (3.5)
Hi (0) = D(6)R(6)D:(0)
D}(0) = diag (h(0)) (3.6)
hi(0) = w4+ AXZ% + Bhy (). (3.7)

Assumption 4. For 6 € ©, {h; (6) = ht(6o) a.s. and R = Ry} implies that 6 = 0.

Remark 3.1. Assumption 4 is a high-level identification condition. Primitive conditions
are discussed in e.g. Jeantheau (1998), Ling and McAleer (2003), and Francq and Zakoian
(2010, 2012). In particular, for the simulation study in Section 5, all data generating
processes can be shown to be minimal in the sense of Jeantheau (1998, Definition 3.3)

which (under some additional mild regularity conditions) ensures identification.

Remark 3.2. The above assumptions are standard and imply that Op = 0o + o(1) almost
surely. If one additionally assumes that 6y € (2), i.e. Oy is an interior point of ©, and that
n; has finite fourth moments, then /7' (éT — 6p) has a Gaussian limit with zero mean and
covariance J1¥.J~! with J and ¥ given in (3.13) below. Both results are established in
Francq and Zakoian (2012).

As mentioned, we are interested in the case where some of the elements of Ay and
By are equal to zero, implying that 6y is not an interior point of ©. Let 3 denote the
(s1 x 1) vector containing the s; > 0 elements of A and B that take value zero under the
null, i.e. with true parameter value equal to zero, and let § denote the (sy x 1) vector
of the remaining s, := (s9 — s1) parameters of . Without loss of generality we consider
throughout the remainder of the paper a reparametrized version of the ECCC-GARCH
model such that

B
R (3.8)
(sox1) s |

(52><1)

and with © defined accordingly. Notice that for the case where s; = 0, we have that 8 = §.
We also consider accordingly a partition of the true parameter value 6y = (3, d;)’, and
by definition Sy = 0s,x1. For the case s; > 0, with the QMLE Or = (,@},S’T)’, it holds
that T (BT — Bo) = VT Br € [0,00)°* which cannot have a Gaussian limit. Hence the
theory for the QMLE for the case where 6y is an interior point, as described in Remark
3.2, is no longer applicable. We deal with the boundary problem by making two additional
Assumptions 5 and 6.

First, we make the following assumption about 6y and O.



Assumption 5. The set © — 0 is locally equal to A == Ag x Ay = R} x R*2, i.e. there
exists an € > 0 such that AN C(0,¢) = © N C(0,¢), where C(z,¢) C R? denotes an open
cube centered at x € RY and with side length 2e.

Remark 3.3. Assumption 5 is essentially a special case of Assumption 2%* in Andrews
(1999, 2001) and has several purposes. First, it prevents the true parameter value d
from reaching the bounds of ©, which keeps things as simple as possible, as our main
interest is to consider hypotheses where elements of 5 are equal to zero (i.e. take value
at the lower bound of ©). Second, this assumption allows us to make a Taylor-type
expansion based on left/right partial derivatives of the log-likelihood function around 6,
see Andrews (1999, Appendix A) for details. Moreover, the assumption is important for
approximating the quantity /7' (éT — 6p), see specifically the proof of Theorem 3.1 in
the appendix. Although the assumption imposes additional structure on the parameter
space it is compatible with the parameter restrictions given in Assumption 3. As in
Francq and Zakoian (2007), let 6y(e) be defined as the vector obtained by replacing all
zero elements of 6y by € > 0. For some sufficiently small €, 0y(¢) belongs to the interior
of ©. Consider the case where By is diagonal. Provided that Assumptions 1 and 3 hold,
p(Bo) < 1. For a real m x m matrix with nonnegative entries, it holds that C' = [Cj;] > 0,
p(C) < min {maxi:L_,_,m Z;»nzl CijyMaxj—1  m > ey Cz-j}. Hence for a sufficiently small
€ >0, p(Boe) < 1, where By, is B evaluated at 6y(e).

Another example is the bivariate case where

B 0
)]
Bs1g Ba2po

and Bi1,0 and Bag o are strictly positive. Here the eigenvalues of By, are

1 1
5(311,0 + Bag) £ 5\/(311,0 — Bj2)? + 4Ba pe.

Since p(By) < 1 we know that By1 9 and Bag g are strictly less than one, so for a sufficiently
small € > 0, p(Bo.) < 1.
Second, deriving the asymptotic distribution of v/T (éT —0p) typically relies on, among

other things, verifying a condition such as

821, ()
E (s .
[338 00,00, = (3.9)
or, given that 6y € (2), i.e. 0y is an interior point,
23 (0)
E| sup | =——=|| <>
Ley(go) 00;00;00;,

for all 4,5,k =1, ..., sp and for some neighborhood V() around 6y. With h;;, () denoting



element i1 of hy(#), the latter condition it usually verified by showing that

1 Ohy, (6)

E
hei, (6)  06;

sup
0eV(6o)

3
] < 00 (3.10)

for all iy = 1,..,d and all i =1, ..., 59, and a similar property with Oh;, (0) /06; replaced
with 02hy 4, (0) /00,00, and 83hy 4, (0) /90;00;00). Consider, for simplicity, the case with
B = 0949 on O, i.e. with no GARCH effects. Then

ha(0) = (ht,1(9)> B (Rl +AnX? o+ A12Xt2_172>
t - - ’
h,2(0) ko + An X7 + A X7,

and hence )
hi1(0) 0A12 K1+ An X7 )+ AX? '

For the case where 6y € (S), one can choose V(fy) such that the elements of A are bounded
away from zero on V(6y), see Francq and Zakoian (2012, pp.199-202). This implies that
the fraction in (3.11) is bounded on V(6p) by supgeyg,) A7} < oo, and hence that any
moment of (3.11) is finite on V(6y). However, such argument cannot be applied to bound
the moments of the derivatives of the log-likelihood function in the case where some of the

elements of Ay can take zero value. Suppose additionally that Ag is diagonal, then

1 Ohia(6o) XP 1o
hi1(0o) OAin K10+ AoXE

which is not bounded by a constant. The asymptotic properties derived in this paper rely
on establishing condition (3.9), which is done by imposing the condition that E[||X;||®] <
00, similar to Francq and Zakoian (2007, Assumption A7).

Assumption 6. E[|| X% < oo.

Remark 3.4. As mentioned in Subsection 2.2, Lemmas B.7-B.8 provide necessary and

sufficient conditions for Assumption 6 to hold.

We are now able to state the limiting distribution of the QMLE.

Theorem 3.1. Under Assumptions 1-0,
VT (O — o) 5 W\ (3.12)

where AN = arginfyecp ||Z — A||3, with ||Z — )\H?] = (Z = XN J(Z — N), and where A is
defined in Assumption 5, Z is a random vector with distribution £(Z) = N(0,J12J~1),
and

J = E[0%1,(60)/0000') € S, , S = E[(ly(60)/00)(dls(60)/00)). (3.13)

The theorem states that the limiting distribution of the normalized QMLE is given by
M which by definition is the projection of the N (0, J~!¥J~!)-distributed Z onto the set



A with respect to the metric induced by the inner product (-,-) ;, where we recall that for
z,y € R, (z,y);, = «’Jy. Since A is convex according to Assumption 5, it holds that
M is unique. In the case where 6 is not a boundary point, s; = 0, such that A = R
and the limiting distribution of \/T(éT — 6o) is Z, as mentioned in Remark 3.2. Notice
that the matrices J and ¥ are stated in terms of left/right-derivatives, as discussed in
Andrews (1999, Appendix A). Moreover, Andrews (1999, pp.1367-1370) provides closed-
form expressions for A}, and gives an outline of how to make draws of the distribution of
M based on numerical methods. The next section is devoted to testing hypotheses about

the parameters in A and B.

4 Testing

In this section we introduce Lagrange multiplier, Wald, and likelihood ratio statistics
suitable for testing hypotheses about the matrices A and B. In particular, these tests allow
us to test for volatility and second-order Granger noncausality, as discussed in Subsection
2.3. Subsection 4.1 states the test statistics and their limiting distributions. In Subsection

4.2 we provide an algorithm for determining critical values for the proposed tests.

4.1 Test statistics

We consider testing hypotheses where some of the parameters in the matrices A and B
take zero value. With § defined according to the partition of  in (3.8), we consider the
partition of 8 given by

(ﬁ1 )

ﬂ — S1x1 41

(81><1) 52 ( )
(.§2 ><1)

for some §; < s1 and §9 := s; — §1. Notice that, by convention, § = 7 when §; = s;. We
are interested in testing whether 51 takes value zero, i.e. in terms of the true parameter
value 0y = (8y,dp)" = (81,0, 2,0, 0p)', we want to test the hypothesis

Ho: B0 =0z x1.

We test Ho against the alternative 519 # 0z, %1 and with the maintained hypothesis that
0y € ©. Notice that under Hg it might be that some of the remaining parameters of A
and B are equal to zero, which is the case when §o = s1 — 51 > 0, and we may consider (5o

as nuisance parameters attaining the zero bound of ® under H,.
With L7(0) the feasible log-likelihood function defined in (3.1), let 67 be the con-

strained estimator given by
éT = arg gierg f/T (9), with @0 = {9 = (ﬂi, ﬁé, (5,)/ €0: 51 == O§1><l}' (4.2)
0

We propose three statistics for testing Hg. The first statistic is a quasi-likelihood ratio

10



(QLR) statistic,

Next, let

i 3 4 t t A T ¢
Zaaétaef’ S (6) = L PO gy gy Ly O )

Moreover, with sg the dimension of the parameter vector 6, s; the dimension S given in
(3.8), and 5; the dimension of the vector 5 defined in (4.1), let

K = (Is;,04,x(s9—s1)) and K1 := (I5;, 05 x(sp—31))- (4.4)
The second statistic is the Wald statistic,
Wr = TOL K| K1 Jr(0r) ' K{]) 7 K107,
and the last statistic is a Lagrange multiplier (LM) statistic,
LMy = TSr(07) Jr(07) " K{[K1Jr(0r) " S (07) Jr(0r) " K17 Ky Jr(0r) " Sr(0r).

Remark 4.1. In addition to the QLR and Wy statistics, one could also consider a directed
Lagrange multiplier statistic, that exploits that the true parameter is on the boundary
under the null, similar to Andrews (2001, Section 7). We focus here on the first two
statistics together with the “classical” Lagrange multiplier statistic, L M7, that, although

it is based on partial left /right derivatives, does not take any boundary issues into account.

In order to derive the limiting distribution of these statistics, we assume, similar to

Assumption 3, that 6y and ©g satisfy the following conditions.

Assumption 7. 0y € ©g and ©g — Oy is locally equal to Ao = Agpg, x Ag, x As =
{0§1><1} X R‘j? x R%2,

Similar to A* defined in Theorem 3.1, we consider A0 as the projection of random
vector Z with distribution N (0,J~'XJ~1) onto Ao, i.e.

Ao — ()‘/B\OI’ /\2\0/)' € Ag satisfies A0 = arg /\in/f 1Z — Al (4.5)
€Mo

The following theorem states the limiting distributions of the proposed test statistics.

Theorem 4.1. Let the matrices K and K; be given by (4.4), and let J be given by (3.13).
Under Assumptions 1-7 and H,

QLRr = H)\,BH KJ-1K')~ H)\ H?Kj—lK/)—la (4.6)

where A = (MY, \Y) = ()‘,61’ /\Bz’ MY is defined in Theorem 3.1, and )\20 is defined in

11



(4.5).

Moreover,

Wr 5 IN3, k-1 -1 (4.7)

Suppose in addition that 2, defined in (3.13), is positive definite. Then
LMy 5 x2, (4.8)

where X% s a chi-squared random variable with 51 degrees of freedom, with 31 the dimen-

siomn of B1.

Remark 4.2. Theorem 4.1 states that the limiting distribution of the QLR depends on
the minimizer of the quadratic form || Z — A||% over A and Ay, respectively. From Lemma
B.6 it holds that infyey [|Z — A2 = infy en,, xaq, 128 — )‘,8”?1((]711(/)71’ and by similar
arguments infycy, [|Z — A3 = inf}\ﬂe{0§1x1}XA/32 1 Zs — A5||%KJ_1K,)_1, where Zg is defined
from the partition Z = (Z3, Z5)". Thereby the limiting distribution of QLR7 depends in
general on the cone Ag,, i.e. whether there are nuisance parameters (in Ag and By) taking
zero value. A similar observation applies to Wrp, as )\21 is a part of A and hence requires
knowledge about the shape of A. This issue appears to be an important topic within the
field of testing on the boundary. We refer to Ketz (2014) for some recent considerations
regarding hypothesis tests regarding a single parameter at the boundary with nuisance

parameters potentially taking values on the boundary of the parameter space.

Remark 4.3. Unlike the QLRr and Wr statistics, the limiting distribution of the LMy

statistic is pivotal and does not depend on nuisance parameters.

Remark 4.4. In the case where (KJ'K’)~! is block diagonal, i.e. Ko(KJ 'K")" K} =
03, x5, Where Ko := (I5,, 05, x5,) and K := (0z,x3,, I3,), it can be shown (by applying the
arguments from Remark 4.2 and the proof of Lemma B.6) that, with Zs = (Z5 , Z3,),

inf Zg— Mgl apen1 = inf || Zs, — Ag |5 ko1 g1 e
s, xAg, | B BH(KJ 1R7)—1 e | B1 ,81||K2(KJ LK) 1K)
: 2
+ lnf\ﬁz ||Z/32 - )\/BQHRQ(KJ—IK/)—lKé-

B2€

This implies that the limiting distributions of W and QLR7 do not depend on As and
thereby not on whether the nuisance parameters take zero value. In particular we have
that

A 2
QLRy = X% %o g1y 1K1
with \A1 = arg infy, en,, 125 — Mg ”%{Q(Kj—lK’)—lKé- Moreover, for this case the limit-
ing distribution of Wy is given by | ||?K1 JLK]) 1 Notice that the block diagonality
property of (KJ1K’)~! does not appear to hold in general.

The following corollary is immediate from Theorem 4.1 and states that the limiting

distributions of QLRy and Wrp are the same in the case where there are no nuisance
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parameters (in A and B) taking zero value.

Corollary 4.1. Under the same assumptions as in Theorem 4.1, suppose that 51 = sy
such that B1,0 = Bo = 0s,x1, i.e there are no nuisance parameters on the lower bound of
O. Then the limiting distributions of QLRy and Wt are both given by ||)\2H%KJ_1K/)_1.

Remark 4.5. In the context of testing for diagonality of Ag and By, and under the assump-
tion that the innovations are Gaussian, i.e. L£(n:) = N(0,I;), Nakatani and Terdsvirta
(2009) propose the LM statistic,

1. L o
LMgccoc = §T5T(9T)'Ki (K1 Jr(07) " K1) K1S7(07).

Similar to our assumption about the parameter space ©, Nakatani and Terasvirta (2009)
derive the limiting distribution of this statistic under the assumptions that the elements of
A and B are nonnegative (Nakatani and Terdsvirta, 2009, footnote on p.149). Moreover,
they assume that the true parameter vector is an interior point of the parameter space
(Nakatani and Terésvirta, 2009, Assumption 3.1). In Proposition C.1 in the appendix we
state the limiting distribution of the LM pcoc statistic under the same assumptions as in
Theorem 4.1. Specifically, provided that £(n;) = N(0, I;), and that §; = s1, the LMpccoco
statistic has an asymptotic Xgl distribution. In the more general cases where s; — §; > 0,
i.e. with nuisance parameters attaining the zero bound of ©, and where 7; may not be

Gaussian, the limiting distribution will not be Xgl, as also stated in Proposition C.1.

In the next section we provide an algorithm for calculating critical values for the

proposed tests for the case with no nuisance parameters in A and B taking zero value.

4.2 Calculating critical values

Following Andrews (1999, pp.1367-1370), we can obtain draws from the limiting distribu-
tion of the Wr and QLR statistics according to the following algorithm.!

Algorithm 1. Let Jp and Y7 be consistent estimators for, respectively, the matrices J
and 3 stated in (3.13). Suppose that §1 = s1, i.e. there are no nuisance parameters (in A
and B) taking zero value, such that Corollary 4.1 applies. A critical value ¢ for Wr and

QLRt yielding a test with asymptotic size o can be obtained as follows:
1. Draw €* randomly from N(0,Is,) and compute Zy = [KjT_lflTjT_lK’]l/Qs*.

2. Find ;\’E that minimizes ||Z/§ = (ZE — Ag)’(KjflK’)_l(ZE YY)

2
- Aﬁ”(f(j;lK/)—l
over \g € Ag =R, and compute H)\EH?KJT_IK’)*T
3. Repeat steps 1.-2. N times (with N very large), and let {x; : i = 1,..., N} denote
the sequence of the N independent draws of HS\EH?

K= K1 Then c is given by the
(1 — o) percentile of {x; :i=1,...,N}.

"We here use Lemma B.6 stating that A} is equal to A\*%, A% = arginfy ea, |25 — )\BH?KJ—IK/)—ly
where Ag = R},
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Remark 4.6. The minimization problem in point 2. of Algorithm 1 is a quadratic program-
ming problem. Most programming languages have a build-in function that can deal with
such problems, and for a fairly small amount of restrictions, i.e. for small s;, the minimiza-
tion is solved quickly. For the simulations and the empirical illustration in the following
sections, the minimization problem is carried out by the solveQP function in OxMetrics
7.0. An alternative way of making draws of A3, and hence drawing from the distribution
of ”)‘/B\H%K J-1Kn)-1, IS given by Andrews (1999, Section 6.3) where a closed-form expression
for )\g is provided. Moreover, throughout the simulations and the empirical illustration,
we use Jp(0r) and X7 (07) as estimators for J and X, respectively, where 07 is the QMLE
and Jr () and $7(0) are defined in (4.3). These estimators are consistent according to

Lemma B.1.

5 Simulations

In this section we investigate the empirical size and power properties of the proposed test

statistics.

5.1 Size simulations

We consider the size properties of the proposed test statistics, including the LMpgcoc
mentioned in Remark 4.5, for the bivariate ECCC-GARCH model. Specifically, we con-
sider tests where the matrices A and B are diagonal under the null. In order to keep
things simple we consider cases where no nuisance parameters in A and B take zero value.
We consider the data-generating processes (DGPs) stated in Table 1, where DGP 1-3 cor-
respond to DGP 1,2, and 4 in Nakatani and Terédsvirta (2009), respectively. Recall from
Theorem 3.1 that we imposed finite sixth-order moments of X; (Assumption 6) in order to
derive the limiting distribution of the QMLE. For all the DGPs we impose, for simplicity,
that the innovation 7, is Gaussian. This condition implies that 7; has a strictly positive
density on R? with E[||n:]|°] < oo, and hence from Lemmas B.7 and B.8, E[|| X4||%] < oo if
and only if

We = p(B{[Ao diag((Ry/ ) %) + Bo]**}) < 1. (5.1)

Using Monte Carlo integration we have computed the value of ¥4 for each DGP, as also
stated in Table 1. Whereas DGP 3-5 satisfy condition (5.1), DGP 1-2 do not. Although
our theoretical results are not expected to hold for DGP 1 and 2, we have included the
simulations results in order to compare with the results for the DGPs that do satisfy the
moment condition. Moreover, for all the DGPs for the empirical size and power simulations
it holds that the conditions in Jeantheau (1998, Definition 3.1.3 and Assumptions B1-B2)
are satisfied, which by Jeantheau (1998, Proposition 3.4) implies that the identification
condition in Assumption 4 holds. These above restrictions on the DGPs imply together
that Corollary 4.1 holds for the processes (up to the sixth-order moment condition of X}
in the case of DGP 1-2).
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Table 1: DGPs for size simulations
DGP 1 DGP 2 DGP 3 DGP 4 DGP 5

A 0.1 0 0.04 O 01 0 01 0 0.07 0
0 0 02 0 0.05 0 02 0 02 0 0.08

B 0.8 0 095 0 045 0 0.70 0 0.80 0
0 0 0.7 0 09 0 06 0 0.75 0 0.85

To 0.3 0.9 0.9 0.9 0.9

We 1.223 1.337 0.387 0.944 0.953
For all DGPs ko = (0.1,0.2)" and L(n:) = N(0, ).

Table 2 contains the actual rejection frequencies of our proposed tests based on the
5% mnominal level and on empirically relevant sample sizes of 1,000, 5,000, and 10,000
observations. All simulations are based on 2,000 replications with a burn-in period of 1,000
observations. The critical value of the QLR and Wr tests are carried out according to
Algorithm 1 and Remark 4.6. For each replication the critical value is based on 100,000
draws from ||)\2H%K J-1r)-1- The critical values for the LMy and LMpccoc are based on
a x3-distribution, in line with Theorem 4.1 and Proposition C.1. We refer to Appendix D

for additional technical details about the simulations.

Table 2: Size simulations
T LMy Wr QLRr LMEgccc
DGP 1 1,000 0.0277 0.00877 0.0411 0.1886
5,000 0.0552 0.0326  0.0577 0.1068
10,000 0.0436  0.0276  0.0461 0.0657
DGP 2 1,000 0.0194 0.0187  0.0406 0.2710
5,000 0.0460  0.0490  0.0555 0.1090
10,000 0.0505 0.0545  0.0610 0.0790
DGP 3 1,000 0.0277 0.0164 0.0507 0.1638
5,000 0.0477  0.0271  0.0432 0.0974
10,000 0.0455 0.0345  0.0460 0.0760
DGP 4 1,000 0.0353 0.0243 0.0487 0.1764
5,000 0.0551 0.0406  0.0561 0.0966
10,000 0.0455 0.0360  0.0495 0.0680
DGP 5 1,000 0.0137 0.0180 0.0416 0.2270
5,000 0.0445 0.0310 0.0506 0.1036
10,000 0.0390 0.0365  0.0445 0.0685
Actual rejection frequencies based on the 5% nominal level.

From Table 2 we notice that LM seems to be slightly under-sized for a sample size
of 1,000 observations, whereas the test seems to have very reasonable size properties for
larger sample sizes. The LMpcooc test seems to be over-sized for sample sizes of 1,000

2 Moreover,

and 5,000 observations, but only slightly over-sized for 10,000 observations.
the Wald test appears to be slightly conservative for most of the DGPs and in particular

for sample sizes of 1,000 observations. The quasi-likelihood ratio test has very reasonable

2The rejection frequencies for the LMgccc test reported in Nakatani and Terdsvirta (2009, Table 2)
seem more favorable than the ones reported in Table 2. A correspondence with Tomoaki Nakatani and
a careful inspection of the R code used to generate the results in Nakatani and Terédsvirta (2009) have,
unfortunately, not enabled us to detect the source of the difference.
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size properties for all sample sizes under consideration. Notice that even though the
DGPs 1 and 2 do not satisfy the moment condition in (5.1), and hence that our derived
theory is not expected to apply for these processes, the violation of the condition does not
seem to have any severe effect on the performance of the tests. Lastly, in similar studies
(not reported here) we investigated the size properties of the tests for the case of 50,000
observations, and when testing for the single restriction B1o = 0. These studies yielded

qualitatively the same conclusions as the simulations reported above.

5.2 Power simulations

Next, we consider the power properties of the proposed tests. The power simulations
are based on DGP 5 from the previous subsection, and we consider the data generating
processes, deviating from the null of diagonality of the matrices Ag and By, stated in Table

3. The DGPs are inspired by the ones used in Nakatani and Terasvirta (2009, Table 3).

Table 3: DGPs for power simulations

DGP 5.1 DGP 5.2 DGP 5.3 DGP 5.4
A, | 007 0001 {0.07 0.001J {0.07 0.01J 0.07 0.01
0.004 0.08 0.004 0.08 0.02 0.08 0.02 0.08
B [0.80 0.004] [0.80 0.04] 0.80 0.004] [0.80 0.04]
0.002 0.85 0.03 0.85 0.002 0.85 0.03 0.85
DGP 5.5 DGP 5.6 DGP 5.7 DGP 5.8
A, | 007 0001 0.07 0.01 {0.07 OJ 007 0
0.004 0.08 0.02 0.08 0 0.08 0 0.08
B {0.80 0 [0.80 0 ] 0.80 0.004] [0.80 0.04]
0 085 0 085 0.002 0.85 0.03 0.85

For all DGPs ko = (0.1,0.2)', ro = 0.9 and L(n:) = N(0, I2).

Table 4 states the rejection frequencies of the tests when the null is incorrect according
to the DGPs given in Table 4. The simulations are based on 2,000 replications, a burn-
in period of 1,000 observations, and the same seed values as the size simulations. The
reported powers are size corrected in the sense that the critical value for the tests (at the
5% nominal level) is chosen as the 95 percentile of the simulated test values from the size
simulations.

From Table 4 we see that the power of the tests is low whenever the off-diagonal
elements of A and B are all close to zero. In particular, even for a sample size of 10,000
observations the power is not impressive for any of the test statistics for the DGPs 5.1, 5.5
and 5.7. For all other DGPs the test statistics seem to have great power as T increases.
Moreover, the proposed Wald and likelihood ratio tests have better power properties than
the other tests for all choices of DGP and for all sample lengths.
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Table 4: Empirical power

DGP 5.1 DGP 5.2
T LM~ Wr  QLRr LMEgccc LMt Wr QLRr LMgccc
1,000 .0493 .0898 134 .0286 .254 397 .619 .0654
5,000 107 278 .320 .0590 .983 .999 1.00 954
10,000 .256 514 .533 173 1.00 1.00 1.00 1.00
DGP 5.3 DGP 5.4
T LM~ Wr  QLRr LMEgccc LMt Wr QLRr LMgccc
1,000 .301 484 570 0675 .639 .749 .895 133
5,000 971 .998 .997 .929 1.00 1.00 1.00 1.00
10,000 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DGP 5.5 DGP 5.6
T LMt Wr  QLRr LMEgccc LM Wr QLRr LMEgccc
1,000 .0404 0742 .0829 .0410 .288 477 .522 .0675
5,000 .0605 122 130 .0520 .956 .995 .996 .891
10,000 .0875 .202 .198 .0730 1.00 1.00 1.00 999
DGP 5.7 DGP 5.8
T LMt Wr  QLRr LMEgccc LMt Wr QLRr LMgccc
1,000 .0383 .0618  .0938 .0284 .206 341 .542 .0704
5,000 .0665 134 174 .0465 .966 .996 997 911
10,000 118 .266 291 .0845 1.00 1.00 1.00 1.00

Actual rejection frequencies based on the size-corrected critical values at the 5% nominal level.

6 Empirical illustration

In this section we provide an empirical application of the proposed tests for volatility
spillovers. We apply the same data set as in Nakatani and Terédsvirta (2009) and investigate
the volatility spillovers between a pair of foreign exchange rates. The exchange rates are
daily noon buying rates of the Japanese yen (JPY) and the Swiss franc (CHF) against the
U.S. dollar (USD). The series go from 2 January 1975 to 2 December 2005, with a total
of 7,766 observations in each series. Descriptive statistics of the data series are contained
in Nakatani and Terésvirta (2009, Tables 7 and 8).3

Table 5: Estimation results

Model K A B r LMzt Wr QLRr LMgccoce
CCC  JPY 21 0.0513 0.9460 0.5416  8.87 52.57 76.21 40.23
CHF 7.8 0.0574 0.9285 (0.0645)  (0.0285)  (0.0097)  (0.000)

ECCC JPY 1.2 0.0449 0.0037 0.9493 0.0000 0.5417
CHF 6.7 0.0000 0.0588 0.0080 0.9229

Point estimates of parameters in the restricted ECCC-GARCH model (CCC) and in the unrestricted
ECCC-GARCH model (ECCC). The estimates of the elements of x are multiplied by 1,000. The p-values
of the LMr, Wr, QLRr, and LMEgccc test for diagonality of A and B are reported in parentheses. The
p-values for Wr and QLRr are obtained according to Algorithm 1 and Remark 4.6 based on 1,000,000

draws. The p-values for LMr and LMgccc are based on a xﬁ—distribution.

We fit a bivariate ECCC-GARCH model to the return series and test whether the
matrices A and B are diagonal. The tests are based on the assumption that the diagonal

elements of A and B are strictly positive under the null, such that no nuisance parameters

3We have left out any empirical illustration containing the equity pairs investigated in Nakatani and
Terdsvirta (2009), as standard Box-Pierce tests revealed significant auto-correlation of order 5 for these
series, suggesting that a raw ECCC-GARCH model, i.e. with no VAR(MA) component, may not be
suitable for capturing the dynamics of these return series.
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take zero value. This enables us to determine the critical values of the tests according to Al-
gorithm 1 and Remark 4.6. For each individual series of the standardized residuals, based
on a Jarque-Bera test, we rejected the null of normality, suggesting that the LMgcocco
test based on a x? limiting distribution, as performed in Nakatani and Terisvirta (2009),
may not be appropriate for testing for no spillovers in the return series, as mentioned
in Remark 4.5. Table 5 contains the estimation results. First, we notice that the point
estimates of the off-diagonal elements of A and B are fairly small. Second, based on the
LM statistic we fail to reject the null of no spillovers, whereas the null is rejected based
on the LMpccc test with the p-value based on a x?2-distribution. The latter is in line
with the findings in Nakatani and Terésvirta (2009), but, as the standardized residuals, as
mentioned, did not appear to be normally distributed, the validity of the LM pccc test is
dubious. Based on the QLRp and Wy tests, we reject the null of no spillovers. In light of
the very reasonable size properties and superior power properties of these tests compared
to LMy, we find evidence for volatility spillovers between the JPY/USD and CHF/USD
rates, in line with the findings in Nakatani and Terédsvirta (2009).

7 Concluding remarks and future research directions

We have considered the large-sample properties of the quasi-maximum likelihood estimator
(QMLE) for the extended constant conditional correlation GARCH model in the case
where the true parameter is on the boundary of the parameter space. This case is of great
importance in empirical finance where one is typically interested in testing for volatility
spillovers between assets and markets. In contrast to the “standard” case, where the
true parameter is an interior point, the limiting distribution is given by a projection of
a Gaussian vector onto a set determined by the true parameter vector. Moreover, we
proposed Lagrange multiplier (LM), Wald, and quasi-likelihood ratio statistics (QLR)
suitable for testing for volatility spillovers. Similar to the QMLE, the Wald and QLR
statistics do also have nonstandard limiting distributions, however, as we demonstrate,
these distributions are (under suitable conditions) straightforward to make draws from.

A simulation study showed that, in particular, the QLR test has very reasonable
empirical size properties. Moreover, simulations showed that the Wald and QLR tests
have superior empirical power properties compared to the LM test.

Lastly, in an empirical illustration the proposed tests were applied to returns on foreign
exchange rates. For the sample period from 2 January 1975 to 2 December 2005, based
on the Wald and QLR tests we rejected the null of no volatility spillovers between the
Japanese Yen/U.S. dollar and the Swiss Franc/U.S. dollar rates, in line with the findings
of Nakatani and Terésvirta (2009).

An important topic for future research is to investigate the limiting distributions of the
proposed Wald and QLR statistics in more detail. Specifically, the limiting distributions
appear, in general, to depend on nuisance parameters taking zero value, hence it is of

particular interest to consider other tests, or corrections, that are pivotal to such boundary
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properties, as e.g. considered in recent work by Ketz (2014).
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A Proofs of theorems

Throughout the proofs let C and ¢ denote positive, finite generic constants always with
¢ < 1. Moreover, all Taylor-type expansions are based on partial left/right derivatives
according to Andrews (1999, Appendix A), where all derivatives with respect to parameters
at the boundary of © are right derivatives. Furthermore, for the proofs of the theorems as
well as the lemmas stated in the next section, it will be convenient to consider the following
partitions. With J and ¥ the matrices defined in (3.13) and G and Z the random vectors
given by £(G) = N(0,%) and Z = J~'G, define according to the partition 6 = (5, §")’

Z
7 [Jﬂﬁ J/%] G- lG/&] . and Z= [ ﬂ] : (A.1)
Jgg Jss G

where Jgg is (s1 x s1) and G is (s1 x 1) and so forth.

Proof of Theorem 3.1. The asymptotic distribution of /T (éT — 0p) is derived along
the lines of Andrews (1999, Proof of Theorem 3) and Francq and Zakoian (2007, Proof
of Theorem 2). Initially, notice that Or is strongly consistent for 6y, as mentioned in
Section 3. Moreover, © — 6 is locally equal to a union of orthants, A, (Assumption 3) and
L7(#) has continuous left /right partial derivative of order 2 on ©. Due to Andrews (1999,
Theorem 6) we are able to make a second-order Taylor-type expansion of I:T(G) around

0o such that for any point 6 € © there exists a point 8* between 0 and 6

~ ~ 8LT(90) 1 aQLT(GO) *
Ly (0) = Lr(6o) + T(e = 00) +5(0 - 00)/W(9 —bo) + Rr (0) + Ry (6)
where
_ (9Lr(8y)  OLz(f) 1 ,[02Lr(0g)  02Lr(6y)
R (0) = ( g~ op )03 e~ —agag | ¢ %)
(A.2)
and 5 -
. L |9 Lr (0%)  9°Lr(f) B
Moreover, with
T d*Lr(6y)
T 0000
and OL7(0
Ty = _Jflﬁgé@, (A.4)

we have, by definition, that
A A 1 2 1 2 *
Ly (0) = Lr(6o) — ﬁHZTHJT + ﬁ”ZT —VT(0 —00)|3, + Rr (0) + Ry (6).  (A5)

Notice that in the definition of Z7 in (A.4) we have used that Jpr = J 4+ o(1) almost surely

with J nonsingular, as proved below. So, technically, Z7 might only exist almost surely
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for T sufficiently large. It suffices to establish the following points:

1. VTOLr(00)/00 = G with £ (G) = N (0,%) and Jr = J + 0,(1), where the matrices
J € S, and ¥ are given by (3.13).

2. VT (61 — 6p) = O, (1).

3. For any O € © such that VT(07 — 6p) = O, (1), R&(67) = 0,(T~') and Ry (07) =
op(T71).

4. VT (07 — o) = Ar + 0, (1), where Ar € cl (A) satisfies || Z7 — S‘TH?JT = infyepl|Zr —
)\H?,T with A defined in Assumption 5

5. A 5 M, where M € cl (A) satisfies ||Z — M2 =infyep |1 Z — )\HQJ, 7 =-JG.

First, it follows from Lemma B.3 that ¥ is finite. Expressions for 0l;(0)/060;, i = 1,..., s,
are given in the proof of Lemma B.4 below. As in Francq and Zakoian (2012, p 200), by a
central limit theorem for strictly stationary and ergodic martingale difference sequences,
see e.g. Brown (1971), VTOL7(6y)/00 = G. Moreover, the ergodic theorem implies that
Jr = J + o0(1) almost surely. The positive definiteness of J is established in Francq and
Zakoian (2012, pp.203-204), and we conclude that 1. holds.

From the derivation of 1. we have that | - |7, is almost surely a norm for T' sufficiently
large due to the fact that J is positive definite. With Rr () defined in (A.2), it follows by
Lemma B.5 that

Ry (0r) = op(T~2(167 = 60])) + 0, (|0 — 6011*) = 0p(T~*72| 107 = bol|.11-) + 0, (1|61 — bol|3,.)-
(A.6)
For sufficiently large T', by Lemma B.5, [82 Ly (%) /8000'—02 L1 (0,)/0080') = [0 Ly (6*) /80060'—
0?Lr1(00)/0000"] + 0, (1). Also by Lemma B.5, [0%Ly (6%) /0000" — 0> L (00)/0000"] =
E[0%1; (0*) /000¢"] — E[0%1:(09)/0006'] + 0, (1), so by the continuity of E[0%l; (0) /000¢']

on © and the consistency of éT,
Ri(0r) = op (101 — 60]3,.). (A7)

with R%(6) defined in (A.3). Now from (A.5), (A.6)-(A.7), and the fact that 7 minimizes
Lz (0),

A A - 1 A A ~
Lr(0r) = Lr(00) = o=(1Zr = VT(0r = 00)5, = 122113, ] + Rr(0r) + Ry (0r)
1 A
= o7l Ze = VT (Or — 00)lI3, — 1 Z23,]
+op(Il0r — 6ol13,.) + 0p(T™/167 — b0l 17.) < 0. (A.8)
Since || - ||7, is a norm for T sufficiently large almost surely, it follows from 1. that
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| Z1|| 7, = Op (1). This fact together with (A.8) yields

1Zr — VT (b7 — 60)]13,

IN

12215, + 0p(IVT (01 — 00)I13,.) + 0p(VT |67 — b0l 1)
(12237 + 0p(VT 1101 — 80ll57))*. (A.9)

A

The triangle inequality and (A.9) imply that

VT||0r = 6olls, < N1 Zr — VT (01 = 00)l| 4 + | 27|11
< 2| Zr|lsp + 0p (V|07 — b0l 57)-

We conclude that v/T||fr — 6ol [1 + 0, (1)] < O, (1), and hence that 2. holds.

Result 3. is verified by arguments similar to the ones used to verify 2. together with
Lemma B.5.

Turning to 4., notice that when s; = 0, i.e. when 6y € ©, it holds that A = Zr, and
the result follows immediately by the consistency of 67 and Lemma B.5. Let éq satisfy

1Zr — VT(0g — 60)|13, = infoce | Zr — VT (0 — 0p)]|%,.. Tt holds that

IVT(0g = 00)llsr < N1 Zr = VT(0q = 00)ll.sy + 127 32
= jnf||Zr - VT (0 = 00)|lgr + 1277
< 227l =0p(1),
where the first inequality is due to the triangle inequality, the second inequality follows
from the fact that 6y € O, and the last equality follows from 1. Similar to the derivations
above, we conclude that vT(f, — 6p) = O, (1). From (A.5), using that 7 minimizes

L7 (8), and that §, minimizes || Z7 — VT (6 — 90)||?,T, together with results 2. and 3., we
have that

0 > T[Ly(br) — Lr(0,)]
= 120 VT r — ), — 3120 — VT, ~ )3,
+T[R3(0r) + Rr(Or) — R7(0,) — Rr(0,)]
> T[Ry(0r) + Rr(0r) — R (0y) — Rr(0,)] = 0, (1) (A.10)
Hence, using (A.5) and (A.10),

1Zr = VT (b = 00)|5, = 1 Zr = VT (0 = 00)[13, + 0p (1) (A.11)

Note that infgcg || Z7 — \/T(H — 00)||3T = inf}\eﬁ(@—eo) | Zr — A”?Iw where \/T(@ —6y) =
{ANeR% : X =T(0—6),0 € ©}. Moreover 1. and the fact that A is a cone (Remark
3.3) imply, due to Andrews (1999, Lemma 2), that

inf Zr — M2 = inf |Zr — M2 + 0, (1). A.12
Aeﬁ(e%)!\ T = A7, AeA|| T — A7, +op(1) ( )
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Let Ar € A satisfy || Z7 — S‘TH?IT = infyeal|Z7 — Al|3,. Then combining (A.11) and (A.12)
yields

||ZT—ﬁ(éT—90)\|3T = HZT—S‘TH?IT +op(1). (A.13)
Observe that
1Zr — VT (br — 00)||3, = |VT(0r —60) — Ar|3, + 127 — M|,
+2(Zr = Ar, Ap = VT(0r — o)) - (A.14)
Jr

Using that vT'(07 — 6y) € A and that A is closed for s; > 0, it follows from Zarantonello
(1971, Lemma 1.1),

(Zr = Ar,Ar = VT (br - 00)>JT > 0. (A.15)

Combining (A.14) and (A.15) yields
1Zr = VT (0r — 00)113, = INT(0r — 60) = Arl%, + 120 — Ar |3, (A.16)

In light of (A.13) and (A.16), we conclude that 4. holds.

In line with Andrews (1999, p.1379), since A is convex, Ar is unique. Moreover, since A
satisfies ||Z7 — /A\TH?JT = infreal|Z7 — A3, Ar = f(Zr, Jr) with some implicitly given
function f. The function f is continuous at all points (Zp, Jr) where Jp is nonsingular.

Since J is nonsingular, the continuous mapping theorem implies that A = f(Zr, Jr) =
f(Z,J) =\, and we conclude that 5. holds. O

Proof of Theorem 4.1. From the proof of Theorem 3.1,
2 4 2 1 2 1 32
TlLr(0r) = Lr(00)] = —5 1275, + 51127 = Arlls, +0p (1),

so the continuous mapping theorem together with points 1. and 5. from the proof of

Theorem 3.1 imply that
2T [Lr (9r) = Lr (60)] % = 121 + nt |12 = I3 (A17)

Next, with /\/ﬁ\ defined in Theorem 4.1, with Zg, G, and Jss defined according to the
partitions in (A.1), and with A\*¢ satisfying || Z5 — AA/3||%KJ,1K,),1 = infy,en, 125 —
/\HH%KJflK/)flv it holds that

2 . 2 2 2 : 2
1215+ 1€ 12 = M5 = —lZsliEcs1n-s — IGsl2s + inf 12 = X3

A
—||G6\\3(;51 — I3 s g1yt

where the first equality follows from Lemma B.6.1. The second equality follows from

Lemma B.6.2 and Perlman (1969, Lemma 4.1), and the third equality follows from Lemma
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B.6.3. Combining (A.17) and (A.18) yields
2T (Lr(Br) — Lo 0] % I sk — Gl (A.19)

Notice that since g € ©g C © and Ag = Ag g, x Ag, x Ay = {0z, x1} X R‘f‘f x R%2 it is
possible, due to Assumption 7, to derive points 1.-6. in the proof of Theorem 3.1 with éT,
;\T, M and A replaced by Or, A, Mo and Ao, respectively. In particular, and similar to

the derivations above,
2Lr(0r) - Lr(00)] 5 I Wiy 11 — Gl (A.20)

The convergence of (A.19) and (A.20) holds jointly, since the convergence of the two terms
are due to point 1. in the proof of Theorem 3.1. This joint convergence and the Cramér-
Wold theorem yield the limiting distribution of QLRr.

Next, (4.7) follows by (3.12), Theorem B.1, and the continuous mapping theorem.
Lastly, we turn to the limiting distribution of LMy. It holds, due to the consistency of
f7, Lemma B.1, and the invertibility of J (Theorem 3.1), Jr(f7)~! = J~! + 0,(1). By a

Taylor-type expansion and Lemma B.5.1
VTS7(0r) = VT Sr(6o) + Jr (6%) VT (01 — 00) + 0,(1),

where 6* is between A7 and 6y as in Jensen and Rahbek (2004, Proof of Lemma 1). By
Lemma B.1 and by using that 6* = 6y + 0,(1), it holds that Jr (§*) = J 4 o, (1). Hence,
using that vT'S7(fy) and VT (A — 6p) are both O, (1),
VIEJr(0r) " Sr(0r) = K™ [VTSr(00) + JVT (01 — 0)] + 0, (1)
= K JWTSr(6o) + KivVT (01 — 6) + 0, (1).

Since K3 (9~T —00) = B1,0 = 03,x1, by Slutsky’s lemma and the fact that \/T@LT(OO)/ﬁe =
G,

\/TKle(éT)_IST(éT) = Klj_l\/TST(Go) +op (1)
% N (0, K1 TIRI K (A.21)
By Lemma B.1 and the fact that vVT'(fr — 6p) = O, (1),

Ky Jp(0p) Y80 (07) Jr(07) K, = K1 J 'S LK) 40, (1) (A.22)

Hence (4.8) follows by combining (A.21) and (A.22) and applying Slutzky’s lemma and

the continuous mapping theorem. O
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B Lemmas

Lemma B.1. With J and ¥ given in (3.13) and Jp(0) and S7p(0) given in (4.3), let

Or € © satisfy O = 0 + 0,(1). Under the assumptions of Theorem 3.1,

Jr(fr) = J + 0, (1). (B.1)
Additionally, suppose that \T(07 — 0o) = O, (1). Then
Sr(0r) =2 +o0,(1). (B.2)

Proof. The proof is quite similar to the arguments given in Ling and McAleer (2010,
p.100). Define, Jr (8) := T-1 L, 81, (8) /9006, where 14() is given by (3.5). Lemma
B.5 implies that Jr(f7) = Jr(67) +0,(1), so in order to establish (B.1) it remains to show
that Jr(0r) = J +0,(1). This property follows directly from Lemma B.5, the consistency
of O7, and the fact that E[0%l; (§) /0000'] is continuous as .

Next, we seek to prove (B.2). Notice that with [;(0) given by (3.2),

. 1 - 8l (60) Ol(6) Al (00) [0l (67)  dl,(6y)
> T2 o0 o0 7 Z o0 | o0 o
T
1 & [0l(or) azt (6o)] Ol:(6p)
+T;[ 20 1 00"
1 L [0i(0r)  0l(Bo)] [9l(0r)  Oli(6o)
+th::1[ A (B:3)

The ergodic theorem implies that T~ S7 [91,(60)/06][01:(00)/00'] = ¥ + 0,(1), so it
remains to show that the other terms in (B.3) vanish with probability approaching one.
It suffices to establish that

1 & [0l(0r)  0li(60)] Olu(6r)
T; o6 o0 | oo oW (B4
and rore - i
1 Oly(0r)  Oli(fo)]| Dle(6o)
T; 00 o6 | og W) (B:5)
A Taylor-type expansion yields
T o T . . _
T2 3" 01(07)/96) = T2 [01:(80) /96) + Jr(05)VT (07 — o),
t=1 t=1

where 0% is between 6r and 6p. By Lemma B.5.1 and point 1. in the proof of Theorem

3.1, T2 T 6l,(0y) /00 = O

»(1), and using arguments similar to the ones used to show
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(B.1), Jr(6%) = J + 0,(1). Hence, using that vT (87 — 6p) = O, (1),

8lt

Z

0,(1). (B.6)

Moreover, also by a Taylor-type expansion,

li(0r)  Al(00) _ [0i(60)  li(6o) N O%0,(05)  9°1L(60) N d%1,(6%) (G — 00)
00 00 00 00 0000’ 0000’ 0000’ ="
(B.7)

For any € > 0 and some r > 0, by Boole’s and the generalized Chebyshev inequalities,

P > eVT
(r?ealgl( ‘ ) ~ T Z Lg@

where we have used Lemma B.4.1. Likewise, using Lemma B.4.3, we have that

Oly(00)  Oly(6o)
90 90

A (0) azt H ]

1 O?L,(6%)  9%1,(6%)
7 — =0,(1 B.
78X 5000 ~ “aee ||~ o (B-9)
and using Lemma B.4.4,
021:(0%)
\/» 5050 = 0p(1). (B.10)
Combining (B.6), (B.7), (B.8), (B.9), (B.10), and that (§7 — 6p) = o, (1) yields (B.4).
Similar arguments yield (B.5). O

Lemma B.2. Let hy (0) and hy (0) be given by (3.4) and (3.7), respectively, and let Dy()
and D(0) be given by (3.3) and (3.6), respectively. Suppose that the assumptions of
Theorem 3.1 are satisfied. It holds that for allt € Ny, i,7 =1,...,d+2d?, and some k > 0,

- . 3
ohy ()1 9%hy (0)
E[sup ||k 93<oo, E [su < oo, E|[su < 00,
g e O] veoll a0, | | 0e0 | 00:00;
r A 37 A 3
Ohy (0) 92hy (0)

E < E < 5 E < 5
sup e @1 < veo|| 96, 2 T et | 06,06, >
sup [|[R™H(0)| < ¢, sup||D;(0)] <¢C, sup|lD;'(0)] <c,

0O fcO 6co
E[gug [he (8) — he (0) []] = O(t"¢)),
8ht 8ht k t tht (0) 82;Zt (9) k .t
E ) - — .
[szg 0 \H OWd) E b | .00, — avioe, || =)
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Proof. Notice that since p (B) < 1 on ©, and O is compact

sup || BY|| < Cét. (B.11)
0co

Since p (B) < 1, recursions give that hy (0) = >.5°) B'(k + AX % _,), so by repeated use
of Minkowski’s inequality, the compactness of ©, (B.11), and the fact that E[|| X;||°] < oo
yield that

E[Sgg 17 (0) [|*] < o (B.12)

Moreover, hy (0) = Y'2) Bi(k + AXP% ) + B'hg, so similar arguments and the fact
that ho is fixed yield that for all ¢ € No, E[supgeg [ () [|}] < oo. Next, we consider
the partial derivatives (potentially of the left/right type) of hy(#). For convenience, we
differentiate with respect to the standard parametrization as introduced in subsection 2.1,
i.e. without loss of generality we let § = (x/, vec(A), vec (B)',vech®(R)'). Let 7 := d+ d?
and 71 = d + 2d%. Using that p(B) < 1,

8ht

ZB’ fori=1,...,d,

(9ht

ZBZ XtQQ1 _; fori=d+1,..,7,

8ht

o0
Z fori =79 +1,...,71.

So repeated use of Minkowski’s inequality, E[||X:||®] < oo, (B.12), (B.11), and the com-
pactness of © yield that

3
E [sup Oh: (6) < 00 (B.13)
oo |l 06;
for i =1,...,71. By similar arguments,
82h, (0) | Ohe (0)|° 82h, ()|
" [SEQ 90,00, | | < F{3BTap | | <o F 5l G0.00, || | <
(B.14)

for all 4,5 = 1,..,71. Moreover, supgee |[R71(0)| < C, suppeo ||D;*(0)] < C, and
suppee | Dy 1(0)]| < C follow by arguments given in Francq and Zakoian (2012, p.195).
We have that hy (8) — hy () = Bt[ho (0) — hg], so (B.11), (B.12) and the fact that hg is
fixed give that E[supgcg [|he (8) — he (8) [|] = O(¢). Similarly,

Ohe ()  Ohe(0)  _, [0ho(0)  ho(6) o )
T =B 06, 08, fori=1,...,79,
Ohy (0) Ohy(9) OB

Oho (6) _ 0hy (6)
a0; 00;

(70 (0) = ho + B!

] fori =179+ 1,...,71,
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and we conclude, using (B.13), that

E [Sup Oh: (6 aht |H O(t¢') fori=1,.., 7. (B.15)
oco| 00;
Likewise, using (B.14),
a%t( ) 9%hy (0) 9t .
= f =1,..,7. 1
O

Lemma B.3. Under the assumptions of Theorem 3.1, the matriz ¥ defined in (3.13) is
finite.

Proof. Due to Holder’s inequality, it suffices to show that E{[0l;(0y)/06;)]*} < oo for all
1 =1,..., 89, where s is the dimension of 8. Similar to the proof of Lemma B.2, we consider
(without loss of generality) differentiation with respect to the standard parametrization
where 0 = (K, vec(A)', vec (B) ,vech’(R)). We define 7y := d 4+ d* and 7, = d + 2d>.
From Francq and Zakoian (2012, p.198), it holds that

ol (6p) Doy 9Do,
a6, :tr{( RO £4}) 391D +(Id—€t€2R0 )Dg, 189 }
for i« = 1,...,71, where the “0” indicates that the functions are evaluated at 6y, and
e, = Ry Z,. Tt holds that for i = 1, ..., 7,
oD, 1 __.. Oh.(0)
==-D B.1

so by Lemma B.2, it holds that E[||0Dq;/06;||3] < co. Since dDyg;/00; and £}, are indepen-
dent, and E[||e]|%] < oo, we conclude using Hoélder’s inequality that E{[0l;(0)/00;]*} < oo
for i =1,...,7. Moreover, from Francq and Zakoian (2012, p.198), it holds that

dl;(6o) B _,OR

fori = 7141, ..., 89. Using similar arguments as above, we conclude that E{[dl;(0)/00:]*} <

oo for i =71 +1, ..., s0. O

Lemma B.4. Suppose that the assumptions of Theorem 3.1 hold. Then with l}(@) and
1(0) given by (3.2) and (3.5), respectively, the following statements are true.

1. For some k > 0 and some u > 0,

o) _ on(6)["
00 00

E |sup
0O

] =O(t*¢!) VteN.
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2. For some k > 0 and some u > 0,
E lsup 1,(0) — Zt(e)\’"] =O(tF¢!) VteN.
0cO
3. For some k > 0 and some u > 0,
E |sup
0cO

4. E[supgee 10%1:(6) /0000'||] < oc.

0%1,(0)  0I3(6)
0000’ 0000’

] = O(t*¢') VteN.

Proof. Similar to the proof of Lemma B.2, we consider differentiation with respect to the
standard parametrization where § = (x/,vec(A)’, vec (B)",vech®(R))’, and define 7y =
d+ d? and 7 = d + 2d*>. From Francq and Zakoian (2012, p.198) it holds that for

i=1,..,7,

D
T = {D 7 [0 (XXt R D+ DP XX R O }
oD
e -1 A
= & {Dt ® Id} vec ( 2, )
with
= vee |21y — (X X{D 'R D + DU X XD R (B.18)
Similarly,

A0)  4ias dD;
20, =&[D; " ® I4] vec a0, |’

with & := vec[2l; — (X; X/D;*R'D; ! + Dy X, X/D;*R™")]. Hence,

oue) ko) _ (D7t & 1] vee (3Dt> — 1D ® Iy vec (am)

o0, oo, 20; 90,
o T oD
= (& - &) D" @ Ly vec ( 89;>
: : oD
+GID = D @ L vee (501

+&[D7 ® 1]

(8Dt) (oD
vec 20, vec 20, .
It holds that

&—& = vee|X,X[(D;' — DyYRTID] - vee [X,X(Dy RN (D - DY)
+vee [D X, X{(Dt = DiYRT = vee [(D7! = DY X, X(DRTY

and
|1D;' = DY = || D YDy — D) Dy Y| < C||D — Dy,
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where we have used Lemma B.2. By the same lemma for some k& > 0,

Efsup ||y (6) — he (8) [I] = O(t"¢"),

0cO

so we have that for some for some @ > 0 and some k& > 0,
Efsup || D; ' — D '[|"] = O(t*¢"). (B.19)
0cO
Consequently, by Holder’s inequality for some u* > 0,
Efsup & — &[] = O(t*¢")
0cO

For¢:=1,...,7,

aDt _ 1 —1 . aht
96, ~ 27 dlag(aei)’

and due to (B.19) and

e 3 i
by Lemma B.2, it holds that for some u* > 0,
D oD\ "
E 21618 vec <%0;> — vec ( 89;) = O(t"¢h).

Consequently, by Holder’s inequality we have that for ¢ = 1, ..., 7, and some u > 0

aL,(0)  ai(0)]"

00; 00;

|~

E |[sup
0cO

Fori=714+1,...,50

(6 OR
aéé.) =t (ngﬁ — vec(D; )’ [(XtXt’) ® (RlaﬂRl)} vee(D; 1)
and .
ol (6 OR . OR .
atéz) - (R_ 0, ) —vee(D; ) |:(Xt 1) ® (R_laelR )] vec(D; 1),

so by similar arguments as above, using (B.19) and Lemma B.2,

E |[sup
0O

t=71+1,...,80. Using the ¢,-inequality, we conclude that 1. holds.

ol,(0)  dly(6)

00; 00;

oo
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Turning to 2., from Francq and Zakoian (2012, pp.195-196),
sup |1:(8) — z}(e)\ < sup |tr { XX (B - ﬁ;l)}\ (B.20)
USC] (<C]

+ sup ‘log {det(H;)} — log {det(I:It)}‘ .

It holds that

I

sup [tr {XtXé(Hfl - ﬁ;l)}’ < || XX} sup HH{1 —H?
0coO

0cO
Since
H'-H' = H'(H, - H)H;!
= D;7'R'D;Y(D; — Dy)RD; + D:R(D; — D;)]D;*R™1D; Y,

it follows from Lemma B.2 and Holder’s inequality that for some u* > 0,

Elsup |tr{ X, X! (H; ' — H7 YY" ] = O(tF¢h). (B.21)
0cO

Next let hy and hy denote the ith element (i = 1,..,d) of h; (A) and hy (6) respectively.
Consider the second term in (B.20). From Ling and McAleer (2003, p.302),

|log{det(H;)} —log{det(H;)}| = |log{det(D;D;?)}|
d d
= |log([ hut/har)| = 1> log(hir/hat),
i=1 =1

where we have used that h;; and izit have a positive lower bound for each ¢ uniformly on
©. Since log (1 + z) < z for z > —1, we have that

|log{det(H;)} — log{det( Ht Z |log{1 + (hit — hit) zt1}| < Z] it — 1\
so, using Lemma B.2, for some u* > 0,
sup ‘log{det(Ht)} - log{det(I—AIt)}‘u ] = O(t* ). (B.22)

By combining (B.20), (B.21), (B.22), and Hoélder’s inequality, we conclude that point 2.
holds.

Turning to point 3., expressions for §214(0)/06;00; for different choices of i and j are
stated in Francq and Zakoian (2012, pp.200-201) (note that in Francq and Zakoian (2012)
€; corresponds to X; here). By similar arguments as above, relying on Lemma B.2, we
conclude that 3. holds.

In order to establish 4. it suffices to show that E[supgeg |0%1:(0)/00,00;|] < oo for all
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i,j = 1,...,50. Again, by relying on expressions for 91;(6)/30;00; for different choices of
i and j are stated in Francq and Zakoian (2012, pp.200-201), it is seen that this moment

restriction holds due to Lemma B.2 and Hélder’s inequality. O

Lemma B.5. Under the assumptions of Theorem 3.1, with [;(0) and 1,(0) given by (3.2)
and (3.5), respectively,

1. supgeo || S 01,(6)/00 — L L, 01,(6)/06]| = 0,(T/2).

2. suppeo |+ S 1(0) — = ST, 1(0)] = 0,(T ).

3. suppeo |1+ 510 0°14(0)/0608 — £ T, 671,(0)/0000'| = 0(1)  a.s.
4. supgee || 4 50, 9%1,(6) /0608 — E[621,(6)/9908')]| = 0 (1) a.s.

Proof. In order to show 1., we use arguments similar to the ones given in Pedersen and
Rahbek (2014, Proof of Lemma B.11), see also Hafner and Preminger (2009, Proof of
Lemma 4). For any € > 0 and some u > 0, by the generalized Chebyshev inequality,

T(u—2)/2 T
>e| < —— > E |[sup
) € ; =)

(o) 0ly(0)
a0 00

P (\/Tsup

0cO

|-

1 & lazt(e) _0ly(6)
1

T~ | 00 00

choosing u < 2, where we have used Lemma B.4.1.
Using similar arguments and Lemma B.4.2, we conclude that point 2. holds.

Turning to point 3., for any € > 0 and some @ > 0, by the generalized Chebyshev inequality,

[
< 00,

where we have used Lemma B.4.3. The Borel-Cantelli lemma then implies that almost

0%1,(0)  9°1y(0)
000" 9000’

d21,(0)  021,(0)

0000’ 06000’

SP <sup

t=0 0cO

> e) < e*aZE [sup

t=0 0cO

surely
0*1,(0)  0%1:(0)
000" 9000

sup —0 ast— oo,

0cO

and point 3. then follows by Cesaro’s mean theorem.
The proof of 4. follows by Lemma B.4.4 and a uniform law of large numbers for ergodic

processes, see e.g. Ranga Rao (1962). O

Lemma B.6. Let Zg, G5, and Jss be defined according to (A.1). Moreover, with A = Ag x
As defined in Assumption 5, let \X* = (A, ANV satisfy || Z — M2 = infaep | Z — A% and
let N8 satisfy ||Zg—)\Aﬁ||%KJ71K,)71 = infy,en, HZB_)\BH%KjflK/)fl- Under Assumptions
1-6,

1. 2'JZ = ZRH(KJ'K') " Zg + G}J55' Gs,

2' ||Z - AAH?I = ||ZB - )\ABH?KJflK/)—l — ||Z6 - >\2||(2KJ71K/)—1?

3. N = \As,
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Proof. The proof follows the lines of Andrews (1999, Proof of Theorem 4). First, recall

that for matrices A € R™*™ B € R™*" (C € R™™ and D € R™" satisfying that
A B
= l D]’ D, and (A — BD~'C) are nonsingular, then

c
Bl (A—-BD 10)! —(A-BD7'C)'BD™! (B.23)
- |-D'c(A-BD'C)' D'+ D 'C(A-BD'C)'BD| T
Define the matrices
Isl 1 1
M = 1 , Pm=MK, P:=1I,,—P.
—Jss Jsp
Observe that by orthogonality
(Pz1)' J(Ptas) =0 Vap,xs € R, (B.24)
By (B.23),
KJ 'K = (Jgs — JasTz5 Jsp) "L, (B.25)
and, moreover,
M JM = Jgg — Jg(sz]g&le}(w,
SO
M'JM = (KJ 'K~ (B.26)
Let K := (0s,xs,,Is,). By definition I, = (K', K'Y, so
KPJ'G
PI'G = | : (B.27)
KPJ~'G
It holds that
KP = K(I;, - MK)
= K-KMK
= K —[Is,,0s, xs5] Lo g
= 819 Y81 XS89 —J(s_(sljlgﬁ
— 031 X80 (B28)

SO
KPJ G =04 x1.

J g2
NACII (CY

that JO) := (Jas — JgsJ55 Jsp) ™, T2 = —J W Jgs gt TGO = — J ot Js5 M) and J@W =

Furthermore, make the following partition J~! = l according to (B.23) such
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Jgal + J;;nggJ(l)Jg(ngtgl, with Jgg, Jgs, Jsg, and Jss defined according to (A.1). Then
JsKPI'G = JsK(Isy1s, — MK)J'G

JB) g4

_ J  g@
= Jéﬁ([082><817152]_KM[ISNOSlXSQ]) G

= Jss( [J<3> J(4)] KM[JW, g9 G

[ Is, ] [J(1>’J(2>]> a
J(;_(SlJ(;ﬁ

_ ( Ml,u[ W, 7% DG

—J55 Jsp[ T, T
= Jss([JP, JY] + It Issl 1V, TP )G
= ([JssJ®, JssT D] + Jsp[J W, TG

Hence,

JssKPJ'G = ([=JspJ W, I + Js5T W Jg5 055" + [Jss TV, = T55 TV J55.J55)) G
= [Osgxslalsg}G (B29)
= G;.

Combining (B.27), (B.32), and (B.29) yields

0s
PG = | (B.30)
Now (B.24) implies that

7'JZ = (PZ) J(PZ)+ (P+2)J(P*Z).

This combined with (B.26), (B.30), and that Z = —J G (by definition) proves 1.
For A = (X3, A\5) € Ag x As it holds that

P\ =

0s
e ] . (B.31)

Using (B.24), (B.31), (B.30), and (B.26) gives

1Z-=X5 = IPEZ-N5+|P-(Z-NM]3
2
s1 X1 051><1 2
= -~ + K (Z = Nl
H [J&s GJ Xs + I35 JspAs M

= 55 Gs = Xs — Jig Jsghal3y, 112 — NalBsgen (B32)
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Since A = Ag x As and As = R*?, for any A\g € Ag

inf
AsEANg

155 Gls = As = 55" TasNsll Gy = ik 155" Gis = As = J55' Tos sl 3y, = 0,
SO
. 2 _ . _ 2
/{reljf\ 1Z = All7 = A;gf\ﬁ 128 = Al (kg1 5y-15
which proves the first equality of 2. holds. Turning to the second equality of 2., notice
that

0 < HZ,B - /\g‘|%KJ—1K')—1 - HZB - )‘A6||%KJ—1K’)—1
||Z,B - )‘g||%KJ—1K’)—1 + HJa_alGé - /\9 - JaTsIJW%||355 - HZB - )‘AﬁH%KJ—lK’)—l
= ||Z - AAH?} - HZB - )\AﬂH%KJ—lKI)—I =0,

IN

where we have used (B.32) and the first equality of 2.
Point 3. follows from 2, and the fact that A*# is unique due to the convexity of Ag. O

Lemma B.7. Let {Y; : t € No}, V; = (XP% 67)', be the Markov chain generated by
the ECCC-GARCH model (2.1)-(2.4) for t > 1, with fived initial values Xy = x € RY
and o8 == h € (0,00)¢, and with fized 0 = [k}, vec(Ag)', vec(By)', vech®(Rg)]’. Suppose
that p(By) < 1 and that the diagonal elements of Ay are strictly positive. Let p € N, and
suppose that the distribution, ', of e, := R(l)/ Qnt admits a probability density strictly positive
on R* with E[(eP?)®P] < oo, and p(E{[Aodiag(eP?) + Bo]®P}) < 1. Then {Y; : t € Ng} is
geometrically ergodic on [0,00) x (0, 00)?, and the associated strictly stationary process
{Y; 1t € Z} is geometrically B-mizing with E[(X?)®P] < co.

Proof. The proof is similar to Pedersen (2015, Proof of Lemma B.8). Consider the process
{o? : t € Ng} given by 07 = ko + [Ag diag(c$’?) + BoJo? 1, with 03 = h. Relying on the
theory of Boussama et al. (2011), it follows from Pedersen (2015, Proof of Lemma B.8)
that {o? : t € No} is a Markov chain which is aperiodic and t-irreducible on (0, 00)?,
see Meyn and Tweedie (2009, Section 4.2). These properties of the Markov chain allow
us, due to Tjgstheim (1990), to consider a k-step drift criterion for the Markov chain for
some k € N. Specifically, with Z((0,00)%) the Borel o-field of (0, 00)¢, we want to show
that there exists a small set K € Z((0,00)?), positive constants a < 1 and b < oo, and a
Lyapunov function V; : (0,00)? — [1,00) such that for some fixed k € N,

E [Vo(o})lod = h| < aVy (h) +b-1(h € K) ¥h e (0,00)",

With g a (dP x 1) vector of ones, consider the function V, (h) := 1 + ¢,h®P, and, for
some constant m sufficiently large, the set K :== {h € (0,00)% : 1, hA®? < m}.
For t € N, it holds that (67,,)%P = Cy, + [Ag diag(e{?) + Bo|®P(0?)®P, where for p > 2
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Cip = {Cip_1 ® 0} + [Ag diag(eP?) + Bo]®P~! ® wo} and Cy1 = ko. Recursions give that

k—1 1 k
Ut2+k ®p — Z H AU dlag €t+k )—|—Bo] pCH_k 1— ZP+H Ao dlag(sHk Z)—FBo]@p( )® .
=0 j=1 i=1

Observe that

1+ C + iy (B{[Ap diag(eP?) + Bo|®P})kheP
14 o), h&P

E |V, (o})lof =h] = Vo (),
where we have used that {;} is i.i.d. and where C' contains terms of h of lower order
than p. Since p(B{[Aodiag(cP'?) + By]®P}) < 1 and choosing k sufficiently large, there
exists an m large enough such that for h € KL, V, (h) > 1+ 13, C + i/}, (B{[Ao diag(¢P?) +
Bo]®P})*h®P. We conclude that suitable constants a and b exist. In line with Boussama
et al. (2011, Section 4.6) it can be shown that K is small. It then holds that {o? : t € Ny}
is Vy-geometrically ergodic. From Meitz and Saikkonen (2008, Proposition 1 and the
comments immediately after) we conclude that {Y; : ¢ € Ny} is Vy-geometrically ergodic,
for some suitable function V4 : [0, 00)% x (0,00)¢ — [1,00), and that the associated strictly
stationary process {Y; : t € Z} is geometrically B-mixing. Moreover, E[||(02)®P|]] <
CE[V,(c7)] < oo, and by using that E[(¢{?)®P] < oo, we have that E[(X?)®P] < co. [

Lemma B.8. Let {X; : t € Z}, be a strictly stationary process generated by the ECCC-
GARCH model (2.1)-(2.4) with fived 0 = [k}, vec(Ag)’,vec(By)', vech®(Ry)] € ©. For
p € N suppose that E[(XP?)®P] < co. Then p(E{[Agdiag(¢P?) + Bo]®P}) < 1, where

1/2
Et = RO/ Nt -

Proof. The proof is similar to that of Ling and McAleer (2002, Proof of Theorem 2.1).
Notice that E[(e9?)®P] < oo is necessary for E[(X?)®P] < oo, and that E[(67)®?] < oo.

Similar to the proof of Lemma B.7, we obtain for k € N
k—1 1 k

®p—ZH A diag (P ) ) + Bo|*PCy_q - 1®p+HAod1ag(at 2) + Bo|®P(0}_1,)%P.
=0 j=1 =1

Since [1F_,[Ao diag(eP2) + Bo|®P(02 ,)®P > 0 Yk and Cy_1_;ep > K57, we obtain
00 > E[(03)) > > (E {[ 4o diag(e?) + BO]@W})z KEP, (B.33)
=0

Since (E{[Agdiag(¢P?) 4+ Bo]®P}) > 0 and si? € (0,00)%, we have, in light of (B.33),
that 320, (E{[Ag diag(e?) + Bo]®P})" converges, which is necessary and sufficient for
p(E{[Ao diag(e;?) + Bo]®P}) < 1. O

36



C The LMgcoce statistic of Nakatani and Terasvirta (2009)

Proposition C.1. Let Jp(0) and Sp(0) be defined by (4.3), let K1 be defined by (4.4),

and let O be the constrained estimator given in (4.2). Consider the test statistic given by
1 . - . .
LMpcco = 5T5r(0r) Ki[KiJr (0r) YK K Sr(0r).

With the matrices J and ¥ defined in (3.13) and N0 defined in (4.5), let L(G) = N(0,%)
and consider the partitions of J, G, and A, according to 0 = (B}, 85,8, given by

A

Jag Jpige Jpis Gg, gy

A A

J = oo JpaBe JBas | G = Gg, | > and X = )\ﬁ;
Jsp Jspy Jos G AQo

Under Assumptions 1-7 and Ho,
w 1 2
LMgcce — §||C||(K1J71Ki), (C.1)

_ - A
where ¢ = Gpg, — J515J661G5 + (Jgi8;, — J515J661J552))‘,820'
Suppose in addition that §1 = s1 and that X is positive definite. Then

m
LMpooe 5> &ixXom, (C.2)
=1

where &, i = 1,...,m, are the m distinct eigenvalues of (1/2)QY2(K,J~K)QY?, with

QY2 the positive definite matriz square root of the (s1 X s1) matriz Q, given by
Q= 25/3 — Jﬁgl]&glz(sﬁ — EﬂgJ(;;ngﬂ + JgﬁJ(islzgﬁJESngﬂ,

and Xfm, 1 =1,...,m are mutually independent, and m; is the multiplicity of &;.
Finally, suppose furthermore that L(n;) = N(0, 1), then

LMEgcce =5 X2, (C.3)

Proof. Similar to the derivations in proof of Theorem 4.1 we obtain from a Taylor-type

expansion,

Ay Lr(6o)  O*Lp(6%) —~, -
VTKSp(6r) = VT 95 T 95,00 VT (67 — 6p)

ET(GO) GQ.ET(G*) ~ aQﬁT(e*) B
VT 01 + 85100, VT (Bor — P20) + W\/T((;T — 5o)

where 6* is between 67 and 6y, and where the second equality follows from the fact that

BLT — 1,0 = 05, x1. Since dyg does not attain the bounds of ©, we have by a Taylor-type
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expansion that

Lp(6y)  82Lp(6*) -

Ossx1 = =55~ + g5 01— )
_ Lr(6y)  OPLr(0) 4 2L (0) -
= —5 T 2607, (Bo,r — P20) + 9595 (07 — do), (C.4)

where 0** is between 01 and 6. Hence

} (L) [Lrlbe)  2Lr(6%)
(5T — 50) = — (858(5’) 95 + 8586§ (/BQ,T - 62,0) ’ (C5)

and substituting (C.5) into (C.4) and rearranging yield

VTR (o) = vl P Lr) (a?ﬁT<e**>>_lﬁiT<9w

98, 9pi05 \ a60¥ a5
[aﬂﬁT(e*) PLe(e) (a?ﬁT(e**)>1 82 L (6%)

p10B, 9510 9606’ 960, VI(Bar = Br0).

From Lemma B.5, using that /7'(07 — 6p) and /TSt (6p) are Oy(1),

- Ly (6 ~ =Lp(f
VTESr(ir) = VT gglf)) ~ I VTR
+ [ = TaraT5s o | VT (Bo,r = Bao) + 0p(1)
% Gay = Jpiodss Ga+ (Ja,, — Taio g Jopn) N2, (C.6)

where we have used that the terms converge jointly due to point 1. of the proof of Theorem
3.1, and that VT'(07 — 6p) = Ao, Moreover, Lemma B.5 and the consistency of 67 imply
that

K1 Jr(0r) 'K = K1 J 7 K] 4 0,(1). (C.7)

Hence by combining (C.6) and (C.7) and by applying the continuous mapping theorem,
we have shown that (C.1) holds.

Next, for the case §; = s1, we have that o vanishes such that

Lr(0) 1 L (%)
aﬁl J515J66 \/T ER
Lr(6o)

= (1817_‘],315‘](;51)\/? 90 +0P(1)
B (Isy, —JIpsd55 )G, (C.8)

VTK\Sr(0p) = VT + 0,(1)

where we have used arguments similar to the ones given above. It holds that

‘C[(ISU _J515J5751)G} = N(O7 Q) (CQ)
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Combining (C.7)-(C.9) and using White (1996, Theorem 8.6), we conclude that (C.2)
holds. In the case where §; = s; and L(n:) = N(0,1;), the information equality implies
that 2% = J and it is straightforward, using (B.23) and the continuous mapping theorem,
to establish that (C.3) holds. O

D Additional details about the simulations

This section contains some additional details about the simulations reported in Section 5.
e The simulations are carried out in OxMetrics 7.0.

e All replications are based on a burn-in period of 1,000 observations, and all simula-

tions are based on the same seed value.

e The computation of the QMLE 7 and the constrained QMLE 67 is based on max-
imization of the log-likelihood function according to the MaxSQP function.

For the computation of 67 we use the starting values:

1.0 0.10 0.05 0.85 0.05
K = , A — , B — N P = 05
1.0 0.05 0.11 0.05 0.80

For the computation of Oy we use the starting values:

1.0 0.10 0.85
K = , A — , B = 5 P = 05
1.0 0.11 0.80

e For the computation of the log-likelihood function, we use as initial value ho =
T X2

e The following constraints are imposed on the parameters for the optimization: With
k = (k1,k2)', K1,Kk2 > 0.000001, p € [—0.99999,0.99999], and all elements of the

matrices A and B are nonnegative.
e All derivatives of the log-likelihood function are obtained by numerical techniques.

e If a replication yields an estimate Jp (A7) or Jp(07) that is found to be (numerically)
singular, this replication is discarded from the calculations. The singularity of the

matrices was mainly an issue for the replications with 7" = 1,000 observations.
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