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Abstract

This paper considers geometric ergodicity and likelihood based inference for linear and non-

linear Poisson autoregressions. In the linear case the conditional mean is linked linearly to

its past values as well as the observed values of the Poisson process. This also applies to the

conditional variance, implying an interpretation as an integer valued GARCH process. In a

nonlinear conditional Poisson model, the conditional mean is a nonlinear function of its past

values and a nonlinear function of past observations. As a particular example an exponential
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autoregressive Poisson model for time series is considered. Under geometric ergodicity the

maximum likelihood estimators of the parameters are shown to be asymptotically Gaussian in

the linear model. In addition we provide a consistent estimator of the asymptotic covariance,

which is used in the simulations and the analysis of some transaction data. Our approach to

verifying geometric ergodicity proceeds via Markov theory and irreducibility. Finding trans-

parent conditions for proving ergodicity turns out to be a delicate problem in the original model

formulation. This problem is circumvented by allowing a perturbation of the model. We show

that as the perturbations can be chosen to be arbitrarily small, the differences between the per-

turbed and non-perturbed versions vanish as far as the asymptotic distribution of the parameter

estimates is concerned.

Keywords: generalized linear models, non-canonical link function, count data, Poisson regression, likeli-

hood, geometric ergodicity, integer GARCH, φ-irreducibility, observation driven models, asymptotic theory.

1 Introduction

In this paper we study ergodicity and likelihood inference for a specific class of GARCH type

Poisson time series models. The necessity for such an investigation arises from the fact that count

dependent sequences appear in several diverse scientific fields, including medical, environmental

or financial applications. As an illustrative example, consider the upper plot of Figure 2 which

depicts the number of transactions per minute for some stock during a specific day. These data

consist of a count time series and therefore statistical methodology should be developed for time

series modeling, estimation, inference and prediction.

Models for time series of counts have been considered by many authors–for a comprehensive

account see Kedem and Fokianos (2002, Ch. 4), for instance. The most popular choice among

several authors is the log–linear model. In other words, if it is assumed that Yt is conditionally

Poisson distributed with mean λt, then most existing models are based upon regressing log λt–the

canonical link parameter–on past values of the response and/or covariates. As it has been devel-

oped by Fokianos and Kedem (2004), these models fall within the broad class of generalized linear
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time series models, and their analysis is based on partial likelihood inference. Estimation, diag-

nostics, model assessment, and forecasting are implemented in a straightforward manner where

the computation is carried out by a number of the existing statistical computing environments. In

addition, empirical evidence shows that both positive and negative association can be taken into

account by a suitable parametrization of the model, see e.g. Zeger and Qaqish (1988).

A largely missing element in these developments has been the possibility of an autoregressive

feedback mechanism in {λt}. Such a feedback is a key feature in state space models. One example

is the GARCH model for volatility. These models are generally expected to be more parsimonious.

The purpose of this paper is to study autoregressive models of λt–not log λt–both linear and non-

linear. More specifically, λt is regressed on past values of the observed process and past values

of λt itself–this model has been considered by Rydberg and Shephard (2000), Streett (2000) and

more recently by Ferland et al. (2006). Two classes of models are actually proposed in the present

paper. The first class is a simple linear model and it is given by expression (1) in Section 2.1. This

model states that the conditional mean of the Poisson observed time series is a linear function of its

past values and lagged values of the observations. The model can be motivated by the arguments

of Rydberg and Shephard (2000) who show that it is a reasonable approximation for inference

about the number of trades within a small time interval. Furthermore, model (1) is similar to the

GARCH models (Bollerslev (1986)) in the sense that for the Poisson distribution the conditional

mean equals the conditional variance. In fact, this is a generalized linear model for time series of

counts but with an identity link–that is a non canonical link function.

The second class of models generalizes (1) by imposing a non linear structure on both past

values of λt and lagged values of Yt. Accordingly this is a non-linear model for Poisson time

series and can be cast as a generalized non-linear model for time series of counts, see equation (4)

in Section 2.3. A specific example which falls within this framework is the Poisson analogue of

the so called exponential autoregressive model, see Haggan and Ozaki (1981). In the Poisson time

series framework, this model is formulated in (5).

The contribution of this article is to study ergodicity and likelihood inference for both types

of models. A fundamental complication with the analysis of these models is the proof of the geo-
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metric ergodicity of both the observed {Yt} and latent process {λt}. This problem is bypassed by

showing that the slightly perturbed models (3) and (6) are geometrically ergodic under simple re-

strictions on the parameter space. The perturbation idea is a form of regularization–an idea similar

in spirit to the analysis of ill–posed problems. Likelihood inference is developed in detail for the

linear model by showing that the difference between the perturbed and unperturbed model can be

made arbitrarily small provided that the perturbation decreases. It is shown that the corresponding

maximum likelihood estimator is asymptotically normal. The results are applied to real and simu-

lated data and several guidelines for the development of algorithms for numerical maximization of

the log likelihood for both type of models are given. Non linear models for count time series have

not been discussed in the literature and their development adds an additional tool to the analysis of

count time series.

The organization of the presentation is as follows. Section 2 introduces the reader to the rele-

vant models and discusses the link between their perturbed and unperturbed versions. In addition,

Propositions 2.1–2.4 show the joint ergodicity of both the observed and unobserved process for lin-

ear and non linear perturbed models. Section 3 develops likelihood inference for the linear model

(3) and discusses some aspects of inference for the non linear model (6) with a special focus on

the exponential autoregressive model (7). Several simulations and some real data analysis are pre-

sented in Section 3 while the presentation concludes with an appendix which contains the proofs

of some of the theoretical results. A complete version of this article with all proofs included is

located at web address.

2 Model Specification & Ergodicity Results

Suppose that {Yt} is a time series of counts and assume that FY,λ
t stands for the σ–field generated

by {Y0, . . . , Yt, λ0}, that is FY,λ
t = σ(Ys, s 6 t, λ0), where {λt} is a Poisson intensity process to

be introduced below. Initially, a linear Poisson GARCH type model is considered and then a non

linear model is proposed.
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2.1 Linear Model

Consider the following model given by,

Yt | FY,λ
t−1 ∼ Poisson(λt), λt = d + aλt−1 + bYt−1, (1)

for t > 1 and where the parameters d, a, b are assumed to be positive. In addition assume that

λ0 and Y0 are fixed. Recall that for the Poisson distribution, the conditional mean is equal to the

conditional variance, that is E[Yt | FY,λ
t−1] = Var[Yt | FY,λ

t−1] = λt. Therefore it is tempting to

call (1) an INGARCH(1,1)–that is integer GARCH–model since its structure parallels that of the

customary GARCH model, see Bollerslev (1986). However, although such a definition is quite

plausible for this particular case, the proposed modeling is based on the evolution of the mean of

the Poisson instead of its variance. In other words, model (1) specifies a conditional mean relation

to the past values of both λt and Yt.

For technical reasons having to do with the proofs of asymptotic normality of parameter esti-

mates, it turns out that it is advantageous to rephrase the model formulation (1). More specifically,

it is desirable to express the sequence of independent Poisson drawings–that is the first equation of

(1)–more explicitly in terms of random variables, like the observational equation in a state space

model, or like the defining equation in a GARCH model giving the relationship between the ob-

servations and the conditional variance. To achieve this, for each time point t, introduce a Poisson

process Nt(·) of unit intensity. Then, the first equation of (1) can be restated in terms of these

Poisson processes by assuming that Yt is equal to the number of events Nt(λt) of Nt(·) in the time

interval [0, λt]. Let therefore {Nt(·), t = 1, 2, . . .} be a sequence of independent Poisson process

of unit intensity and rephrase (1) as

Yt = Nt(λt), λt = d + aλt−1 + bYt−1, (2)

for t > 1 and with Y0, λ0 fixed. This notation will be used throughout the paper, and it is empha-

sized that we can always recover (1) by (2).

Model (1) (or its rephrasing (2)) is related to the theory of generalized linear models for time

series, see Kedem and Fokianos (2002, Ch. 1 & 4). In particular, the driving random component
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of the model corresponds to the Poisson distribution which belongs to the exponential family of

distributions. The link function is taken to be the identity while the systematic component is the

time dependent random vector (1, λt−1, Yt−1)
′ . Hence, (2) is a non canonical link model for time

series of counts. Furthermore, notice that even though the vector of time dependent covariates that

influences the evolution of (1) is composed by the unobserved process λt, the linear model still

belongs to the class of observation driven models as defined by Cox (1981). This is so because

the unobserved process λt can be expressed as a function of past values of the observed process

Yt, after repeated substitution. Observation driven models for time series of counts have been

studied by several authors including Zeger and Qaqish (1988), Li (1994) and more recently by

Brumback et al. (2000), Fahrmeir and Tutz (2001), Benjamin et al. (2003), Davis et al. (2003) and

Jung et al. (2006). However, a log–linear model for the mean of the observed process is usually

assumed and its structure is composed by past values of the response, moving average terms and

other explanatory variables. With the exception of Davis et al. (2003), who considers a simple

but important case of a log-linear model, all the other references do not discuss the problem of

ergodicity of the joint process (Yt, λt) which is instrumental in developing asymptotic estimation

theory.

Second order properties of model (1) have been studied by Rydberg and Shephard (2000) while

Streett (2000) shows existence and uniqueness of a stationary distribution. In a recent contribution,

Ferland et al. (2006) considered model (1) in a more general form and it was shown that the process

Yt is stationary provided that 0 6 a+b < 1, by employing a different technique from that of Streett

(2000). In particular, E [Yt] = E[λt] ≡ µ = d/(1− a− b) and its autocovariance function is given

by

Cov [Yt, Yt+h] =





(1− (a + b)2 + b2)µ

1− (a + b)2
, h = 0,

b(1− a(a + b))(a + b)h−1µ

1− (a + b)2
, h > 1.

In addition, it was shown that all moments of model (1) are finite if and only if 0 6 a + b < 1.
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Upon noticing that

Var[Yt] = µ

(
1 +

b2

1− (a + b)2

)
,

we conclude that Var[Yt] > E[Yt] with equality when b = 0. Thus, the inclusion of the past

values of Yt in the evolution of λt leads to overdispersion–a phenomenon that occurs frequently in

count time series data. In what follows, we discuss some properties of the linear model and show

ergodicity for a modification of (2).

2.2 Ergodicity of a perturbed model

We first note that {λt} defined by (2) is a Markov chain. Consider the skeleton λt = d + aλt−1 of

(2). Then λ∗ = d/(1−a) is the solution of λ = d+aλ, i.e. a fix point of the mapping f(λ) = d+aλ.

In Streett (2000) it was shown that if 0 6 a + b < 1, there exists a stationary initial distribution

for {λt} by showing that the point λ∗ is reachable, where (cf. Meyn and Tweedie (1993, p.131))

a point λ1 in the state space Λ is reachable if for every neighborhood O of λ1,
∑

n Pn(λ,O) > 0,

λ ∈ Λ. Here Pn(λ,A) = P(λn ∈ A | λ0 = λ), is the n’th step transition probability of {λt, t > 0}.

In the course of the proof of Lemma A-1 in the appendix, it will be shown that every point in

[λ∗,∞) is reachable, if 0 < a < 1, i.e. {λt} is open set irreducible on [λ∗,∞). However, in our

approach to show geometric ergodicity we need φ–irreducibility, where φ is the Lebesgue measure

with support [k,∞), for some k > λ∗. Establishing φ–irreducibility is equivalent to showing that
∑

n Pn(λ,A) > 0 if φ(A) > 0. The problem is that there are sets A of positive Lebesgue measure

that are not open sets, for example the set of all irrationals in [λ∗,∞), and Lemma A-1 cannot

be used directly to handle such sets. One could add an assumption stating that the chain is not

allowed to stay on sets of Lebesgue measure zero, but since it is not clear how restrictive such an

assumption is, we have decided to avoid that issue by resorting to the perturbed chain (Y m
t , λm

t )

defined by

Y m
t = Nt (λm

t ) , λm
t = d + aλm

t−1 + bY m
t−1 + εt,m, (3)
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with λm
0 , Y m

0 fixed, and

εt,m = cm1
(
Y m

t−1 = 1
)
Ut, cm > 0, cm → 0, as m →∞,

where 1(·) is the indicator function, and where {Ut} is a sequence of iid uniform random variables

on (0, 1) and such that the {Ut} is independent of {Nt(·)}. Note that the introduction of {Ut}
makes it possible to establish irreducibility, see the proofs of Lemma A-1 and Proposition 2.1

Another possibility would be to try an approach to prove ergodicity that does not depend on φ-

irreducibility, see, e.g Aue et al. (2006), Mikosch and Straumann (2006). But the structure of our

model is different, and we have not succeeded in using such an approach. Note that {λm
t } is still a

Markov chain. Our strategy is to prove geometric ergodicity of {Y m
t , λm

t } defined by (3). Then to

use this to obtain asymptotic normality for the likelihood estimators of (3), and finally by letting

cm → 0 obtain asymptotic normality of the likelihood estimates of (2).

The perturbation in (3) is a purely auxiliary device to obtain φ–irreducibility. The Ut’s could

be thought of as pseudo observations generated by the uniform law. As will become clear in the

subsequent proofs, the perturbation can be introduced in many other ways. For, instance, it is

enough to set {Ut} to be an i.i.d sequence of positive random variables with bounded support

possessing density on the positive real axis with respect to the Lebesgue measure and finite fourth

moment. In addition, the form of the likelihood functions for {Yt} and {Y m
t } as far as dependence

on {λt} is concerned will be the same for both models (2) and (3). Note that both {Yt} and {Y m
t }

can be identified with the observations in the likelihood, but they cannot be identified as stochastic

variables since they are generated by different models. Technically speaking, with the introduction

of {εt,m}, the process {λm
t } is made into a T -chain with a continuous component, where open set

irreducibility implies measure theoretic irreducibility.

We have the following results concerning ergodicity of model (3). Their proof is postponed to

the Appendix. There it is first proved that the unobserved process {λm
t } is geometrically ergodic.

Proposition 2.1 Consider model (3) and suppose that 0 < a+b < 1. Then the process {λm
t , t > 0}

is a geometrically ergodic Markov chain with finite moments of order k, for an arbitrary k.
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The above proposition is useful in obtaining geometric ergodicity of the joint process (Y m
t , Ut, λ

m
t ).

In fact, it can been shown that the joint process is V(Y,U,λ)–geometrically ergodic with VY,U,λ(Y, U, λ) =

1 + Y k + λk + Uk, for a definition see Meyn and Tweedie (1993, p.355). In particular, Proposi-

tion 2.2 shows the existence of moments of (Y m
t , Ut, λ

m
t ), for any k. In addition, the ergodicity

result is employed in the next section where the large sample estimation theory is studied. Note

that inferential results for the {Y m
t } process depend upon proving that geometric ergodicity of the

{λm
t } series implies geometric ergodicity of the chain {(Y m

t , Ut, λ
m
t )}. The proof of the following

proposition follows closely the arguments of Meitz and Saikonnen (2008) (see also Carrasco and

Chen (2002)) and its proof is indicated in the appendix.

Proposition 2.2 Consider model (3) and suppose that the conditions of Proposition 2.1 hold.

Then the process {(Y m
t , λm

t , Ut), t > 0} is a V(Y,U,λ)–geometrically ergodic Markov chain with

VY,U,λ(Y, U, λ) = 1 + Y k + λk + Uk.

The following lemma quantifies the difference between (2) and (3), as m → ∞ such that

cm → 0, and shows that essentially the perturbed model can be made arbitrarily close to the

unperturbed model. The crucial condition is that the sum of a and b must be less than one –this as

seen from Proposition 2.1 was also the natural condition for proving ergodicity of (3). It is in the

proof of this lemma that the rephrasing of model (1) as model (2) is very useful. The proof is in

the appendix.

Lemma 2.1 Suppose that (Yt, λt) and (Y m
t , λm

t ) are defined by (2) and (3) respectively. If 0 6
a + b < 1, then the following statements hold:

1. |E (λm
t − λt)| = |E (Y m

t − Yt)| 6 δ1,m,

2. E (λm
t − λt)

2 6 δ2,m,

3. E (Y m
t − Yt)

2 6 δ3,m,

where δi,m → 0 as m →∞ for i = 1, 2, 3. Furthermore, almost surely, with m large enough

|λm
t − λt| 6 δ and |Y m

t − Yt| 6 δ, for any δ > 0.
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2.3 Non Linear Models

A simple generalization of the linear model (2) is given by

Yt = Nt(λt), λt = f(λt−1) + b(Yt−1), (4)

for t > 1, and where f(·) and b(·) are known functions up to an unknown finite dimensional

parameter vector. In addition both functions are defined and take values on the positive real line,

that is f, b : R+ → R+. The initial values Y0 and λ0 are fixed. It is seen that (2) is a special case

of (4) upon defining f(x) = d + ax and b(x) = bx, with d, a, b > 0, and x > 0.

There are many examples of non-linear time series models, see Tong (1990) and Fan and Yao

(2003) for comprehensive reviews. Such models have not been considered in the literature ear-

lier in the context of generalized linear models for count time series, and they provide a flexible

framework for studying dependent count data. For example, consider the so called exponential

autoregressive model which is described below.

Example 2.1 The exponential autoregressive model is defined by

Yt = Nt(λt), λt =
(
a + c exp(−γλ2

t−1)
)
λt−1 + bYt−1. (5)

The model parallels the structure of the traditional exponential autoregressive model, see Haggan

and Ozaki (1981). Comparing recursions (4) and (5) it is clear that f(x) = (a + c exp(−γx2)) x

and b(x) = bx, a, c, b, γ > 0 and x > 0.

Reiterating previous arguments, notice that model (4) is related to a time series following

generalized linear models as described in Kedem and Fokianos (2002). Specifically, for model

(5), the Poisson assumption guarantees that the conditional random component of the model be-

longs to the exponential family of distributions, while the link function is equal to the identity,

as before. If γ is known, then the systematic component of the model consists of the vector

(λt−1, λt−1 exp(−γλ2
t−1), Yt−1)

′; otherwise, (5) does not belong to the class of generalized linear

models.

Assume the following conditions hold for f(·) and b(·):
Assumption NL
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1. There exists a unique solution of the equation λ = f(λ) and denote it by λ?.

2. With λ positive real and κ a positive integer, f(λ) is increasing in λ for λ > λ? and b(κ) is

increasing in κ such that b(κ) > β?κ, β? > 0.

3. For some α2 > 0, f(λ2)− f(λ1) 6 α2(λ2 − λ1), for all λ1, λ2 > λ? with λ2 > λ1.

4. For some β2 > 0 such that α2 + β2 < 1, b(κ2)− b(κ1) 6 β2(κ2 − κ1), κ2 > κ1.

To prove φ–irreducibility we again introduce an ε–perturbed model

Y m
t = Nt (λm

t ) , λm
t = f(λm

t−1) + b(Y m
t−1) + εt,m t > 1, (6)

where εt,m has been defined as in (3). The following proposition shows that the process {λm
t , t >

0}, as given by (6) is geometrically ergodic. Its proof parallels the proof of Proposition 2.1 and is

given in the complete version of the manuscript at web address.

Proposition 2.3 Consider model (6) and suppose that Assumption NL holds true. Then the pro-

cess {λm
t , t > 0} is a geometrically ergodic Markov chain with finite moments of order k, for an

arbitrary k.

In addition, we obtain the joint geometric ergodicity of the process {(Y m
t , Ut, λ

m
t ), t > 0}. The

proof is omitted.

Proposition 2.4 Assume model (6) and suppose that the conditions of Proposition 2.3 hold true.

Then the process {(Y m
t , Ut, λ

m
t ), t > 0} is a V(Y,U,λ)–geometrically ergodic Markov chain with

VY,U,λ(Y, U, λ) = 1 + Y k + Uk + λk.

We conclude this section with the following corollary for the perturbed exponential AR model

Y m
t = Nt (λm

t ) , λm
t =

(
a + c exp(−γ(λm

t−1)
2)

)
λm

t−1 + bY m
t−1 + εt,m t > 1. (7)

Corollary 2.1 Assume the exponential autoregressive model (7). Suppose that 0 < a + b < 1.

Then the process {(Y m
t , Ut, λ

m
t ), t > 0} is a V(Y,U,λ)–geometrically ergodic Markov chain with

VY,U,λ(Y, U, λ) = 1 + Y k + Uk + λk.
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3 Likelihood Inference

Denote by θ the three dimensional vector of unknown parameters, that is θ = (d, a, b)
′ and the true

value of the parameter as θ0 = (d0, a0, b0)
′ . Then the conditional likelihood function for θ based

on (2) and given the starting value λ0 in terms of the observations Y1, . . . , Yn is given by

L(θ) =
n∏

t=1

exp(−λt(θ))λ
yt
t (θ)

yt!
.

Here we have used the Poisson assumption, λt(θ) = d + aλt−1(θ) + bYt−1 by (2) and λt = λt(θ0).

Hence, the log–likelihood function is given up to a constant, by

ln(θ) =
n∑

t=1

lt(θ) =
n∑

t=1

(yt log λt(θ)− λt(θ)) , (8)

and the score function is defined by

Sn(θ) =
∂l(θ)

∂θ
=

n∑
t=1

∂lt(θ)

∂θ
=

n∑
t=1

(
Yt

λt(θ)
− 1

)
∂λt(θ)

∂θ
, (9)

where ∂λt(θ)/∂θ is a three-dimensional vector with components given by

∂λt

∂d
= 1 + a

∂λt−1

∂d
,

∂λt

∂a
= λt−1 + a

∂λt−1

∂a
,

∂λt

∂b
= Yt−1 + a

∂λt−1

∂b
. (10)

The solution of the equation Sn(θ) = 0, if it exists, yields the conditional maximum likelihood

estimator of θ which is denoted by θ̂. Furthermore, the Hessian matrix for model (2) is obtained

by further differentiation of the score equations (9),

Hn(θ) = −
n∑

t=1

∂2lt(θ)

∂θ∂θ′

=
n∑

t=1

Yt

λ2
t (θ)

(
∂λt(θ)

∂θ

) (
∂λt(θ)

∂θ

)′

−
n∑

t=1

(
Yt

λt(θ)
− 1

)
∂2λt(θ)

∂θ∂θ′
. (11)

If the process {(Yt, λt)} is a geometrically ergodic Markov chain, then an asymptotic theory

for the maximum likelihood estimator of θ can be developed directly. A problem is that at present
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we do not know precisely what conditions guarantee ergodicity of (2). However, the assumptions

of Proposition 2.2 guarantee geometric ergodicity of the perturbed model (Y m
t , λm

t ). In addition,

Lemma 2.1 shows that λm
t approaches λt, for large m. Hence, it is rather natural to use the ergodic

properties of the perturbed process (Y m
t , λm

t ) to study the asymptotic properties of the maximum

likelihood estimators analogous to (9) and then use Lemma 2.1. Towards this goal, we define the

counterparts of expressions (8)-(11) for model (3).

The likelihood function, say Lm, including the pseudo observations U1, U2, . . . , Un, is given by

Lm(θ) =
n∏

t=1

exp(−λm
t (θ)(λm

t )ym
t (θ))

ym
t !

n∏
t=1

fu(ut),

by the Poisson assumption and the asserted independence of Ut from (Y m
t−1, λ

m
t−1). Here, fu(·)

denotes the uniform density and λm
t (θ) = d+aλm

t−1(θ)+bY m
t−1 +εt,m as given by (3). We note that

L(θ) and Lm(θ) have identical form with the only exception that (Yt, λt) is replaced by (Y m
t , λm

t ).

Therefore, Sm
n (θ) and Hm

n (θ) have the same form as (9) and (11)–with recusrsions defined by

(10)–but with (Yt, λt) replaced by (Y m
t , λm

t ). The solution of the equation Sm
n (θ) = 0 is denoted

by θ̂m. See web adress, for a more detailed exposition.

3.1 Asymptotic Theory

To study the asymptotic properties of the maximum likelihood estimator θ̂, for the linear model

(2) we derive and use the asymptotic properties of the maximum likelihood estimator θ̂m for the

perturbed linear model (3). The main tool in linking θ̂ to θ̂m is Prop. 6.3.9 of Brockwell and

Davis (1991). Accordingly, we first show that θ̂m is asymptotically normal where for the proof of

consistency and asymptotic normality we take advantage of the fact that the log–likelihood function

is three times differentiable applying Jensen and Rahbek (2004, Lemma 1). Then we show that the

score function, the information matrix and the third derivatives of the perturbed likelihood function

tend to the corresponding quantities of the unperturbed likelihood function (8) which enable us to

employ Brockwell and Davis (1991, Prop. 6.3.9). To formulate the end result, introduce lower and

upper values of each component of θ, δL < d0 < δU , αL < a0 < αU < 1 and βL < b0 < βU , and
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in terms of these define,

O (θ0) = {θ|0 < δL 6 d 6 δU , 0 < αL 6 a 6 αU < 1 and 0 < βL 6 b 6 βU} . (12)

Then the following theorem regarding the properties of the maximum likelihood estimator θ̂ holds

true.

Theorem 3.1 Consider model (2) and suppose that at the true value θ0, 0 < a0 + b0 < 1. Then,

there exists a fixed open neighborhood O = O(θ0) of θ0–see (12)–such that with probability tend-

ing to one, as n →∞, the log likelihood function (8) has a unique maximum point θ̂. Furthermore,

θ̂ is consistent and asymptotically normal,

√
n

(
θ̂ − θ0

)
D→ N (0, G−1),

where the matrix G is defined in Lemma 3.1. A consistent estimator of G is given by Gn(θ̂), where

Gn(θ) =
n∑

t=1

Var
[
∂lt(θ)

∂θ
| Ft−1

]
=

n∑
t=1

1

λt(θ)

(
∂λt(θ)

∂θ

)(
∂λt(θ)

∂θ

)′

To prove the above theorem, we need a series of results. Lemma 3.1 shows that the limiting

conditional information matrix of model (3) tends to another matrix that plays the role of the

conditional information matrix for model (2). In Lemmas 3.2–3.4 the conditions (A.1), (A.2)

and (A.3) of Lemma 1 of Jensen and Rahbek (2004) are verified for the perturbed model (3). In

addition, these lemmas show that the score function, the Hessian matrix and the third derivative

of the log likelihood function of the perturbed model tend to their counterparts of the unperturbed

model. The proof of Lemma 3.2 which illustrates the applied technique, is in the Appendix. The

other proofs can be found in the complete version of the manuscript at web address.

Lemma 3.1 Define the matrices

Gm(θ) = E
(

1

λm
t

(
∂λm

t

∂θ

)(
∂λm

t

∂θ

)′)
and G(θ) = E

(
1

λt

(
∂λt

∂θ

)(
∂λt

∂θ

)′)
.
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Under the assumptions of Theorem 3.1, the above matrices evaluated at the true value θ = θ0

satisfy Gm → G, as m →∞. In addition, Gm and G are positive definite.

Lemma 3.2 Under the assumptions of Theorem 3.1, the score functions defined by (9) and its

counterpart for the perturbed model (3) and evaluated at the true value θ = θ0 satisfy the following:

1.
1√
n

Sm
n

D→ Sm := N (0, Gm), as n →∞ for each m = 1, 2 . . .,

2. Sm D→ N (0, G) as m →∞,

3. limm→∞ lim supn→∞ P (|Sm
n − Sn| > ε

√
n) = 0, for every ε > 0.

Lemma 3.3 Under the assumptions of Theorem 3.1, the Hessian matrices defined by (11) and and

its counterpart for the perturbed model (3) and evaluated at the the true value θ = θ0 satisfy the

following:

1.
1

n
Hm

n
P→ Gm as n →∞ for each m = 1, 2 . . .,

2. Gm → G, as m →∞,

3. limm→∞ lim supn→∞ P (‖Hm
n −Hn‖ > εn) = 0, for every ε > 0.

Lemma 3.4 With the neighborhood O (θ0) defined in (12), it holds under the assumptions of The-

orem 3.1, that,

max
i,j,k=1,2,3

sup
θ∈O(θ0)

∣∣∣∣∣
1

n

n∑
t=1

∂3lt (θ)

∂θi∂θj∂θk

∣∣∣∣∣ 6 Mn :=
1

n

n∑
t=1

mt

where θi for i = 1, 2, 3 refers to θ = d, θ = a and θ = b, respectively. In addition,

mt = C
(
Ytµ3t + µ3t + Ytµ2tµ1t + Ytµ

3
1t

)

µit = βU

t−i∑
j=1

kj,iα
j−1
U Yt−i−j , kj,1 = j, kj,2 = j (j + 1) and kj,3 = j (j + 1) (j + 2) .

Define correspondingly Mm
n , mm

t and µm
it in terms of Y m

t . Then
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1. Mm
n

P→ Mm, as n →∞ for each m = 1, 2 . . .,

2. Mm→M , as m →∞, where M is a finite constant,

3. limm→∞ lim supn→∞ P (|Mm
n −Mn| > εn) = 0, for every ε > 0.

3.2 Some Remarks about the Exponential Autoregressive Model

Study of asymptotic properties of the maximum likelihood estimator for the non linear model

(6) proceeds along the previous lines but the corresponding analysis is more cumbersome. For

instance, consider the exponential autoregressive model (5) and put θ = (a, c, b)′ and assume that

the parameter γ is known. Then the recursions for calculation of the score are given by

∂λt

∂a
=

(
1− 2γcλt−1 exp(−γλ2

t−1)
∂λt−1

∂a

)
λt−1 +

(
a + c exp(−γλ2

t−1)
) ∂λt−1

∂a
,

∂λt

∂c
=

(
1− 2γcλt−1

∂λt−1

∂c

)
exp(−γλ2

t−1)λt−1 +
(
a + c exp(−γλ2

t−1)
) ∂λt−1

∂c
,

∂λt

∂b
= a

∂λt−1

∂b
+

(
1− 2γλ2

t−1

)
c exp(−γλ2

t−1)
∂λt−1

∂b
+ Yt−1.

If the parameter γ is assumed to be unknown, then the following additional recursion is needed to

obtain the score equations for the enlarged vector of parameters which includes γ:

∂λt

∂γ
= −c exp(−γλ2

t−1)λ
2
t−1

(
λt−1 + 2γ

∂λt−1

∂γ

)
+

(
a + c exp(−γλ2

t−1)
) ∂λt−1

∂γ
.

We remark that when c = 0 the parameter γ is not identifiable. Therefore testing the hypothesis that

c = 0 by means of the likelihood ratio test, for instance, is more involved but it can be accomplished

by means of the methodology outlined by Davies (1987). Although we do not study in detail

the asymptotic properties of the maximum likelihood estimator for the exponential autoregressive

model, we report some simulation evidence in the next section–for more see web address.
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4 Simulation and Data Analysis

A few simulation results are reported for illustration of the asymptotic normality of the maximum

likelihood estimator for both the linear and non linear model. Calculation of the maximum like-

lihood estimators is carried out by optimizing the log–likelihood function (8) employing a quasi–

Newton method–details are available by the authors. The simple linear model (2) is generated

with (d0, a0, b0) = (0.3, 0.4, 0.5) for different sample sizes. For this choice of parameter values,

a0 + b0 = 0.9 which is close to the sum â + b̂ of the estimates obtained from the real data analysis

reported in Section 4.3. Results for different set of parameter values were similar, provided that

the condition a0 + b0 < 1 is satisfied, and therefore we omit them.

4.1 Simulations for the Linear Model

In Ferland et al. (2006) it was shown that (2) possesses moments up to second order identical to

those of an ARMA(1,1) process which satisfies the difference equation

(Yt − µ)− (a + b)(Yt−1 − µ) = et − aet−1,

where et is a white noise process with mean and variance equal to d/(1− a− b). This observation

points to the potential use of the least squares theory for estimation of the parameter vector (d, a, b).

We compare the least squares estimators with the maximum likelihood estimators in what follows.

To initiate the algorithm for optimization of the log–likelihood function (8) using the recursions

(10), starting values for (d, a, b) are obtained by the ARIMA(1,1) fit to the data.

Table 1 shows the results of the comparison between maximum likelihood and least squares

estimators. The table reports the estimates of the parameters obtained by averaging out the results

from all runs together with their mean square error (in parentheses). The mean square error has

been calculated by using the simulation output. Notice that in all cases considered the maximum

estimators have lower mean square error than the least squares estimators and as the sample sizes

increases the error of both type of estimators decreases. In addition Table 2 compares the standard

errors of the estimators obtained by the standard deviation of the simulated estimators and by the
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asymptotic theory, as developed in Theorem 3.1 and Lemma 3.1. The results show that the standard

errors based on the simulations are somewhat larger than the ones obtained after calculating and

inverting the matrix G but this difference gradually become smaller as the sample size increases.

Figure 1 shows histograms and qq-plots for the sampling distribution of the standardized maximum

likelihood estimators indicating the adequacy of the normal approximation although for a sample

size of 500 there are some deviations in the upper plot for d̂. It is seen from Figure 1 that d̂ is

plagued by some extreme values in the right tail. Its inferior accuracy compared to â and b̂ is also

apparent from Table 2. This behavior is easier to explain from the least squares estimates. From

the defining equation (2), it is seen that the least square estimator of d will be sensitive to the

extreme right tail events of the distribution of Yt and this is reflected in Figure 1. The estimates of

a and b on the other hand, are ratio type estimators where extreme events are balanced out in the

numerator and denominator. For larger sample sizes, the approximation to normality is improving.

Sample Size Maximum Likelihood Estimators Least Squares Estimators

n d a b d a b

200 0.3713 0.3756 0.4967 0.3909 0.3790 0.4863

(0.0254) (0.0094) (0.0056) (0.0334) (0.0252) (0.0257)

500 0.3271 0.3923 0.4971 0.3318 0.3922 0.4932

(0.0071) (0.0030) (0.0196) (0.0100) (0.0136) (0.0159)

1000 0.3148 0.3954 0.4985 0.3180 0.3951 0.4965

(0.0027) (0.0014) (0.0009) (0.0043) (0.0107) (0.0130)

Table 1: Estimators and their mean square error (in parentheses) for model (2) when (d0, a0, b0) =

(0.3, 0.4, 0.5) and for different sample sizes by both maximum likelihood and least squares methods. Results

are based on 1000 simulations.
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Sample Size Simulated standard errors Standard Errors from G(θ0)

n d a b d a b

200 0.1429 0.0940 0.0749 0.0937 0.0733 0.0593

500 0.0803 0.0548 0.0443 0.0574 0.0459 0.0372

1000 0.0505 0.0380 0.0314 0.0403 0.0323 0.0263

Table 2: Comparison of standard errors for model (2) with (d0, a0, b0) = (0.3, 0.4, 0.5).

4.2 Simulations for the Exponential Autoregressive Model

Table 3 shows some empirical results from estimation of the exponential autoregressive model (5)

with (a0, c0, b0) = (0.25, 1, 0.65) and for different values of γ. Note that the standard errors have

been obtained by the standard deviation of the simulated estimators, as in the case of the linear

model. Initially it is assumed that the parameter γ is known. Maximization of the log likelihood

function (8) under (5) is carried out as it was discussed in the case of the linear model. Initial

values for the parameters a and b are obtained by the fit of a linear model (2), while the initial

value of c is fixed at 0.50. The results of Table 3 show that for large sample sizes, the maximum

likelihood estimators are approaching the true parameter values when the parameter γ is known.

Application of the exponential autoregressive model (5) becomes more involved when the pa-

rameter γ is unknown, which is the most interesting case in applications. To estimate jointly the

parameter vector (a, c, b, γ) of (5) the following procedure is proposed.

• Fit the linear model (2) to the data to obtain starting values for both a and b.

• Set the initial value of c equal to some constant.

• Generate a grid of values for γ and for each of these values fit model (5) with known γ.

• To maximize the log likelihood function over all (a, c, b, γ), get as a starting value the γ–

value that yields the maximum log–likelihood from the previous step together with the cor-

responding coefficients.
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Figure 1: From top to bottom: Histograms and qq-plots of the sampling distribution of the

standardized estimators of θ̂ = (d̂, â, b̂) for the linear model (2) when the true values are

(d0, a0, b0) = (0.3, 0.4, 0.5). Superimposed is the standard normal density function. The results

are based on 500 data points and 1000 simulations.

Maximization is carried out numerically as described before. Table 4 reports the results of the

above method and it is observed that the sample size should be reasonably large for an adequate

approximation of both c and γ.
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Maximum Likelihood Estimators Sample Size

â ĉ b̂ n γ

0.2470 1.0241 0.6468 500 2

(0.0465) (0.1282) (0.0472)

0.2486 1.0128 0.6475 1000

(0.0339) (0.0898) (0.0344)

0.2504 1.0300 0.6440 500 1

(0.0472) (0.1416) (0.0473)

0.2488 1.0140 0.6484 1000

(0.0336) (0.0943) (0.0324)

0.2510 1.0262 0.6457 500 0.50

(0.0496) (0.1429) (0.0469)

0.2517 1.0106 0.6465 1000

(0.0327) (0.0987) (0.0313)

Table 3: Estimates and their standard error (in parentheses) for the exponential autoregressive model (5)

when (a0, c0, b0) = (0.25, 1, 0.65) and for different sample sizes by maximum likelihood. The parameter γ

is assumed to be known. Results are based on 1000 simulations.
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Maximum Likelihood Estimators Sample Size True γ

â ĉ b̂ γ̂ n γ

0.2504 1.1645 0.6430 1.8655 500 1.50

(0.0537) (0.5348) (0.0487) (1.2573)

0.2491 1.0593 0.6456 1.6357 1000

(0.0364) (0.2498) (0.0343) (0.7684)

0.2500 1.1190 0.6426 1.1542 500 1

(0.0521) (0.4431) (0.0485) (0.6919)

0.2490 1.0278 0.6475 1.0325 1000

(0.0355) (0.1690) (0.0334) (0.2886)

0.2467 1.1025 0.6472 0.5419 500 0.50

(0.0514) (0.3813) (0.0463) (0.2341)

0.2481 1.0322 0.6493 0.5064 1000

(0.0337) (0.1590) (0.0305) (0.1087)

Table 4: Estimates and their standard errors (in parentheses) for the exponential autoregressive model

(5) when (a0, c0, b0, γ0) = (0.25, 1, 0.65, γ0) where γ0 ∈ {0.5, 1, 1.5} and for different sample sizes by

maximum likelihood. Results are based on 500 simulations.
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4.3 Data Example

For an illustration of the methodology, models (2) and (5) are applied to real data which consist

of the number of transactions per minute for the stock Ericsson B during July 2nd 2002. This is a

part of a larger data set which includes all the transactions of this specific stock for the time period

between July 2nd and July 22nd, 2002. There are 460 available observations conveying eight hours

of transactions, approximately. Notice that the first and last minutes transactions are not taken into

account. Figure 2 shows both the data and the respective autocorrelation function. Even though

the data are counts, the plot of the usual autocorrelation functions reveals the high dependence

between transactions. Note that the mean number of transactions for these particular data is equal

to 9.909 while their sample variance is given by 32.836. This is a case of overdispersion, as it was

discussed in Section 2.1. To model these data, set λ0 = 0 and ∂λ0/∂θ = 0 for initialization of

Time

T
ra

ns
ac

tio
ns

 p
er

 m
in

ut
e

0 100 200 300 400

0
10

20
30

0 5 10 15 20 25

0.
0

0.
4

0.
8

Lag

A
C

F

Empirical Autocorrelation Function

Figure 2: Number of transactions per minute for the stock Ericsson B during July 2nd, 2002. The

bottom plot shows their autocorrelation function

the recursions and consider the linear model (2). Maximization of the log–likelihood function (8)
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yields the following results:

λ̂t = 0.5808 +0.7445 λ̂t−1+ 0.1986 Yt−1

(0.1628) (0.0264) (0.0167)

where the standard errors underneath the estimated parameter are computed by using the so called

robust sandwich matrix Hn(θ̂)G−1
n (θ̂)Hn(θ̂), where Gn(θ) has been defined in Theorem 3.1 and

Hn(θ) is given by (11). More precisely, the latter matrix is inverted and the standard errors are

computed by taking a square root along its diagonal.

It is rather interesting to observe that â + b̂ is close to unity. In fact, an approximate 95%

confidence interval for the parameter a + b is given by (0.9097, 0.9765). This is a very similar

phenomenon to the unit-root case in autoregressive time series in econometric analysis of most

financial data, and moreover, similar to the IGARCH literature where high-persistence is often

discovered in the conditional variance. Similar findings can be derived from Rydberg and Shephard

(2000) where transaction data were also examined.

To examine the adequacy of the fit, consider the so called Pearson residuals defined by et =

(Yt − λt)/
√

λt. Under the correct model, the sequence et is a white noise sequence with constant

variance, see Kedem and Fokianos (2002, Sec. 1.6.3). To estimate the Pearson residuals, substitute

λt by λt(θ̂). Figure 3 demonstrates that the predicted values defined by Ŷt = λt(θ̂) approximate

the observed process reasonably well. The bottom plot of the same figure illustrates the whiteness

of the Pearson residuals by depicting the cumulative periodogram plot, see Brockwell and Davis

(1991, Sec. 10.2).

Consider now the application of the Poisson exponential autoregressive model (5) to the same

data. The following model is fitted

λ̂t = (0.8303 +7.030 exp(−0.1675λ̂2
t−1)) λ̂t−1 + 0.1551 Yt−1

(0.0232) (3.0732) (0.0592) (0.0218)

where the stated standard errors refer to those of â, ĉ d̂ and γ̂, respectively. The starting value for

carrying out the estimation of γ is implemented by the suggested profiling procedure. To be more

specific, a grid of values is generated and the corresponding log–likelihood value is evaluated at
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Figure 3: Top: Observed and predicted (grey) number of transactions per minute using (2). Bot-

tom: Cumulative periodogram plot of the Pearson residuals.

these points. For these data, the values of the parameter γ were generated from 0.001 to 10 by

increments of 0.20, that is 50 values were obtained. The upper plot of Figure 4 shows a graph of

γ versus the corresponding log–likelihood function for a part of the generated grid, and it shows

that at the value 0.20506, approximately, the corresponding maximum value is obtained. Using

this value as a starting point for γ, model (5) is fitted to the data. The other graphs of Figure 4

show the predicted response–notice again that Ŷt = λ̂t–and the cumulative periodogram plot of

the Pearson residuals. To compare the models, we calculate the mean square error of the Pearson

residuals defined by
∑N

t=1 e2
t /(N − p), where p is the number of estimated parameters, see Kedem

and Fokianos (2002, Sec. 1.8). It turns out that for the linear model the mean square error of the

Pearson residuals is equal to 2.3686 while for the non linear model it is equal to 2.3923–that means

both of the models yield similar conclusions–see also Figure 5 which depicts the Pearson residuals

from both models applied to these data. As a final remark, we note that the numerical results, in

particular for d̂, are sensitive to the choice of the initial value λ0. Similar problems are encountered

in the GARCH model fitting where it is well known that different software might produce different
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results.
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Figure 4: Top: Obtaining an estimator for γ. Center: Observed and predicted (grey) number of

transactions per minute using (5). Bottom: Cumulative periodogram plot of the raw residuals.
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Figure 5: (a) Pearson residuals when model (2) is applied to transactions data. (b) Pearson residuals

when model (5) is applied to transactions data.

Appendix

Recall that λ∗ = d/(1 − a) is a fix point of the skeleton λt = d + aλt−1 of (2) and (3). We start

by proving that {λt}, defined by (2) or (3), is open set irreducible on [λ∗,∞). The proof of the

following lemma does not require the ε-perturbation of (3), but it is valid in the presence of such a

perturbation.

Lemma A-1 Let {λt} be a Markov chain defined by (2) or (3). If 0 < a < 1, then every point in

[λ∗,∞) is reachable.

Proof: To simplify notation, we state the proof for model (2). Consider a point c ∈ [λ∗,∞). We

may assume that λ1 > c, since otherwise we may start from λj = d + aλj−1 + bYj−1 > λ∗.

Consider a path such that Y1 = . . . = Yi = 0. Then λi approaches λ∗ as i increases and a < 1

and this proves that c is reachable if c = λ∗. (This was already proved by Streett (2000)). The

proof is more difficult if c > λ∗. The intuitive idea is to consider realizations where Y1 = N , and

where subsequent {Yi, i > 1} are zero. Then, if (c1, c2) is an open interval containing c, λi will
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approach this interval from above in successively smaller steps. By choosing N appropriately, one

of these steps will be contained in (c1, c2). Equivalently, we can prove that one of these steps will

be arbitrarily close to c. Therefore, let Y1 = N and Y2 = 0, Y3 = 0, . . .. Then, for j > 1

λ1+j = λ1+j(N) = aj−1(aλ1 + bN) +
1− aj

1− a
d.

Let N := Nj be the least integer such that

λ1+j(N) > c, λ1+j(N − 1) 6 c.

(Note that we can always choose λ1 such that N − 1 > 1 so that the reasoning is exactly the same

for the ε–perturbed chain given in (3)). We have λ1+j(N)− λ1+j(N − 1) = aj−1b. For any δ > 0,

since a < 1, we can choose a j such that aj−1b < δ, that is c ∈ [λ1+j(N − 1), λ1+j(N)] where the

width of the interval is less than δ. Since δ is arbitrary, c can be approximated arbitrarily closely,

and c is reachable if c ∈ [λ∗,∞). ¤

To prove Proposition 2.1 we need to show that {λm
t , t > 0} is aperiodic and φ–irreducible. In

addition we show the existence of a small set C and a test function V (·) which satisfies

E[V (λm
t+1)|λm

t = λ] 6 (1− k1)V (λ) + k21(λ ∈ C) (A-1)

for some constants k1, k2 such that 0 < k1 < 1, 0 < k2 < ∞. This implies that the chain

{λm
t , t > 0} is geometrically ergodic and as will be seen, with a proper choice of V , that the k’th

moment of λm
t exists for an arbitrary k, see Meyn and Tweedie (1993). The inequality (A-1) and

uniform open set reachability from a compact set [λ∗, K], K > λ∗, can be established for both

(2) and (3), but the ε–perturbation is used to establish φ–irreducibility and uniform φ–reachability

required to establish the existence of a small set.

Proof of Proposition 2.1

From Lemma A-1 we have that {λm
t , t > 0} as defined by (3) is open set irreducible on [λ∗,∞).

Let A be a set in the support of [k,∞) of φ for some k > λ∗, where φ is the Lebesgue measure,
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and such that φ(A) > 0. Let c
′ be a point in A. Then using the technique of proof of Lemma A-1,

for some j, λm
j+1 will be arbitrarily close to (c

′ − d− b)/a, where (c
′ − d− b)/a > λ∗ by choosing

k large enough. In particular, j can be chosen so that | d + aλm
j+1 + b − c

′ |< ε/2. Therefore if

D = A ∩ B with B = (c
′ − δ/2, c

′
+ δ/2) for some small δ, and fu(·) the density of Ut, then the

probability of being in A in the next step is

P (A) > P (D) =

∫

D

fu(u)du > inf
D

fu(u)φ(D) > 0,

which implies φ-irreducibility. (Note that it follows from this proof that the ε–perturbation need

not be introduced for Y = 1 but may in fact be inserted for any Y .) It remains to prove the

existence of a small set, aperiodicity and the inequality (A-1).

Existence of a small set can be proved by extending and modifying the technique of Lemma

A-1. Let C be a compact set, C = [λ∗, K] for a finite K > λ∗. Since a < 1 and K is finite, there

exists an integer n = n(η) such that for given η > 0, and with a path where Y1 = · · · = Yn−1 = 0,

λm
1 = λ, |λm

n − λ∗| = an|λ− λ∗| < η for all λ ∈ C. Then with Y m
n = N , Y m

n+1 = 0, Y m
n+2 = 0, . . .,

λm
n+j = ajλm

n + aj−1bN +
1− aj

1− a
d = aj(λm

n − λ∗) + aj−1bN + λ∗.

Similarly to the proof of Lemma A-1, consider an open interval (c1, c2) with c1 > λ∗, and let N be

the least integer such that

µn+j(N) ≡ aj−1bN + λ∗ > c2,

where with no loss of generality we may assume that N > 2. By choosing j large enough and by

the previous arguments, for any δ > 0, there exists an j such that aj−1b < δ. Therefore

c2 − δ < µn+j(N − 1) < c2.

But λm
n+j(N − 1) = µn+j(N − 1) + aj(λm

n − λ∗) where by choosing η small enough

c2 − δ < µn+j(N − 1) < λm
n+j(N − 1) < c2

so that for these choices of n, j, N , λm
n+j(N − 1) ∈ (c1, c2) for all λ ∈ C and

inf
λ∈C

Pn+m(λ, (c1, c2)) > P(Y m
1 = 0, . . . Y m

n−1 = 0, Y m
n = N, Y m

n+1 = 0, . . . , Y m
n+j−1 = 0) > 0.
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This means that the interval (c1, c2) is uniformly reachable from all λ ∈ [λ∗, K], and arguing as in

the above proof of φ–irreducibility it follows that an n can be found such that

inf
λ∈C

Pn(λ,A) > 0,

for a set A of positive Lebesgue measure. This implies that the set C is a small set.

We now show that {λm
t , t > 0} is aperiodic. Consider the small set C = [λ∗, K]. Note that

φ(C) > 0 and let λm
t−1 = λ ∈ C. Then λm

t = d + aλ + bεt,m. If Y m
t−1 = 0, then λm

t = d + aλ =

λ∗(1−a)+aλ = λ∗+a(λ−λ∗) > λ∗ since a > 0. On the other hand λm
t −λ = λ∗(1−a)−λ(1−

a) = −(1− a)(λ− λ∗) 6 0 for a < 1. It is concluded that if 0 < a < 1, then λ ∈ C and Y m
t−1 = 0

imply that λt ∈ C, which in turn implies P(λ,C) > P(Y m
t−1 = 0 | λt−1 = λ) = P(Nt(λ) = 0) > 0.

Similarly, P2(λ,C) > P(Y m
t = Y m

t−1 = 0 | λt−1 = λ) > 0. It follows that {λm
t , t > 0} is aperiodic

by Chan (1990, Prop. A1.1).

Finally, we prove the existence of a test function V (·) such that (A-1) holds true. Consider

V (x) = 1 + xk. Then

E[V (λm
t )|λm

t−1 = λ] = E[(1 + (λm
t )k)|λt−1 = λ]

= 1 + E[(d + aλ + bY m
t−1 + εt,m)k|λt−1 = λ]

= 1 +
k∑

i=0

(
k

i

)
(aλ)i(bλ)k−i +

k−1∑
j=0

cjλ
j

= 1 + (a + b)kλk +
k−1∑
j=0

cjλ
j,

for some constants cj depending on a, b, d and ε. Consider the small set C = [λ∗, K] and write

1 + (a + b)kλk =

[
1− λk[1− (a + b)k]

1 + λk

]
(1 + λk) [1(λ ∈ C) + 1(λ ∈ Cc)] .

For λ ∈ Cc, we obtain

sup
λ∈Cc

[
1− λk[1− (a + b)k]

1 + λk

]
→ 1− [1− (a + b)k] = (a + b)k

30



as K increases. Similarly, by making K large enough

sup
λ∈Cc

∑k−1
j=1 cjλ

j

1 + λk
< δ,

where 0 < δ < (a + b)k. But on C, 1 + (a + b)kλk +
∑k−1

j=1 cjλ
j is bounded. Therefore, it follows

that there exists constants k1 and k2 such that (0 < k1 < 1, 0 < k2 < ∞)

E(V (λm
t )|λm

t−1 = λ) 6 (1− k1)V (λ) + k21(λ ∈ C)

and this implies that the chain {λm
t , t > 0} is geometrically ergodic, and that the kth moment of

λm
t exists for an arbitrary k.

Proof of Proposition 2.2

We will use the method of Meitz and Saikonnen (2008) to show that geometric ergodicity of the

{λm
t } process implies geometric ergodicity of the chain {(Y m

t , Ut, λ
m
t )}, defined by (3). Denote the

σ-algebra generated by the past of Ut+1 and Nt(·) process byFt−1, that isFt = σ(Uk+1, Nk, k 6 t).

First note that conditional distribution of Y m
t given Ft−1 depends only on λm

t . In addition, the

conditional distribution function of Y m
t given λm

t = λ does not depend on t. Further, given the

initial state (Y m
0 , λm

0 , U1), we have

λm
1 = d + aλm

0 + bY m
0 + ε1,m

and since the conditional distribution of Y m
1 given {Y m

0 , U1, λ
m
0 , λm

1 } is Poisson(λ1), conditionally

on {Y m
0 , U1, λ

m
0 , λm

1 } we have

λm
2 = d + aλm

1 + bN1(λ
m
1 ) + ε2,m

where N1(λ1) is Poisson(λ1). Hence, {λm
t } considered as component of the trivariate chain

{(Y m
t , Ut, λ

m
t } from t > 2 has the same structure as the one–dimensional chain {λm

t }, where

conditionally on Ft−1

λm
t = d + aλm

t−1 + bNt−1(λ
m
t−1) + εt,m
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with Nt−1(λt−1) being Poisson(λt−1). It follows that Assumption 1 in the paper by Meitz and

Saikonnen (2008) is fulfilled. Therefore, Prop. 1 of Meitz and Saikonnen (2008) shows that

{Y m
t , Ut, λ

m
t )} inherits the geometric ergodicity of {λm

t }. Moreover, since we can take Eµ[1 +

(d + λm
0 + Y m

0 + ε1,m)k] < ∞, where µ is the distribution of the initial value (Y m
0 , U1, λ

m
0 ), and

since for some constant C(k)

E[1 + (λm
t−1)

k + (Y m
t−1)

k + εk
t,m|λm

t−1 = λ] = C(k) + λk + E[Y k
t−1|λt−1 = λ]

= C(k) + λk + λk +
k−1∑
i=1

ciλ
i

6 C
′
(k)(1 + λk),

it follows from Thm. 2 of Meitz and Saikonnen (2008)–see also Prop.2– that {(Y m
t , Ut, λ

m
t )} is

V(Y,U,λ)- geometrically ergodic with V(Y,U,λ)(Y, U, λ) = 1 + Y k + Uk + λk.

Proof of Lemma 2.1

It follows from the defining equations (1) and (2)

λm
t − λt = a

(
λm

t−1 − λt−1

)
+ b

(
Y m

t−1 − Yt−1

)
+ εt,m, (A-2)

and by taking conditional expectation and using the properties of the Poisson process we obtain

that

E (λm
t − λt) = (a + b) E

(
λm

t−1 − λt−1

)
+ E (εt,m) =

t−1∑
i=0

(a + b)i E (εt−i,m) .

Since (a + b) < 1 and |E (εt,m)| 6 cm, with cm → 0 as m →∞,

|E (λm
t − λt)| 6 cm

1− (a + b)
:= δ1,m,

which proves the first assertion.

Next consider the second statement. By using (A-2) again,

E (λm
t − λt)

2 = a2E
(
λm

t−1 − λt−1

)2
+ b2E

(
Y m

t−1 − Yt−1

)2

+ 2abE
(
Y m

t−1 − Yt−1

) (
λm

t−1 − λt−1

)
+ E

(
ε2

t,m

)

+ 2aE
[(

λm
t−1 − λt−1

)
εt,m

]
+ 2bE

[(
Y m

t−1 − Yt−1

)
εt,m

]
.
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However, for λm
t > λt

E ((Y m
t − Yt) (λm

t − λt)) = E [E ((Y m
t − Yt) (λm

t − λt)) |Ft−1]

= E [(λm
t − λt) (E (Nt[λt, λ

m
t ]))] = E (λm

t − λt)
2 ,

where Ft−1 is the σ-algebra generated by {(Uk+1, Nk, k 6 t − 1} and Nt[λt, λ
m
t ] is equal to the

number of events between λt and λm
t for the unit intensity Poisson process Nt. (If λm

t < λt, we

work along the same lines). By using again the properties of the Poisson process, we find that

E (Y m
t − Yt)

2 6 E (λm
t − λt)

2 + 2 |E (λm
t − λt)| 6 E (λm

t − λt)
2 + 2δ1,m. (A-3)

Finally, with K a positive constant,

E
(
ε2

t,m

)
+ 2aE

((
λm

t−1 − λt−1

)
εt,m

)
+ 2bE

((
Y m

t−1 − Yt−1

)
εt,m

)
6 Kc2

m.

Therefore, by simple recursion

E (λm
t − λt)

2 6 (a + b)2 E
(
λm

t−1 − λt−1

)2
+ κc2

m + b22δ1,m 6 δ2,m,

where δ2,m → 0 as m →∞. This establishes the second assertion and hence the last statement of

the Lemma. As to third statement this follows by (A-3) and the second assertion of the Lemma. ¤

Proof of Lemma 3.2

Equation (9) shows that the score for the perturbed model is given by Sm
n (θ) =

∑n
t=1 ∂lmt (θ) /∂θ,

with martingale difference terms defined by

∂lmt
∂θ

=

(
Y m

t

λm
t

− 1

)
∂λm

t

∂θ
:= Zm

t

∂λm
t

∂θ

where ∂λm
t /∂θ is defined analogous to (10). It follows that at θ = θ0, E (∂lmt /∂θ|Ft−1) = 0

and E ((Zm
t )2|Ft−1) = 1/λm

t where Ft−1 is the σ-algebra generated by {Uk+1, Nk, k 6 t − 1}.

Furthermore, from (3) and (10),

∂λm
t

∂a
=

t−1∑
i=0

ai
0λ

m
t−1−i,

∂λm
t

∂d
=

1− at
0

1− a0

and
∂λm

t

∂b
=

t−1∑
i=0

bi
0Y

m
t−1−i.
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Observe that, as a0, b0 < 1, E (Y m
t )2 < ∞, and E (λm

t )2 < ∞, then (∂λm
t /∂d)2, E (∂λm

t /∂a)2 and

E (∂λm
t /∂b)2 are all finite. Also 1/λm

t 6 1/ (d0 − η1) for any small η1 > 0, where for m large

enough,

εt,m = cm1
(
Y m

t−1 = 1
)
Ut ∈ [−η1, η1].

From Hölders inequality we conclude that E ‖∂lmt /∂θ‖ < ∞. Thus ∂lmt /∂θ is a martingale differ-

ence sequence with respect to Ft and an application of the CLT (Hall and Heyde, 1980, Cor. 3.1),

gives n−1/2Sm
n is asymptotically Gaussian with covariance given by the limit,

1

n

n∑
t=1

E
(

Z2
t

(
∂λm

t

∂θ

)(
∂λm

t

∂θ

)′
|Ft−1

)
P→ Gm,

by the LLN for geometrically ergodic process in Jensen and Rahbek (2007). That the conditional

Lindeberg’s condition holds follows by noting

1

n

n∑
t=1

E
(‖∂lmt /∂θ‖2 I

(‖∂lmt /∂θ‖ >
√

nδ
) |Ft−1

)
6 1

n2δ2

n∑
t=1

E
(‖∂lmt /∂θ‖4 |Ft−1

) → 0,

since E ‖∂lmt /∂θ‖4 < ∞. This proves the first assertion of the Lemma. The second assertion

follows by Lemma 3.1.

We consider the last conclusion of the Lemma. Define Zt in a analogous way as Zm
t . Then

1√
n

(Sm
n − Sn) =

1√
n

n∑
t=1

(
∂lmt
∂θ

− ∂lt
∂θ

)
=

1√
n

n∑
t=1

(
Zm

t

∂λm
t

∂θ
− Zt

∂λt

∂θ

)

=
1√
n

n∑
t=1

[
Zm

t

(
∂λm

t

∂θ
− ∂λt

∂θ

)
+ (Zm

t − Zt)
∂λt

∂θ

]
.

But for the first summand

P

(∥∥∥∥∥
n∑

t=1

Zm
t

(
∂λm

t

∂θ
− ∂λt

∂θ

)∥∥∥∥∥ > δ
√

n

)
6 P

(
γm

∥∥∥∥∥
n∑

t=1

Zm
t

∥∥∥∥∥ > δ
√

n

)

6
γ2

a,m

δ2n

n∑
t=1

E ‖Zm
t ‖2 6 Cγ2

a,m → 0,
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as m → ∞. For the second summand, the same arguments apply because E ‖∂λt/∂θ‖2 < ∞. In

addition, for

Zm
t − Zt =

λt (Y m
t − Yt)− Yt (λm

t − λt)

λtλm
t

,

we have ‖Zm
t − Zt‖ < γb,m → 0 as m →∞. To see this, observe

E
∣∣∣∣
(Y m

t − Yt)

λm
t

∣∣∣∣ 6 E |Y m
t − Yt| / (d0 − η1) 6 Cδ1,m and E

∣∣∣∣
Yt (λm

t − λt)

λtλm
t

∣∣∣∣ 6 δmE |Yt|
d0 (d0 − η1)

6 Cδm

using Lemma 2.1 and the fact that E|Yt| < ∞.
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