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Abstract

Yule (1926) introduced the concept of spurious or nonsense correlation, and
showed by simulation that for some nonstationary processes, that the empirical
correlations seem not to converge in probability even if the processes were inde-
pendent. This was later discussed by Granger and Newbold (1974), and Phillips
(1986) found the limit distributions.
We propose to distinguish between empirical and population correlation coef-

�cients and show in a bivariate autoregressive model for nonstationary variables
that the empirical correlation and regression coe¢ cients do not converge to the
relevant population values, due to the trending nature of the data.
We conclude by giving a simple cointegration analysis of two interests. The

analysis illustrates that much more insight can be gained about the dynamic
behavior of the nonstationary variables then simply by calculating a correlation
coe¢ cient.

JEL Classi�cation: C22

�The author acknowledges the support of the Center for Research in Econometric Analysis of Time
Series, CREATES, funded by the Danish National Research Foundation.

yAddress: Department of Economics, University of Copenhagen, Studiestræde 6, DK-1455 Copen-
hagen K, Denmark. Email: sjo@math.ku.dk

1

mailto:@math.ku.dk


Spurious correlation 2

1. INTRODUCTION

In his presidential address at the meeting in the Royal Statistical Society November
17, 1925 Udne Yule stated

"It is fairly familiar knowledge that we sometimes obtain between quanti-
ties varying with the time (time-variables) quite high correlations to which
we cannot attach any physical signi�cance whatever, although under the
ordinary test the correlation would be held to be certainly "signi�cant"."

He goes on to show a plot of the proportion of Church of England marriages to all
marriages for the years 1866-1911 inclusive, and in the same diagram, the mortality
per 1.000 persons for the same years, see Figure 1. He comments

"Evidently there is a very high correlation between the two �gures for the
same year: The correlation coe¢ cient actually works out at +0.9512."

Figure 1: The proportion of Church of England marriages to all marriages for the years
1866-1911 (line), and the mortality per 1.000 persons for the same years (circles)

He then points out that

"When we �nd that a theoretical formula applied to a particular case gives
results which common sense judges to be incorrect, it is a generally as well
to examine the particular assumptions from which it was deduced and see
which of them are inapplicable to the case in point."

In order to describe the probability assumptions behind the "ordinary test" he
invents an experiment which consists of writing corresponding numbers of (Xt; Yt)
on cards and de�nes the distribution of the correlation coe¢ cient as what you get
when you draw the cards at random and calculate the correlation coe¢ cient. He
then simulated the distribution of the empirical correlation coe¢ cient calculated from
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Figure 2: Simulation for T = 10 of the distribution of the empirical correlation co-
e¢ cient for independent i.i.d. processes, I(0), independent random walks, I(1), and
independent cumulated random walks, I(2), Yule (1926).

two independent i.i.d. processes, from two independent random walks, and from two
independent cumulated random walks, the latter having a U-shaped distribution, see
Figure 2.
Thus, 80 years ago Yule pointed to what is wrong with just calculating correlation

coe¢ cients without checking the stationarity assumption behind the interpretation,
and he suggested calling such correlations "nonsense correlations".
Granger and Newbold (1974) take up the point and note that

"It is very common to see reported in applied econometric literature, time
series regression equations with an apparently high degree of �t, as mea-
sured by the coe¢ cient of multiple correlation R2 but with an extremely low
value the Durbin-Watson statistic. We �nd it very curious that whereas vir-
tually every textbook on econometric methodology contains explicit warn-
ings of the dangers of autocorrelated errors this phenomenon crops up so
frequently in well-respected applied work."

They show by simulation of ARIMA models that regressions can be quite mis-
leading. The important paper by Phillips (1986) solved the problem of �nding the
asymptotic distribution of correlation and regression coe¢ cients, when calculated from
a class of nonstationary time series. Thus the problem and its solution has been known
for a long time but we still �nd numerous examples of misunderstandings in applied
and theoretical work.
The paper by Hoover (2003) discusses Reichenbach�s principle of the common cause,

that is, "if event X and Y are correlated, then either X causes Y; Y causes X; or X
and Y are joint e¤ects of a common cause (one that renders X and Y conditionally
probabilistically independent)", see Sober (2001). A counter example to this principle,
according to Sober (2001), consists in considering Venetian sea levels and British bread
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prices. Sober claims they are truly correlated but not causally connected by construc-
tion, therefore neither causes the other and there can be no common cause. Hoover
points out that the statement "truly correlated" is based on calculating the empirical
correlation coe¢ cient, which is clearly a case of a spurious or nonsense correlation, as
both series trend with time.
Another example is the analysis of the (trending) time series of sea level and tem-

perature of the earth. Rahmstorf (2007) reports a correlation coe¢ cient between the
rate of change of sea level and temperature: R = 0:88 with a p value 1:6� 10�8:
Thus the problem pointed out and analyzed by simulation by Yule in 1926, followed

up by Granger and Newbold (1974), and �nally solved by Phillips (1986) is still present
in applied and theoretical work.

2. DISTINCTIONBETWEENEMPIRICALANDPOPULATIONVAL-
UES

It is important in applications to distinguish between the sample, (Xt; Yt)
T
t=1; and

the population as expressed by the density of (Xt; Yt)
T
t=1. We have di¤erent words

for sample average, �X = T�1
P

tXt and population expectation, E(Xt), and it is

well know that for stationary (ergodic) processes it holds that �X P! E(X1); but for
trending variables this need not not hold. For correlation and regression coe¢ cients
we use the same words for the sample and population concepts. We therefore suggest
to use the terms empirical correlation coe¢ cient and population correlation coe¢ cient
and similarly for regression coe¢ cients in order to distinguish between the calculated
values and their interpretation in the population.
The empirical correlation coe¢ cient and empirical regression coe¢ cient are calcu-

lated from a sample

R =

P
t(Xt � �X)(Yt � �Y )pP

t(Xt � �X)2
P

t(Yt � �Y )2
; �̂ols =

P
t(Xt � �X)(Yt � �Y )P

t(Xt � �X)2
(1)

and the population correlation correlation coe¢ cient and population regression coe¢ -
cient of the pair (Yt; Xt) are de�ned as

�t =
Cov(Xt; Yt)p
V ar(Yt)V ar(Xt)

; �t =
Cov(Xt; Yt)

V ar(Xt)
; (2)

provided the moments have a meaning. For stationary processes �t = � and �t = �,
but for nonstationary processes we may have to condition on initial values.
For ergodic processes with �nite variance the law of large numbers shows that

R
P! �; �̂ols

P! �; T !1:

Obviously such a result need not hold if the processes are nonstationary either with a
deterministic trend or a stochastic trend. When using the quali�cations empirical and
population for the concepts one has to argue that one can estimate the population values
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(�t; �t) by the empirical values (R; �̂ols); and that requires knowledge of the properties
of the processes. In order to �nd the properties of the processes, however, we need
a model for the data, which describes the variation of the data in a satisfactory way.
Only then can we �nd out if the assumptions for interpreting an empirical correlation
coe¢ cient as a population correlation coe¢ cient are satis�ed.

3. INTERPRETATION OF CORRELATION AND REGRESSION IN
NONSTATIONARY TIME SERIES

In order to understand the relation between empirical and population values for
nonstationary processes, we assume that data is generated by an autoregressive model
written in terms of di¤erences and lagged levels

�Yt = �yyYt�1 + �yxXt�1 + �y + �yt+ "yt;

�Xt = �xyYt�1 + �xxXt�1 + �x + �xt+ "xt;

where "t = ("yt; "xt)0 is i.i.d. (0;
): This is a dynamic stochastic model for the evolution
of the processes Yt and Xt; expressed as a model for how the changes depend on lagged
levels, deterministic terms, and noise terms. The stochastic properties of the solution
depend on the coe¢ cients in the model in terms of the roots of the characteristic
polynomial:

det	(z) = det

�
1� z � �yyz ��yxz
��xyz 1� z � �xxz

�
= 0:

We assume that the roots of det	(z) = 0 satisfy that either jzj > 1 or z = 1; thereby
ruling out explosive roots and seasonal roots on the unit circle. Because � = �	(1)
we distinguish three cases:
3.1. Rank(�) = 2:
Because there are no unit roots, the processes are trend stationary with a linear

trend
Yt = Uyt + y + �yt; Xt = Uxt + x + �xt;

where (Uyt; Uxt) is stationary with mean zero and variance � = V ar(Yt; Xt). The
population correlation and regression coe¢ cients are

� =
�yxp
�xx�yy

; � =
�yx
�xx

: (3)

The slopes are given by

�y =
�yx�x � �xx�y
�yy�xx � �yx�xy

; �x =
�xy�y � �yy�x
�yy�xx � �yx�xy

:

In this case, the average of Xt; say, �X = �Ux + x + �x�t diverges and does not
correspond to the population values E(Xt) = x + �xt; when �x 6= 0; because of the
deterministic linear trend. The dominating term of the product momentX

t

(Xt � �X)(Yt � �Y ) =
X
t

(Uxt � �Ux + �x(t� �t))(Uyt � �Uy + �y(t� �t))
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is �x�y
P

t(t��t)2; so that the empirical correlation and regression coe¢ cients converge:

R
P!
�x�y
j�x�yj

= �1; �̂ols
P!
�y
�x
; T !1: (4)

These values are not the population correlation and regression coe¢ cients (�; �);
see (3). Thus, when calculating empirical correlation coe¢ cients from trend stationary
data, we cannot interpret them as approximations to the true population quantities,
and the empirical results are entirely spurious, in the sense that the conclusions drawn
from these cannot be considered conclusions about the correlation in the population.
3.2. Rank(�) = 0:
In this case � = 0; and the equations are

�Yt = �y + �yt+ "yt; �Xt = �x + �xt+ "xt:

These determine two random walks with quadratic trends. We assume for simplicity
that �x = �y = 0; so that the trends are linear, and �nd

Yt = Y0 +
tX
i=1

"yt + �yt = Y0 + Syt + �yt; Xt = X0 +
tX
i=1

"xt + �xt = X0 + Sxt + �xt:

The population values for means, correlation, and regression coe¢ cients have to be
de�ned by conditioning on (Y0; X0):

E(YtjY0; X0) = Y0 + �yt; E(XtjY0; X0) = X0 + �xt;

� =
Cov(Yt; XtjY0; X0)p

V ar(YtjY0; X0)V ar(XtjY0; X0)
=


yxp

yy
xx

; � =
Cov(Yt; XtjY0; X0)
V ar(XtjY0; X0)

=

yx

xx

:

If �x�y 6= 0; the averages

�Y = Y0 + �Sy + �y�t; �X = X0 + �Sx + �x�t

diverge and do estimate E(Yt) and E(Xt): Because the linear trend dominates the
processes, we get the result (4) for the empirical correlation and regression coe¢ cient
with (�y; �x) replaced by (�y; �x).
If, however, �x = �y = 0 the linear trends vanish and the random walks dominate

the behavior of the processes. The limit of the random walk is the Brownian motion:

T�1=2
[Tu]X
i=1

�
"yt
"xt

�
d!
�
By(u)
Bx(u)

�
;

so that the averages, normalized by T�1=2; give the limits

T�1=2( �Y ; �X)
d! ( �By; �Bx) = (

Z 1

0

By(u)du;

Z 1

0

Bx(u)du:
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The limits of R and �̂ols are

R
d!

R 1
0
(By(u)� �By)(Bx(u)� �Bx)duqR 1

0
(By(u)� �By)2du

R 1
0
(Bx(u)� �Bx)2du

; �̂ols
d!
R 1
0
(By(u)� �By)(Bx(u)� �Bx)duR 1

0
(By(u)� �By)2du

:

These distributions were derived by Phillips (1986); see also the simulations of the
distribution of R by Yule (1926) in Figure 2.
Notice that for random walks without deterministic trend, the empirical correlation

does not converge in probability to anything. In fact the empirical correlation between
two random walks can give any number between �1 and +1, even if the random walks
are completely independent of each other and T is arbitrarily large. In this case an
empirical correlation is completely spurious and has no interpretation as a population
parameter.
3.3. Rank(�) = 1:
When the matrix � has rank 1, it has the representation

� =

�
�y
�x

��
�y
�x

�0
=

�
�y�y �y�x
�x�y �x�x

�
and the equations become (with �x = �y = 0 as in Case 2)

�Yt = �y(�yYt�1 + �xXt�1) + �y + "yt;

�Xt = �x(�yYt�1 + �xXt�1) + �x + "xt:

It is seen that the same linear combination �yYt�1 + �xXt�1 of the lagged levels enter
both equations and that �y and �x describe the dynamic adjustment of the variables
to deviations from the relation �yYt�1 + �xXt�1 = 0: The model thus describes a
feedback mechanism and is called the error correction or equilibrium correction model.
Under the condition that �y�y + �x�x 6= 0; one can solve these equations and �nd the
representation

Yt = �xSt + Zyt + Ay + y; Xt = ��ySt + Zxt + Ax + x;

where St is a random walk with a trend:

St =
tX
i=1

�i + �t; �t =
�x"yt � �y"xt
�y�y + �x�x

; � =
�x�y � �y�x
�y�y + �x�x

: (5)

The processes Zyt and Zxt are stationary and Ay and Ax depend on initial values
and satisfy �yAy + �xAx = 0, see Johansen (1996, Theorem 4.2).
Note that the process (Yt; Xt) is nonstationary due to the common trend St; but

that the linear combination

�yYt + �xXt = �yZyt + �xZxt
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is a stationary process because the common trend and initial values are eliminated.
We say that Yt and Xt are integrated of order one, I(1), because they are nonsta-

tionary and �Yt and �Xt are stationary, and they are cointegrated because a linear
combination is stationary, Granger (1981).
The dominating term in the product momentX

t

(Xt � �X)(Yt � �Y ) =
X
t

(�x(St � �S) + Zxt � �Zx)(�y(St � �S) + Zyt � �Zy)

is �x�y
P

t(St � �S)2: This implies that for population correlation and regression coe¢ -
cients, the limits are

�t ! �
�y�x
j�y�xj

= �1; �t ! ��x
�y
; t!1;

and similarly we �nd the result (4) for the empirical correlation and regression coe¢ -
cients, with (�y; �x) replaced by (�y; �x):
Hence in this cointegrated case, the empirical correlation and regression coe¢ cients

give consistent estimates of the limits of the population values. Thus correlation coe¢ -
cients are not spurious even though a proper analysis of the data reveals more structure
than can be captured by the asymptotic population correlation coe¢ cient.

4. AN EXAMPLE OF A COINTEGRATION ANALYSIS

Consider quarterly data for the interest rates iaust and iust in Australia and United
States in the period 1972:01 to 1991:01; Johansen (1996). The processes are �tted with
a bivariate autoregressive model with three lags. By a statistical analysis it is found
that the rank of � can be taken to one, see Case 3 above, so that there is a unit root
and iaust and iust can be considered nonstationary and cointegrated I(1) variables. The
cointegrating relation is found to be iaust�1 � iust�1 which is stationary around the value
0:03; so that the estimated model is

�iaust = �0:17
[t=�4:33]

(iaust�1 � iust�1 �0:03
[t=�6:30]

) + : : :+ "aust ; (6)

�iust = �0:03
[t=�0:58]

(iaust�1 � iust�1 �0:03
[t=�6:30]

) + : : :+ "ust :

Because the adjustment coe¢ cient of the equation for �iust is not signi�cantly di¤erent
from zero, t = �0:58; see (6), only the Australian interest rates adjust to a disequi-
librium between the interest rates. We say that iust is weakly exogenous; see Engle,
Hendry, and Richard (1983). This implies that in (5) we take �x = 0; �x = ��y = �1;
so that �t = �"ust : The common stochastic trend is therefore the cumulated distur-
bances

Pt
i=1 "

us
i . In this sense the US interest rate is driving the interest rate in

Australia.
The empirical correlation coe¢ cient between the series iaust and iust is R = 0:60; and

by the analysis above in Case 2, this is a consistent estimator of the limiting value of
1, which is hardly a useful result.
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5. CONCLUSION

It is argued that one should distinguish between the empirical and the population
correlation and regression coe¢ cients. An empirical correlation coe¢ cient is calculated
from a sample, whereas a population correlation coe¢ cient requires a population which
we can estimate from a model.
It is shown in a bivariate autoregressive time series model for nonstationary processes,

that the presence of a nonstationary deterministic or stochastic trend implies that the
empirical correlation and regression coe¢ cients cannot be interpreted as their popu-
lation counterparts in any useful way. Hence they are entirely spurious, in the sense
that the conclusions drawn from these cannot be considered conclusions about the
correlation or regression in the population.
Calculating an empirical correlation coe¢ cient between the changes of sea level and

temperature gives 0:88, but it is not obvious how that can be interpreted in view of
the trending nature of the data, nor what is the corresponding distribution. Similarly
the correlation coe¢ cient of 0:60 between iust and iaust is not a useful coe¢ cient to
calculate in view of the detailed statistical analysis of nonstationary processes that is
now available.
The solution to the spurious correlation problem in practice is to model the data,

and only when one is convinced that the model gives a good description of the data
one can calculate the population counterpart of the empirical correlations and thereby
avoid spurious or nonsense correlations.
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