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Abstract

A common approach to estimation of dynamic economic models is to calibrate a
sub-set of model parameters and keep them fixed when estimating the remaining
parameters. Calibrated parameters likely affect conclusions based on the model
but estimation time often makes a systematic investigation of the sensitivity to
calibrated parameters infeasible. I propose a simple and computationally low-cost
measure of the sensitivity of parameters and other objects of interest to the cal-
ibrated parameters. In the main empirical application, I revisit the analysis of
life-cycle savings motives in Gourinchas and Parker (2002) and show that some
estimates are sensitive to calibrations.
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1 Introduction

Estimated dynamic economic models are now widely used across all fields of economics.

The estimation of structural models is, however, notoriously time consuming and the es-

timation time increases drastically with the number of estimated parameters. A common

approach to alleviate this computational burden is to calibrate a sub-set of the model

parameters and keep them fixed while estimating the remaining parameters of interest.1

The calibrated parameter values are often based on external sources such as previously

published parameter estimates and will generally influence conclusions drawn from the es-

timated model. Unfortunately, a systematic investigation of the sensitivity to calibrated

parameters is often infeasible. If sensitivity is investigated, the current practice is to

report results from a few re-estimated versions of the model. This approach is, however,

generally very time consuming and the number of alternative calibrations thus typically

low, ultimately reducing research transparency. In this paper, I propose a complementary

approach that can greatly improve the transparency of structural research.

I propose a low-cost measure of the sensitivity of any quantity of interest to the cali-

brated parameters. The sensitivity measure can often be calculated with little additional

programming and without significant computational cost since it avoids re-estimation of

the model parameters. The measure has a straightforward interpretation as the effect on

quantities of interest from a marginal change in the calibrated parameters and can e.g.

be used to construct elasticities. Like most existing types of sensitivity and robustness

analyses, the proposed measure is thus local. I find the encouraging result, however, that

the measure provides a quite good approximation to even larger changes in the calibrated

parameters in my main empirical application.

The sensitivity measure is based on the General Method of Moments (GMM) estima-

tion framework, which includes most commonly used estimators. I use this framework to

1 See e.g. Gourinchas and Parker (2002); Scholz, Seshadri and Khitatrakun (2006); Cagetti and De Nardi
(2006); De Nardi, French and Jones (2010); French and Jones (2011); Blundell, Dias, Meghir and Shaw
(2016); Berger and Vavra (2015); Voena (2015); Chiappori, Dias and Meghir (forthcoming); Sommer
(2016); Fernández and Wong (2014); Ejrnæs and Jørgensen (2020); Huo and Ríos-Rull (forthcoming)
for a small sample of studies.
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derive a sensitivity measure that is robust to misspecification. I also provide an approx-

imation that is particularly simple to calculate and is expected to be good for correctly

specified models.

The sensitivity of estimated parameters or other quantities of interest can be cal-

culated straightforwardly. The objects of primary interest are often some functions of

the parameters, such as counterfactual policy reforms, optimal policy design, or welfare

measures. The proposed measure can quantify the sensitivity of such model-based results

to calibrations. In previous research – if the sensitivity of such results are investigated

– the most common approach is to re-calculate the objects of interest from a change in

the calibrated parameters while the estimated parameters remain fixed at their originally

estimated values. That approach, however, completely ignores the effect on the estimated

parameters and can produce misleading results. The sensitivity measure I propose takes

this effect on the estimated parameters into account without costly re-estimations of the

model.

Generalizations of the estimated model can be investigated without estimating the

richer and more complex model. Imagine having estimated a restricted version of a

more general model class where estimating the general model is significantly more time

consuming that estimating the restricted model. The sensitivity measure can be used

to assess the sensitivity of results to the general model without ever having to estimate

the more computationally time demanding model. The measure could also be used to

construct formal Lagrange multiplier tests or provide a one-step estimate of the general

model.

The sensitivity measure can greatly improve the transparency of work in many fields

of economic research. I illustrate the usefulness of the approach through an application

to the importance of different savings motives over the life cycle, as studied in the seminal

work by Gourinchas and Parker (2002). I show how the estimation results are especially

sensitive to the calibrated value of the risk-free interest rate, a parameter not considered

in their original robustness analysis. I compare the proposed sensitivity measures to a

brute-force re-estimation and find very encouraging results in the sense that the sensitivity
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measure is close to the true marginal effects of changes in the calibrated parameters. The

main result in Gourinchas and Parker (2002) is that buffer-stock saving is the dominating

savings motive early in working life while retirement saving or life-cycle motives are more

important later in the working life. Interestingly, I find that this result is insensitive to

the calibrated parameters.

Finally, I also apply the sensitivity measure to recent research on home-ownership and

the option value of migration in Oswald (2019). I find that the willingness to pay for the

insurance value of migration against regional shocks are sensitive to calibrated parameters

related to idiosyncratic risk. This example illustrates the value of the sensitivity mea-

sure because the richness of this dynamic model in practice makes many re-estimations

infeasible.

1.1 Existing Literature and Roadmap

The literature on sensitivity in economics is growing. Especially the sensitivity of estima-

tors to the included moments in GMM-type estimators has received recent attention, see

e.g. Kitamura, Otsu and Evdokimov (2013) and Andrews, Gentzkow and Shapiro (2017,

2020).2 I extend the approach used by Andrews, Gentzkow and Shapiro (2017) to the cur-

rent setting, investigating the sensitivity to calibrated parameters. To my knowledge, the

only paper investigating the sensitivity of structural estimators to calibrated parameters

is the recent paper by Iskrev (2019). That paper focuses on Bayesian approaches to esti-

mation of macroeconomic models. I propose a measure based on a more commonly used

type of estimator, derived from the minimization of a quadratic criterion, in a frequentist

framework. Importantly, the approach in Iskrev (2019) requires identification of all (both

calibrated and estimated) model parameters simultaneously and the availability of the

covariance between the two sets of parameters. This e.g. precludes the use of external

sources for calibration, which is a very common approach.3 Another related study is by

2 Analyzing local misspecification is not a new idea, however. For earlier work, see e.g. Newey (1985).
3 A worst-case upper bound on the co-variance structure could be estimated following the approach
suggested in Cocci and Plagborg-Møller (2019), however.

3



Chernozhukov, Escanciano, Ichimura, Newey and Robins (2018) who provide a setup for

construction of locally robust moments that are orthogonal to the calibrated parameters.

Their approach can completely eliminate sensitivity to calibrated parameters but relies

on the availability of estimation information regarding the calibrated parameters. Again,

this would preclude calibration based on external sources.

There are several other related studies. Bonhomme and Weidner (2018) study the

sensitivity to model misspecification and provide estimators to minimize the effect on

quantities of interest. Christensen and Connault (2019) study counterfactual sensitivity

to assumptions about unobserved heterogeneity. Honoré, Jørgensen and de Paula (2020)

propose measures related to the effect on inference from e.g. changing the weighting

put on moments in estimation. Armstrong and Kolesár (2021) study the sensitivity to

moments included in the estimation and propose optimal weights that can reduce the

sensitivity to included moments. While all these measures are local, Harenberg, Marelli,

Sudret and Winschel (2019) suggest constructing a global approximation of the object of

interest to reduce the computational time required for global sensitivity analysis. This

approach, however, still requires a significant number of re-estimations of the model.

In engineering and operations research, sensitivity and uncertainty quantification of

model outputs to model inputs have received substantial attention. Some measures in

this literature (see e.g. Borgonovo and Apostolakis, 2001) bears resemblance to the one,

I propose, but in completely different contexts. There is also a growing focus in this

literature on global measures of sensitivity, see e.g. Borgonovo and Plischke (2016) for a

recent review.

The remainder of the paper is organized as follows. In the following section, I specify

the estimation framework and define the sensitivity measure. In Section 3, I apply the

measure to an empirical analysis of the relative importance of alternative savings motives

over the life cycle. In section 4, I apply the approach to a rich model of home-ownership

and migration before concluding in Section 5. Python code generating all results in this

paper is available from the author’s web-page.
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2 Framework and Sensitivity

I focus on situations in which the interest lies in estimating a K×1 vector of parameters,

θ, given some L × 1 vector of calibrated parameters, γ̂. The calibrated parameters, γ̂,

could e.g. be estimated from different data-sources, by other researchers, or published

in other papers. Interest may then be in using these estimates to subsequently analyze

different model outcomes and predictions.

I assume that a GMM-type estimation approach (Hansen, 1982) is employed,

θ̂(γ̂) = arg min
θ∈Θ

gn(θ|γ̂)′Wngn(θ|γ̂) (1)

where gn(θ|γ̂) = 1
n

∑n
i=1 f(θ|γ̂,wi) is some J × 1 vector valued function of the parameters

and data, wi for i = 1, . . . , n, specified by the researcher. Gn = ∂gn(θ|γ̂)
∂θ′

∣∣∣
θ=θ̂

and Dn =
∂gn(θ̂|γ)
∂γ′

∣∣∣∣
γ=γ̂

are J ×K and J ×L Jacobians, respectively, and Wn is a symmetric positive

definite weighting matrix. I assume that i) gn(θ|γ) is continuously differentiable in θ and

γ around (θ̂, γ̂), ii) G′nWnGn has an inverse, and iii) θ̂ is in the interior of the parameter

space Θ, where Θ is a compact subset of RK , and θ̂ is identified in the sense that it is

the unique value that solves the problem in eq. (1).

2.1 Current Practice to Sensitivity

In existing research, the sensitivity to calibrated parameters is often not investigated,

despite the likely importance for subsequent results derived from the estimated model. If

sensitivity to calibration is investigated, the current practice is to report M estimation

results, {θ̃m}M1 , from M alternative calibrations, {γ̃m}M1 , in a robustness exercise.

While this more global approach has the potential to investigate alternative relevant

calibrations, it is somewhat arbitrary and rely on the researcher’s priors on what might

be important to investigate. A reader cannot infer the implications of her own prior from

the reported robustness results if her prior is not equal to that of the researcher. I view

this as a lack of transparency.

Furthermore, the current practice involves re-estimating the model M times, which
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is potentially computationally time consuming if a dynamic economic model is solved

every time the objective function is evaluated. This, in turn, often leads to a low value

of M , reducing the transparency drastically. This motivates the low-cost complementary

measure I propose below.

An example of the current practice is found in the main application below in which

I revisit the seminal work of Gourinchas and Parker (2002).4 Among other things, they

investigate the sensitivity of their estimation results to changing the income shock vari-

ances and find that results are quite insensitive to these parameters. I confirm that finding

using my proposed sensitivity measure. Interestingly, however, the calibrated parameter

that I find to be most important (the risk-free interest rate) is not considered in their

robustness exercise.

2.2 Sensitivity Measure

I propose the Jacobian

Ŝ = ∂θ̂

∂γ̂′
(2)

as the sensitivity of the estimated parameters to the calibrated parameters. With this

measure, the elasticity of the kth estimated parameter to the lth calibrated parameter

can thus easily be calculated as

Ê(k,l) = Ŝ(k,l)γ̂(l)/θ̂(k) (3)

assuming that γ̂(l), θ̂(k) 6= 0.

Proposition 1 shows how the sensitivity measure can be calculated without re-estimating

the model. All elements can be calculated using numerical derivatives if closed form

derivatives are not available.

Proposition 1. The derivative of the estimated parameters w.r.t. the calibrated param-

4 A similar approach is adopted in e.g. De Nardi, French and Jones (2010); French and Jones (2011);
Fernández and Wong (2014); Druedahl and Martinello (forthcoming); Jørgensen (2017); Fan, Seshadri
and Taber (2019); and Druedahl and Jørgensen (2020).
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eters is the K × L matrix

∂θ̂

∂γ̂′
=− [(gn(θ̂(γ̂)|γ̂)′Wn ⊗ IK)Cθ,n +G′nWnGn]−1

× [(gn(θ̂(γ̂)|γ̂)′Wn ⊗ IK)Cγ,n +G′nWnDn] (4)

if the inverse exists, where Cθ,n = ∂vec(G′
n)

∂θ′

∣∣∣
θ=θ̂

is a JK×K matrix of stacked second order

derivatives and Cγ,n = ∂vec(G′
n)

∂γ′

∣∣∣
γ=γ̂

is a JK × L matrix with stacked cross-derivatives.

Proof. See the Supplemental Material Section A.

Corollary 1 shows an approximation to ∂θ̂
∂γ̂′ that is particularly fast to calculate because

almost all elements are already constructed when calculating the asymptotic covariance

matrix of θ̂.5 Calculating the only missing element, Dn, involves only 2L evaluations of

the objective function if central finite differences are used to calculate numerical deriva-

tives. The condition for a good approximation is satisfied in just-identified cases since

gn(θ̂(γ̂)|γ̂) ≈ 0 in that case. In correctly specified over-identified models (J > L) we

might also have gn(θ̂(γ̂)|γ̂)′Wn ≈ 0. Generally, however, the approximation is expected

to be good if potential non-zero moments are approximately linear in parameters around

(θ̂, γ̂).

Corollary 1. If (gn(θ̂(γ̂)|γ̂)′Wn⊗IK)Cθ,n ≈ 0K×K and (gn(θ̂(γ̂)|γ̂)′Wn⊗IK)Cγ,n ≈ 0K×L

the derivative can be approximated as

Ŝ ≈ ΛnDn (5)

where Λn = −(G′nWnGn)−1G′nWn.

Under standard regularity conditions – which imply that θ̂ is a consistent estimator

of the true population value – the approximation in Corollary 1 is a consistent estimator

of ∂θ
∂γ′ in the population (see Supplemental Material B). In the main empirical application

5 In fact, if asymptotic standard errors are corrected for the two-step estimation approach, as in Gour-
inchas and Parker (2002), all elements of the sensitivity measure is already calculated.
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below, I compare the approximation to the robust formula and the brute-force deriva-

tive using (costly) re-estimation of the model and find that the approximate sensitivity

measure in eq. (5) is a quite good approximation of ∂θ̂
∂γ̂′ .

Example (Linear Regression). Consider a simple linear regression model with two mean-

zero explanatory variables, X1 and X2, and measurement error, ε,

Yi = β1X1,i + β2X2,i + εi

where E[ε|X1, X2] = 0 is the identifying assumption. Imagine fixing the second parameter

to β̂2 and only estimating β1 with a single moment in gn(β1|β̂2) = 1
n

∑n
i=1(Yi − β1X1,i −

β̂2X2,i)X1,i. This ordinary least squares (OLS) estimator can be found in closed form as

β̂1(β̂2) =
∑n
i=1 X1,i(Yi − β̂2X2,i)∑n

i=1X
2
1,i

. (6)

In this setting, Gn = −∑n
i=1X

2
1,i and Dn = −∑n

i=1X1,iX2,i and the sensitivity measure

is

Ŝ = −
∑n
i=1X1,iX2,i∑n
i=1X

2
1,i

showing the intuitive result that if X1 and X2 are positively (negatively) correlated,

increasing β̂2 would lead to a reduced (increased) β̂1. If they are uncorrelated, the esti-

mator of β1 is insensitive to β̂2. In this just-identified example, it is also easy to verify

that Ŝ = ∂β̂1(β̂2)
∂β̂2

and that −Ŝβ̂2 is equal to the omitted variable bias from omitting X2

in the OLS regression.

The sensitivity measure is related to that proposed by Andrews, Gentzkow and

Shapiro (2017). In particular, they propose to report Λ̂ as a local measure of the sen-

sitivity of θ to the included estimation moments in gn(•). They do not consider the

topic of the current paper and thus do not discuss sensitivity to calibrated parameters.

The measure that I propose addresses this by weighting Λ̂ by the effect of the calibrated

parameters on each included moment through Dn in (5). In the Supplemental Material,

I discuss other related sensitivity measures.
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2.3 Extensions

Sensitivity of other Quantities of Interest. Denote a F × 1 vector of quantities

of interest as h(θ, γ) = 1
n

∑n
i=1 hi(θ, γ|wi). Examples include counterfactual policy simu-

lations and welfare measures. The proposed measure can easily be used to construct a

sensitivity measure of such quantities of interest using the chain rule. The sensitivity of

a F × 1 vector of statistics, h(θ, γ), to the calibrated parameters is given by the F × L

matrix

Ĥ = An +BnŜ (7)

where An = ∂h(θ̂,γ)
∂γ′

∣∣∣∣
γ=γ̂

is a F ×L Jacobian matrix of h(θ, γ) w.r.t. γ and Bn = ∂h(θ,γ̂)
∂θ′

∣∣∣
θ=θ̂

is a F ×K Jacobian matrix of h(θ, γ) w.r.t. θ. Again, Â and B̂ are often relatively fast

to calculate numerically.

Sensitivity to Arbitrary Changes in γ. The sensitivity to an arbitrary change in

γ, say ∆γ = γ̃ − γ̂ could be constructed as a sum of the individual derivatives (see e.g.

Borgonovo and Apostolakis, 2001). Denote the K × 1 vector of sensitivity measures of

θ to the jth element in γ as Ŝ(j). The sensitivity of θ to a change ∆γ could then be

calculated as

Ŝ∆γ =
J∑

j=1
Ŝ(j)∆γ(j). (8)

Importantly, these measures can be calculated by readers applying their own priors if

only the sensitivity measure Ŝ is reported.

Sensitivity to Generalizations. In the same spirit as Lagrange multiplier tests, the

sensitivity measure can be used to investigate general versions of the estimated model.

The idea is again to avoid estimating the general model which can be significantly more

time consuming to estimate than the restricted model.

To formalize this idea, partition γ into γ = (γ1, γ2). Nested in the general model is the

estimated model with γ2 = 0 and associated moment function gn(θ|γ1, 0). The sensitivity

to a general version of the model is thus given by eq. (5) with Dn = ∂gn(θ̂|γ̂1,γ2)
∂γ2

∣∣∣∣
γ2=0

.

The general model must be used when constructing the sensitivity measure but this does
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not involve re-estimation. The sensitivity measure could even be used to form a one-step

estimate of the generalized model.

3 Application: Life-Cycle Savings Motives

In a seminal paper, Gourinchas and Parker (2002) estimate a dynamic structural model of

life-cycle consumption and saving using data for the US. They use the estimated model to

study the importance of life-cycle (retirement) and buffer (risk) related motives for saving

over the life-cycle. Here, I illustrate the usefulness of the sensitivity measure through my

implementation of that analysis.

The recursive form of the model is

Vt(Mt, Pt) = max
Ct∈(0,Mt]

vt
C1−ρ
t

1− ρ + βEt[Vt+1(Mt+1, Pt+1)]

s.t.

Mt+1 = (1 + r)(Mt − Ct) + Yt+1

Yt+1 = Pt+1Ut+1

Pt+1 = Gt+1PtNt+1

logNt+1 ∼ N (0, σ2
n)

Ut+1 =





Ũt+1 with probability 1− p

0 with probability p

log Ũt+1 ∼ N (0, σ2
u)

for t ≤ T where β is the discount factor and ρ is the coefficient of constant relative

risk aversion (CRRA). The initial wealth, W26 = (1 + r)(M25 − C25), is drawn from a

log-normal distribution such that logW26 ∼ N (ω26, σ
2
ω26) and initial permanent income

is P26 for all households. Consumers face log-normal permanent and transitory income

shocks, denoted Nt and Ut, respectively. Furthermore, consumers experience a transitory

zero-income shock with probability p. The income growth factor, Gt, and taste shifter
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associated with family composition, vt, evolves deterministically and are perfectly fore-

seeable by consumers. At retirement, a simple linear consumption function is assumed to

apply, cT+1 = γ0 + γ1mT+1 where cT+1 = CT+1/PT+1 and mT+1 = MT+1/PT+1 are nor-

malized consumption and marked resources, respectively. Further details of the economic

model as well as the numerical solution approach is given in the Supplemental Material

and in the original paper.

The authors estimate θ = (β, ρ, γ0, γ1) and keep all other parameters (which I denote

γ) fixed at calibrated values using simulated minimum distance (SMD). The authors

include log-average consumption from age 26 through 65 as moments and use as preferred

weight a diagonal matrix with the inverse of the variance of the empirical moments on

the diagonal.6

The calibrated parameters are reported in Table S1 and Figure S1 in the Supplemental

Material where ω̃26 = exp(ω26). I use similar calibrations as Gourinchas and Parker

(2002) but I re-estimate β and ρ using my implementation while fixing γ0 = 0.0015

and γ1 = 0.071 to the estimated values in Gourinchas and Parker (2002). I use the re-

estimated model throughout with β̂ = 0.944 and ρ̂ = 1.860. The model fit is illustrated

in Figure S2.

3.1 Sensitivity of Parameter Estimates

Table 1 reports the sensitivity measure (in elasticities) in columns 2–5 together with

brute-force elasticities based on re-estimation of the model in columns 6–7. I use central

finite differences when constructing sensitivity measures while the brute-force calculated

effect on the kth element of θ of a ε percent increase in the lth element in γ is calculated as

(θ̃l(k)− θ̂(k))/θ̂(k) ·100 where θ̃l(k) is the kthe element in θ̃l = arg minθ∈Θ gn(θ|γ̃l)′Wngn(θ|γ̃l)

with γ̃l = γ̂(1L + ιl · ε/100). The approximate sensitivity measures in Table 1 was

calculated in roughly 0.7 minutes while the robust measure was calculated in roughly 3

6 For each value of θ, I solve the model using the endogenous grid method (EGM), proposed by Carroll
(2006), rather than time iteration used in Gourinchas and Parker (2002). The EGM is faster and more
accurate than time iteration (see e.g. Jørgensen, 2013). The Supplemental Material contains a detailed
description of the implementation.
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additional minutes. In contrast, the brute force measures was calculated in roughly 17

minutes.7

All sensitivity measures are close to the brute-force calculations without being based

on re-estimations of the model. This suggests that the approximate sensitivity measure is

a quite good approximation in this application. Recall that the sensitivity measures are

local (derivatives) while the brute-force calculations are based on a one percent increase

in γ̂ partly explaining the observed differences. In the supplemental material (Figure

S3), I compare the approximate derivative with the robust and brute-force derivatives

and find that all three are quite similar.

I find that the discount rate is relatively insensitive to the calibrated parameters

while the CRRA coefficient, ρ, is sensitive to all calibrated parameters. As also found in

Gourinchas and Parker (2002), I find that lowering the transitory and permanent income

shock variances have minuscule effects on the value of the estimated discount factor and

only slightly affect the estimated risk aversion coefficient.

Table 1: Sensitivity of Parameters. Elasticities.
Sensitivity measure Re-estimation

Approximation Robust (brute force)

β̂ ρ̂ β̂ ρ̂ β̂ ρ̂

σn -0.001 -0.023 -0.002 0.041 -0.003 0.055
σu 0.001 -0.069 0.000 -0.025 0.001 -0.063
p 0.009 -0.359 0.011 -0.436 0.009 -0.408
r -0.001 -1.365 -0.016 -0.687 -0.010 -0.945
ω̃26 -0.010 0.435 -0.009 0.369 -0.010 0.413
σω26 -0.016 0.670 -0.010 0.503 -0.013 0.599

Notes: The table reports the sensitivity of the estimated param-
eters in θ to the calibrated parameters in γ. The left panel re-
ports the proposed sensitivity measure as elasticities. The right
panel shows the same statistics calculated “brute-force” as the
percentage change relative to the baseline with re-estimated θ
parameters.

The CRRA coefficient is particularly sensitive to the probability of a zero-income

7 All timings was done on a Lenovo laptop with 4 Intel(R) i7-8665U CPUs @ 1.90GHz and 16GB RAM
and should be seen as illustrative. Timings can differ significantly across models and implementations.
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shock, p, the initial wealth distribution, ω̃26 = exp(ω26) and σω26 , and the risk-free interest

rate, r. Like the CRRA coefficient, the zero-income shock probability, p, affects the

curvature of the consumption function for lower levels of resources (see, e.g. the discussion

in Carroll, 1992, 1997). Increasing either ρ or p would tend to lower consumption for low

levels of resources. In turn, if p is increased, ρ would have to decrease to match the

observed consumption profile. On the other hand, if the mean initial level of wealth is

increased either through an increase in ω̃26 or σω26 , the CRRA coefficient, ρ̂, would increase

to maintain the fit of the observed consumption profile. Such a positive relationship is

also found in Gourinchas and Parker (2002).

The parameter to which the estimates are most sensitive (in percentage terms) is the

risk-free interest rate, r, with an elasticity of around −1.4. This parameter is not varied

in the original study. The sign is negative because increasing the risk-free interest rate

increases the value of holding wealth through a dominating substitution effect, decreasing

consumption.8 The same is true with the CRRA coefficient. In turn, increasing the

interest rate will lead to a reduction in ρ̂ in order to match the consumption age profile

in the data.

Table 2 investigates the sensitivity to larger increases in the risk-free interest rate from

one to five percent. The table shows the sensitivity measure elasticities from (3) in the

top panel through linear extrapolation together with the actual (brute-force) percentage

change in the estimated parameter values in the bottom panel. The latter brute-force

approach requires re-estimation of the model for each new value of r but measures the

“true” marginal effects of the larger interest changes considered. Since the sensitivity

measure is local and calculated at the baseline r, one would expect it to be a better

approximation for small changes. This is confirmed by a very small difference between

the sensitivity measure and the brute-force changes to a one-percent increase in r. Overall,

however, the sensitivity measure performs very well and deviations are relatively small

for even larger changes in r.

8 See e.g. the discussion in Carroll, Slacalek and Sommer (2019).
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Table 2: Sensitivity of Estimates to Large
Changes in r. Percentages.

Change in interest rate, r
1 pct. 2 pct. 3 pct. 4 pct. 5 pct.

Sensitivity measure (Approximate)

β̂ -0.001 -0.002 -0.003 -0.004 -0.005
ρ̂ -1.365 -2.731 -4.096 -5.462 -6.827

Sensitivity measure (Robust)

β̂ -0.016 -0.032 -0.049 -0.065 -0.081
ρ̂ -0.687 -1.374 -2.062 -2.749 -3.436

Re-estimated θ (brute force)

β̂ -0.010 -0.023 -0.033 -0.051 -0.063
ρ̂ -0.945 -1.774 -2.696 -3.338 -4.225

Notes: The table reports the sensitivity of θ to the
risk-free interest rate, r. In the top panel is the
proposed sensitivity measure reported as change
in percent. In the bottom panel, the brute-force
percentage increase relative to the baseline r in
estimated parameters are reported. All other pa-
rameters are fixed at their calibrated/estimated
values.

3.2 Sensitivity of Savings Motives.

A key result in Gourinchas and Parker (2002) is the decomposition of the saving mo-

tives over the life cycle. In particular, the estimated model suggests that before age

40, households save predominantly to buffer against income shocks, referred to as buffer

savings. In the remaining working life until age 65, the primary savings motive is to

sustain a desired consumption level in retirement, referred to as life-cycle savings. To

investigate the sensitivity of this result, I construct a measure of the difference in the two

savings-motives, following the approach in Gourinchas and Parker (2002).

Let sLC30 denote the average saving due to life-cycle motives at age 30 and let sB30 be the

savings due to buffer motives at age 30. I then calculate the difference h30 = sB30−sLC30 and

similarly at age 60, h60. Table 3 shows the elasticities of these statistics with respect to

the calibrated parameters. The details on how these measures are constructed is included

in the Supplemental Material.

14



Table 3: Sensitivity of Saving Motives. Elasticities.
Sensitivity measure Re-estimation

Approximation Robust (brute force)
He

30 He
60 He

30 He
60 He

30 He
60

σn 0.046 -0.008 0.045 -0.008 0.046 -0.008
σu 0.011 0.000 0.014 0.002 0.012 0.001
p -0.000 0.009 -0.009 0.005 0.013 0.012
r 0.011 -0.120 -0.001 -0.119 -0.012 -0.127
ω̃26 0.006 -0.011 0.000 -0.014 0.003 -0.012
σω26 -0.006 -0.046 -0.048 -0.065 -0.039 -0.061

Notes: The table reports the sensitivity of the difference be-
tween the level of buffer and life-cycle savings at age 30 and 60.
The left panel reports the proposed sensitivity measure as elas-
ticities. The right panel shows the same statistics calculated as
the percentage change relative to the baseline with re-estimated
θ parameters.

The savings motives decomposition is rather insensitive to the calibrated parameters.

While the estimated parameters are sensitive to e.g. the interest rate, the effect of the

changed interest rate on the savings motives are counter-balanced by the adjustment in

θ from the change in γ. In the current application, this happens to such a degree that

the savings motive decomposition is hardly affected by the calibrated parameters. The

reason for this is likely that the age profile of consumption (mirror of savings) is included

in the estimation moments. In turn, roughly speaking, the estimator basically adjusts

the estimated parameters to changes in γ as to leave the savings profile unaffected.

The low-cost sensitivity measure is almost identical to the brute-force elasticities,

calculated from re-estimating the model. This is very encouraging because it suggests

that, at least in the current application, the proposed sensitivity measure has the potential

to capture the complex effects on h(•) from changing γ through the direct effect (A) and

the indirect effect (B · S) without having to re-estimate the model.

Table 4 shows the sensitivity measure of the savings-motives from larger changes

in the risk-free interest rate, r. I include the brute-force re-estimation results with an

alternative measure in the bottom panel based on the change in the savings motives from

changing r while keeping θ̂ fixed at their baseline estimated values. This latter statistic
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is sometimes reported as a low-cost analysis of the sensitivity to calibrated parameters.

I denote this measure as Be since it is closely related to B in (7).

Again, the results are extremely encouraging. The sensitivity measure is very close to

the “true” brute-force percentage changes, even for larger interest rate increases. On the

other hand, the bottom panel shows that results from changing r while keeping θ̂ fixed

leads to significant overestimation of the effect of a change in the interest rate. This is

because, unlike the sensitivity measure, this latter measure does not take into account

that θ̂ will adjust to such a change in the calibration and thus also affect the calculated

statistics.

Table 4: Sensitivity of Saving Motives to Large
Changes in r. Percentages.

Change in interest rate, r
1 pct. 2 pct. 3 pct. 4 pct. 5 pct.

Sensitivity measure (Approximate)
He

30 0.011 0.022 0.034 0.045 0.056
He

60 -0.120 -0.239 -0.359 -0.479 -0.599
Sensitivity measure (Robust)

He
30 -0.001 -0.001 -0.002 -0.002 -0.003

He
60 -0.119 -0.239 -0.358 -0.478 -0.597

Re-estimated θ (brute force)
He

30 -0.012 -0.020 -0.029 -0.016 -0.025
He

60 -0.127 -0.254 -0.384 -0.505 -0.639
Fixed θ

Be
30 -1.005 -2.004 -2.998 -3.987 -4.971

Be
60 -0.523 -1.037 -1.542 -2.040 -2.528
Notes: The table reports the sensitivity of the differ-
ence between the level of buffer and life-cycle savings
at age 30 and 60. The top panel reports the pro-
posed sensitivity measure as percent changes. The
middle panel shows the same statistics calculated as
the percentage change relative to the baseline with
re-estimated θ parameters for the various values of r.
The bottom panel illustrates the percentage change
in the statistics from the change in r while keeping
θ fixed at their baseline estimated values.
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4 Application: Home-ownership and the Option Value

of Regional Migration

The previous application facilitated a direct comparison of the sensitivity measure with

a more brute-force approach. In this second application, I illustrate the usefulness of

the measure by applying it to a rich model that requires significant computational time

to solve and estimate.9 In turn, the brute-force approach is for all practical purposes

infeasible.

Motivated partly by the empirical fact that homeowners migrate less than renters,

Oswald (2019) estimates a rich dynamic programming model of home-ownership and

migration. He then uses the estimated model to show that although the frequency of

migration among homeowners is relatively low, they still value the migration option

because this option acts as an insurance against adverse regional shocks.

In the model, individuals choose in which region to live, dj ∈ D, where j denotes

age. Simultaneously, they choose whether to own a house, hj ∈ {0, 1} and how much to

consume, cj, and thus how much wealth to carry over to the following period, aj+1. I refer

the reader to the original paper for a detailed description of the model and give only a

brief outline of the model here. Individuals make their optimal choices taking into account

10 state variables in xj = (aj, zj, sj,Fj, hj−1, dj−1, τ, j) denoting, respectively, assets, an

individual income shock, household size, an aggregate 2-dimensional price vector, housing

status coming into the current period, the current region index, time-invariant moving

cost type, and age.10

Oswald (2019) fixes L = 8 calibrated parameters in γ = (γ̃, β, ρ, σ, φ, χ, r, rm) and

estimates K = 19 parameters in θ by SMD using set of J = 38 moments and a diagonal

weighting matrix. Both sets of parameters are reproduced in Table S2 in the Supplemental

Material. The estimated parameters are especially sensitive to the values of the first four

9 I am grateful to Florian Oswald for supplying An, Bn, Dn, Gn, and Wn for his application.
10Oswald (2019) allows for cohort effects and indices in the original paper thus has a time-dimension
denoted by t. For ease of exposition, I abstract from that here.

17



parameters (reported in Table S3 in the Supplemental Material): The value of the risk

aversion parameter, γ̃, the discount factor, β, the persistence of income shocks, ρ, and the

standard error of idiosyncratic income shocks, σ. Interestingly, the parameter adjusting

the continuation value of a house at the terminal period, ω, and the share of high-types,

πτ , seem relatively insensitive to most calibrated parameters.

Oswald (2019) uses the estimated model to calculate the option value of migration.

This exercise yields an estimated option value of migration of around ∆̂ = (δ̂− 1) · 100 =

19.2% (Oswald, 2019, Table 12). Table 5 illustrates the sensitivity of this measure to

calibrated parameters. All numbers are elasticities based on the approximation in eq.

(5). Interestingly, the option value of migration is clearly most sensitive to calibrated

parameters related to risk: A one-percent increase in the risk aversion coefficient would

increase the option value of migration with around one percent and a one-percent increase

in the persistence of income shocks would decrease the option value with around half a

percent.

Table 5: Sensitivity of the Option Value of Migration. Elasticities.
γ̃ β ρ σ φ χ r rm

∆̂e 1.349 -0.127 -0.524 -0.026 0.005 -0.053 -0.002 0.002
Notes: The table reports the sensitivity of the estimated option value of mi-
gration, δ, in Oswald (2019). Elasticities are reported.

The main component in the option value of migration is insurance against adverse

regional shocks. If a consumer in the model is more risk averse, insurance against such risk

is more valuable. On the other hand, if the consumer face greater idiosyncratic income

risk due to more persistent income shocks (larger ρ), such an insurance mechanism is

relatively less valuable. The reason is that increased idiosyncratic income risk will lead

to increased savings in order to buffer against this risk. With more buffer-stock savings,

the consumer will also have more self-insurance against adverse regional shocks. In turn,

the option value of migration would be lower.
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5 Concluding Discussion

A standard approach to estimation of dynamic economic models is to calibrate a sub-set

of the model parameters and keep them fixed while estimating the remaining parameters

of interest. If the importance of such calibrations is investigated, it is now standard to

re-estimate the model using a few permutations of the calibrated parameters. In this

paper, I propose an alternative approach to this relative time-consuming approach that

is applicable to most popular estimators. The sensitivity measure is simple and fast to

implement, yet offers an easy interpretation of the sensitivity of any quantity of interest to

the calibrated parameters. In turn, the proposed sensitivity measure can greatly improve

the transparency of structural research.

Applying the proposed measure to the seminal work by Gourinchas and Parker (2002)

of savings motives over the life cycle, I illustrate the usefulness of the measure. The

authors report re-estimated parameters varying a set of fixed parameters but do not

consider e.g. the effect of the fixed risk-free interest rate. I find that especially the point

estimate of the constant relative risk aversion is sensitive to several calibrated parameters

– especially the risk-free interest rate. While the sensitivity measure is a local measure, the

main application shows very encouraging results in the sense that the low-cost sensitivity

measure is very close to the “true” brute-force effects from re-estimating the model. The

same is true for an approximate version of the measure that is particularly simple to

calculate.
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A Proof of Proposition 1
Consider the problem

θ̂(γ̂) = arg min
θ∈Θ

gn(θ|γ̂)′Wngn(θ|γ̂)

where gn(θ|γ̂) = 1
n

∑n
i=1 f(θ|γ̂,wi) is some J × 1 vector valued function of the parameters

and data, wi for i = 1, . . . , n, specified by the researcher. Gn = ∂gn(θ|γ̂)
∂θ′

∣∣∣
θ=θ̂

and Dn =
∂gn(θ̂|γ)
∂γ′

∣∣∣∣
γ=γ̂

are J ×K and J ×L Jacobians, respectively, and Wn is a symmetric positive
definite weighting matrix.

The sensitivity measure that I propose to report is the change in the estimated param-
eters from a marginal change in the calibrated parameters, ∂θ̂(γ̂)

∂γ̂′ . To derive this quantity
in the current setup, I apply the Implicit Value Theorem to the first order condition
(FOC) associated with a solution to the problem above. The FOC is

G′nWngn(θ̂(γ̂)|γ̂) = 0K×1

and total differentiation of the left hand side of the FOC gives

d

dγ̂′
G′nWngn(θ̂(γ̂)|γ̂) = (gn(θ̂(γ̂)|γ̂)′Wn ⊗ IK)[Cθ,nŜ + Cγ,n] +G′nWn[GnŜ +Dn]

where Ŝ = ∂θ̂(γ̂)
∂γ̂′ is the object of interest, Cθ,n = ∂vec(G′

n)
∂θ′

∣∣∣
θ=θ̂

is a JK × K matrix of
stacked second order derivatives and Cγ,n = ∂vec(G′

n)
∂γ′

∣∣∣
γ=γ̂

is a JK×L matrix with stacked
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cross-derivatives.1 Isolating gives

Ŝ = −[(gn(θ̂(γ̂)|γ̂)′Wn ⊗ IK)Cθ,n +G′nWnGn]−1[(gn(θ̂(γ̂)|γ̂)′Wn ⊗ IK)Cγ,n +G′nWnDn].
(1)

B Consistency of the Approximate Sensitivity Esti-
mator in Corollary 1

Under similar assumptions as those imposed in e.g. Newey and McFadden (1994) that
ensure that θ̂ is a consistent estimator of the population value, θ0, the approximation
converges in probability to the population counterpart,

plimn→∞ΛnDn = S.

To show this, I assume that i) Wn converges in probability to a positive semi-definite
matrix W , ii) gn(θ|γ), Gn(θ|γ) and Dn(θ|γ) converge uniformly in probability to their
continuous population counterparts, g(θ|γ) = E[f(θ|γ,wi)], G(θ|γ) = E

[
∂f(θ|γ,wi)

∂θ′

]
and

D(θ|γ) = E
[
∂f(θ|γ,wi)

∂γ′

]
, respectively, iii) g(θ|γ) is continuously differentiable in (θ, γ) iv)

γ̂ converges in probability to γ0 , v) G′WG = G(θ0|γ0)′WG(θ0|γ0) has an inverse, and
v) θ0 is in the interior of Θ, where Θ is a compact subset of RK , and θ0 is identified
in the sense that it is the unique value that solves g(θ0|γ0) = 0. The latter assumption
implicitly assumes that the model is correctly specified.

Consider the population problem

θ(γ) = arg min
θ∈Θ

g(θ|γ)′Wg(θ|γ)

where γ = plimn→∞γ̂ with associated first order condition (FOC), assuming interchange-
ability between integration and differentiation,

G(θ(γ)|γ)′Wg(θ(γ)|γ) = 0.

Using that plimn→∞γ̂ = γ0 and plimn→∞θ̂ = θ(γ0) = θ0 and thus g(θ(γ)|γ) = g(θ0|γ0) =
0, total differentiation of the left hand side of the FOC gives

d

dγ′
G(θ(γ)|γ)′Wg(θ(γ)|γ) = G′W [GS +D] (2)

where S = ∂θ(γ)
∂γ′ and G = G(θ0|γ0) and D = D(θ0|γ0). Then, isolating S in G′W [GS +

1 The vec(•) operator stacks all columns of a matrix into a column vector, vec(G) =
(G1,1, . . . , GJ,1, G1,2, . . . , GJ,2, . . . , G1,K , . . . , GJ,K)′.
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D] = 0 gives

S = −(G′WG)−1G′WD. (3)

Finally, because gn(θ|γ), Gn(θ|γ) and Dn(θ|γ) converge uniformly in probability to
their population counterparts together with plimn→∞γ̂ = γ0 and plimn→∞θ̂ = θ0, we
have that −(G′nWnGn)−1G′nWnDn converges in probability to −(G′WG)−1G′WD. This
implies that the approximation in Corollary 1 in the main text converges in probability
to the derivative S = ∂θ

∂γ′ .

C Relation to Some Existing Sensitivity Measures
I here discuss some of the existing measures closest related to what I propose. The
sensitivity measure proposed by Andrews, Gentzkow and Shapiro (2017) is related to
the current measure. In particular, they propose to report Λ̂ as a local measure of the
sensitivity of θ to the included estimation moments in gn(•). They do not consider the
topic of the current paper and thus do not discuss sensitivity to calibrated parameters.
The measure that I propose addresses this by weighting Λ̂ by the effect of the calibrated
parameters on each included moment through Dn in equation Definition 1.

Another important contribution to the improvement of transparency is the recent work
by Iskrev (2019). One of the sensitivity measures proposed in that study also measures
how the estimated parameters are influenced by calibrated parameters. However, Iskrev
(2019) focuses on Bayesian approaches and uses that the posterior distribution of θ and
γ is asymptotically jointly Normal to construct a local measure of sensitivity. Denote
Σθ and Σγ as the covariance matrices in the marginal asymptotic Normal distributions
of θ and γ, respectively, and Σθ,γ as the covariance matrix between the two sets of
parameters. From the asymptotic approximate Normal distribution, we have that the
conditional mean vector of the estimated parameters, given the calibrated parameters, is

E[θ̂|γ̂] a= θ0 + Σθ,γΣ−1
γ (γ̂ − γ0)

and Iskrev (2019) proposes the sensitivity measure

Σθ,γΣ−1
γ . (4)

A drawback of this measure is, however, that it requires the calculation of the covari-
ance matrix between θ and γ, Σθ,γ. This covariance is, unfortunately, often not readily
available in many empirical applications considered in the current study. If e.g. mul-
tiple data-sources or externally calibrated parameters are included in γ, calculating the
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covariance between γ and θ is not straight forward – if not practically impossible.2 Be-
sides some of the references given in Footnote 1 in the main text, an example of such a
situation is Gourinchas and Parker (2002). In that study, the Panel Study of Income Dy-
namics (PSID) is used to calibrate the exogenous income process in a first step and then
subsequently estimate preference parameters using the Consumer Expenditure Survey
(CEX), given the income process parameters. When the authors subsequently calculate
standard errors of the estimated preference parameters, the authors assume that γ and
θ are uncorrelated, implying that Σθ,γ = 0.

The measure in equation (4) is furthermore derived under the assumption that both
sets of parameters are identified simultaneously, while mine is not. This is also evident
from the linear regression example in the main text where β1 and β2 cannot be identified
simultaneously from the one moment condition used. I view this as a strength of my
approach because one motivation for using an externally calibrated γ could be due to the
unavailability of data that could identify γ.

There is also a literature focusing on global sensitivity measures of quantities of interest
to model inputs. One approach could be to simulate values of γ from some assumed
distribution and investigate the resulting distribution of θ̂ from re-estimation of the model
for each value of the drawn γs.3 These methods would often require re-estimation of the
parameters relatively many times making such approaches computationally prohibitively
expensive to apply to rich dynamic economic models, as I focus on here.

Recently, Harenberg, Marelli, Sudret and Winschel (2019) have proposed a polynomial
chaos expansion to alleviate the computational burden associated with global sensitivity
(or uncertainty quantification) approaches. However, building on series expansions, that
approach also requires the re-estimation of the dynamic economic model atM evaluation
nodes to construct a global approximation of θ̂. If the dimension of the parameter space
is large and/or the model complex, this can be quite computationally time demanding
if a reasonable approximation is desired. Combining the local low-cost measure, that I
propose, with the approach proposed in Harenberg, Marelli, Sudret and Winschel (2019)
could potentially reduce the computational time required to perform global sensitivity
analysis significantly: The local measure can guide researchers in which parameters are
likely to require more evaluation nodes for a given degree of approximation accuracy.

2 One strategy to uncovering upper bounds on the measure in (4) could be to use the worst-case upper
bound on the co-variance structure following the approach suggested in Cocci and Plagborg-Møller
(2019).

3 See, e.g. Borgonovo and Plischke (2016) for a recent literature review.
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D Model Implementation: Gourinchas and Parker
(2002)

D.1 Additional Figures and Tables

Table S1: Calibrated Parameters.
σn σu p ω̃26 σω26 r

0.0212 0.044 0.00302 0.061 1.784 0.0344

Figure S1: Income Growth and Family Shifter Calibration.

30 40 50 60
Age

0.99

1.00

1.01

1.02

In
co

m
e 

gr
ow

th
 a

nd
 fa

m
ily

 sh
ift

er

Income growth, Gt + 1
Familiy shifter, vt + 1/vt

Notes: The figure shows the calibrated income growth, Gt+1, and the relative family shifter,
v(Zt+1)/v(Zt).
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Figure S2: Model Fit.
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Notes: The figure illustrates the observed average income and consumption age profiles together with
simulated average consumption from the re-estimated model.

Figure S3: Sensitivity of Parameter Estimates: Comparison of Derivatives.
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(b) Robust.
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(c) Brute Force.

σn σu p r ω̃26 σω26

β̂

ρ̂

-0.12 0.02 3.11 -0.32 -0.15 -0.01
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−200
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Notes: The figure illustrates the sensitivity of θ̂ with respect to the fixed parameters γ. The left panel
shows the approximation of the derivative, the middle panel shows the general/robust derivative and the
right panel shows the brute-force derivative calculated through re-estimation of the model.

D.2 Solution Approach

As Gourinchas and Parker (2002), I use the Euler equation of a normalized model. From
their Gauss code, and Appendix p.86 of the original paper, it seems that they assume
that income is affected by the same taste shifter as consumption/utility. In the solution,
I thus assume that Yt+1 = v

1/ρ
t+1Pt+1Ut+1. We can then normalize by Ptv

1/ρ
t to get the

Euler equation in normalized terms as

c−ρt = max{m−ρt , β(1 + r)E[(Gt+1Nt+1ft+1)−ρc−ρt+1]

where ft+1 =
(
vt+1
vt

) 1
ρ adjusts for family composition. Normalized resources evolves ac-

cording to
mt+1 = (1 + r)at(Gt+1Nt+1ft+1)−1 + Ut+1
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where at = mt − ct is end-of-period normalized wealth. Constructing a grid of end-of-
period wealth as −→a and approximating the expectation with two-dimensional Gauss-
Hermite quadrature, optimal consumption can be found in closed form using the endoge-
nous grid method (EGM) proposed by Carroll (2006) by inverting the Euler equation

c?t =

(1 + r)β

Q∑

k=1

Q∑

j=1
[(Gt+1N

(k)ft+1)−ρ
(
č

(k,j)
t+1

)−ρ
]


− 1
ρ

where č(k,j)
t+1 = čt+1((1 + r)(Gt+1N

(k)ft+1)−1−→a + U (j)) is the linearly interpolated next-
period consumption for a given set of quadrature nodes (k, j). The endogenous grid over
resources is then −→mt = −→a + c?t (−→mt). The credit constraint can be handled by including
a lower point of (mt+1, ct+1) = (0, 0) when interpolating the next-period solution. I use
300 points in the −→a grid and Q = 5 quadrature nodes in each dimension. The implied
consumption function is illustrated in Figure 1 with the calibrated parameters given
below. The retirement consumption function is given by c?T+1(mT+1) = γ0 + γ1mT+1.

D.3 Simulating Data

To simulate synthetic data (normalized by v1/ρ
t ), I draw Nsim×T standard normal shocks

{ñj,t, ũj,t}Nsim,T1,1 together with uniform draws {ej,t}Nsim,T1,1 . I can then construct permanent
and transitory income shocks, respectively, as

nj,t = exp(σnñj,t)
uj,t = exp(σuũj,t)(1− p)−11(ej,t > p)

I also draw standard normal initial wealth {w̃j,26}Nsim1 and construct initial normalized
resources as mj,26 = exp(ω26 + σω26w̃j,26) + uj,26. Income is simulated as

Pj,t =




P26 if t = 26

GtPj,t−1nj,t else

Yj,t = Pj,tuj,t

and resources are

mj,t = (1 + r)(mj,t−1 − cj,t−1)(Gtnj,tft)−1 + uj,t

where consumption is found as the linearly interpolated optimal consumption solved
above, cj,t = čt(mj,t) and non-normalized consumption is then Cj,t = cj,t · Pj,t. All
simulations are based on Nsim = 500, 000 simulated individuals.
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D.4 Savings Motives Decomposition

Denote savings as the change in end-of-period wealth sj,t = Aj,t − Aj,t−1. Solving and
simulating an alternative model without income uncertainty and a modified retirement
consumption rule, the life-cycle saving is defined as

sLCj,t = ALCj,t − ALCj,t−1

where the parameters of this model is σn = σu = p = 0 and γ1 = 0.0615.4 I also allow for
borrowing in this version of the model up to 5 times the level of permanent income. The
buffer saving is then given as sBj,t = sj,t − sLCj,t . Figure S4 shows the average age profiles
of these measures in the left panel and the average age profile of wealth split by life cycle
and buffer wealth in the right panel.

Figure S4: Savings Motives Decomposition.

(a) Savings Decomposition.
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(b) Wealth Decomposition.
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Notes: The left panel illustrates the saving decomposition into life cycle savings and buffer savings,
comparable to the top panel of figure 7 in Gourinchas and Parker (2002). The right panel illustrates the
wealth decomposition into life cycle wealth and buffer wealth, comparable to the bottom panel of figure
7 in Gourinchas and Parker (2002).

E Additional Figures and Tables Oswald (2019)

4 The retirement consumption function is modified such that there is full certainty after retirement,

γ1 = 1− β̂ 1
ρ (1 + r)

1
ρ−1

1−
(
β̂

1
ρ (1 + r)

1
ρ−1
)D−T

where D = 88 and T = 65.
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Table S2: Parameters in Oswald (2019).
Estimated parameters in θ value Calibrated parameters in γ value
Utility function CRRA coefficient γ̃ 1.43
Owner premium size 1 ξ1 −0.009 Discount factor β 0.96
Owner premium size 2 ξ2 0.003 AR(1) of pers. inc. shock ρ 0.96
Util. of cons. scale η 0.217 Std. of pers. inc. shock σ 0.118
Continuation value ω 4.364 Transaction cost φ 0.06
Moving costs Down-payment proportion χ 0.20
Constant α0 3.165 Risk-free interest rate r 0.04
Age α1 0.017 30-year mortgage rate rm 0.055
Age2 α2 0.0013
Owner α3 0.217
Household size α4 0.147
Proportion of high type πτ 0.697
Amenities
New England ANwE 0.044
Middle Atlantic AMdA 0.112
Middle Atlantic AStA 0.168
West North Central AWNC 0.090
West South Central AWSC 0.122
East North Central AENC 0.137
East South Central AESC 0.063
Pacific Apcf 0.198
Mountain AMnt 0.124
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