Conspicuous Consumption, Human Capital, and Poverty∗

Omer Moav† Zvika Neeman‡

June 9, 2008

Abstract

Poor families around the world spend a large fraction of their income on consumption of goods that appear to be useless in alleviating poverty, while saving at very low rates and neglecting investment in health and education. Such consumption patterns seem to be related to the persistence of poverty. We offer an explanation for this observation, based on a trade-off between conspicuous consumption and human capital as signals for unobserved income, under the assumption that individuals care about their status. Despite homothetic preferences, this trade-off gives rise to a convex saving function, which can help explain the persistence of poverty.

Keywords: Conspicuous Consumption, Human Capital, Poverty

JEL classification Numbers: D91, O11, O12, O15.

∗The authors are grateful for comments from participants at seminars in Bristol, City University London, Hebrew University of Jerusalem, Royal Holloway University of London, and Universitat Zurich, as well as conference participants at the SMYE 2008, Lille, and ESSIM, Tarragona 2008, in addition to Frederic Jouneau, Victor Lavy, and Itzhak Zilcha.

†Department of Economics, Hebrew University of Jerusalem, Royal Holloway University of London, Shalem Center, and CEPR; Email: omer.moav@huji.ac.il, URL http://www.rhul.ac.uk/Economics/About-Us/moav.html http://economics.huji.ac.il/faculty/moav/moav.html

‡Department of Economics, Boston University, 270 Bay State Road, Boston, MA 02215, and the Eitan Berglas School of Economics, Tel-Aviv University, Tel-Aviv, Israel 69978; Email zvika@BU.edu, URL http://people.bu.edu/zvika, http://www.tau.ac.il/~zvika/.
1 Introduction

The consumption bundle of the poor includes many goods that seem to be useless in alleviating poverty. For instance, according to Banerjee and Duflo (2007), even the poorest households, those with an income of less than one Dollar a day per capita, spend on average, across different countries, 1 to 8 percent of their income on tobacco and alcohol, and the median spending on festivals, which varies substantially across different countries, is as high as 10 percent of annual income in Udaipur District, Rajasthan, India.\footnote{Udaipur’s households, according to Banerjee and Duflo, are not an outlier among the poor in spending a large fraction of their very low income on festivals, however, they may stand out because in the other surveys people were not asked to account separately for the food they bought for festivals.} In fact, Rao (2001) argues that expenditures on festivals amounts to 15 percent of households’ total expenditures in rural India.\footnote{It should be noted, however, that the poor typically spend less then one percent of their income on the other types of entertainment that are common in high-income countries, such as movies, theater, and video shows (Banerjee and Duflo).}

The consumption patterns described above are puzzling because they seem to come at a significant cost for the poor. The typical poor spend only 2-3 percent of their income on their children’s education, refrain from sending a large fraction of their children aged 7-12 to school, are poorly fed, suffer from health problems, and report that they are worried and anxious to an extent that interferes with their sleep and work. In many cases, they fail to make trivial investments in their business and save so little that they cannot avoid cutting on their meals when they suffer a temporary decline in income (Banerjee and Duflo, 2007). It seems that even with their limited resources, the poor could do much more to slowly escape poverty. In this paper, we offer an explanation for the reason they may fail to do so.\footnote{The consumption of flashy jewelry worn especially as an indication of wealth, known as "Bling" among young African Americans, is another example of conspicuous consumption that could come with a significant cost in terms of persistence of poverty. We are not aware of any study that documents the consumption of Bling and its impact on poverty, however, Missy Elliott, a successful rapper, argued in 2004 that ‘Bling culture’ encourages young black men and women to spend their money irresponsibly, and that artists should encourage young people to invest in stable, long-term assets (wikipedia).}

We offer an explanation for these consumption patterns that highlights their connection with the persistence of poverty. Our explanation is based on the idea that individuals care about their status and seek to impress others by engaging in conspicuous consumption,
which serves as a signal about unobserved income. We further suggest that there is a trade-off between conspicuous consumption and education as signals for unobserved income. We develop a signalling model in which income is correlated with individuals’ human capital and show that it gives rise to a convex saving function with respect to income, despite homothetic preferences. This saving pattern implies that there could exist a threshold income, below which dynasties converge to a low education/low income steady state (a poverty trap), and above which there is a divergent growth path.

According to the theory that is proposed here, festivals, consumption of tobacco and alcohol, clothing, and display of jewelry, are more transparent than other types consumption, and hence may provide a signal for wealth. According to the theory that is proposed here, festivals, consumption of tobacco and alcohol, clothing, and display of jewelry, are more transparent than other types consumption, and hence may provide a signal for wealth. Obviously, investment in the health and the education of one’s children may also serve as a signal about wealth, but unlike conspicuous consumption, the fruits of such an investment can typically be observed only in the long run, which delays satisfaction obtained from impressing others.

The claim that festivals serve as signals of unobserved wealth is supported by Bloch, Rao and Desai (2004). They demonstrate, based on survey data from South India, that a daughter’s marriage (dowry plus celebrations) is the costliest event in the life of an Indian family and can amount to more than six times a family’s annual income. It often drives parents into severe debt at high interest rates, and may push families into deep poverty. Bloch et al. argue that there is a clear distinction between dowries, which may be interpreted as the price paid for desirable grooms (and consist of most of the cost of getting a daughter married) and wedding celebrations, which have a symbolic value and are intended to create a spectacle. Accordingly, they show that the costs of celebrations vary significantly according to the “quality” of the groom, and could amount to one third of a family’s annual income. Unlike the dowry whose value is determined in negotiations between the parents’ of the bride and groom, the expense on celebrations is determined by the bride’s family only.

4Because the consumption of tobacco and alcohol is, at least in part, performed socially we believe that it fits the definition of conspicuous consumption. In fact, Veblen (1899) himself, who coined the phrase conspicuous consumption, claimed that the consumption of alcohol (and other stimulants) is a signal for the superior status of those who are able to afford the indulgence.

6Srinivas (1989) and Roulet (1996) also emphasize the prestige motive underlying marriage expenses.

7The evidence that Bloch et al. present in support of their claim is based on the existence of a positive
We develop an overlapping generations model in which individuals’ preferences are defined over their consumption, status, and financial transfers to their offspring, which are optimally invested in human capital. Status is defined by the social beliefs about an individual’s unobserved income, and income is correlated with the level of human capital. Individuals may spend their income on conspicuous consumption, which is a signal for income, but doesn’t generate any direct utility. We show the existence of a unique fully separating equilibrium. In this equilibrium, it is possible to infer the exact income of each individual based on the individual’s level of human capital and expenditure on conspicuous consumption. The model also admits a pooling equilibrium with no conspicuous consumption, and a wide variety of partially separating equilibria. But the fully separating equilibrium is the only equilibrium that satisfies the intuitive criterion of Cho and Kreps (1987), which is the standard refinement that is applied to equilibria in signaling games.

We show that if human capital is non-observable, then the homothetic preferences imply that a constant fraction of income is allocated to conspicuous consumption, and give rise to a constant saving rate (in the form of investment in the education of offspring). If, however, human capital is observable, then the same preferences give rise to a negative association between income and the share of conspicuous consumption in the fully separating equilibrium. This implies that the saving rate is increasing with income, which may generate a poverty trap. Hence, we illustrate that observable human capital, and its trade-off with conspicuous consumption as a signal of wealth, could play a crucial role in the emergence of a poverty trap. Indeed, a recent finding that is consistent with our main mechanism regarding this trade-off is described by Charles, Hurst, and Roussanov (2007) who show that college educated individuals spend about 13 percent less than their high school educated counterparts on ‘visible goods,’ controlling for current and permanent income.

The rest of the paper proceeds as follows. The next section surveys the related literature about poverty traps and concern for status. In Section 3 we present the model. Section 4 is devoted to equilibrium analysis, and Section 5 to equilibrium dynamics. Section 6 concludes.
2 Related Literature

2.1 Poverty Traps

There is a sizable literature in economics that tries to explain the persistence of poverty. Most of this literature assumes that individuals are fully rational and that the poor, like other individuals, care about their own and their offspring’s future well-being, and therefore are willing to give up part of their present consumption for the sake of the future. However, as suggested by Dasgupta and Ray (1986), Banerjee and Newman (1993) and Galor and Zeira (1993), credit constraints prevent the poor from passing the threshold of investment that permits a gradual escape from poverty.\footnote{In Dasgupta and Ray (1986), the mechanism is based on a nutritional threshold, below which individuals cannot work. See also Benabou (1996), Durlauf (1996), and Maoz and Moav (1999) who, among many others, propose different mechanisms that generate poverty traps based on non-convexities in the technology and credit constraints.} While the evidence suggests that the poor do indeed have limited access to credit,\footnote{See for instance Besley (1995).} there is little empirical support for the existence of significant investment indivisibilities. Moreover, this approach fails to account for the evidence surveyed above, which suggests that the poor could in fact do better to improve their situation over time if only they saved more and spent less on the consumption of goods we view as conspicuous.

It has also been observed that a poverty trap can emerge regardless of non-convexities in the technology if individuals’ propensity to save increases with income, and credit markets are imperfect (Moav, 2002).\footnote{In the model developed by Piketty (1997), the effort level, rather than capital investment, is indivisible. Mookherjee and Ray (2003) show that while inequality may persist irrespective of the divisibility of human capital, the multiplicity of steady states requires indivisibilities in the return to education.} While empirical evidence strongly supports the underlying assumption that the rate of saving increases with income, and in particular, that the poor’s savings rate is very low, the reason that the poor fail to save and spend their income on festivals, tobacco, and so on, remains unclear.\footnote{Another puzzle is related to the fact that the poor tend to have many children, which limits their financial ability to support the health and education of each child. Moav (2005) addresses this puzzle and shows that despite homothetic preferences (defined over consumption and the quality and quantity of children) and convex technology, a poverty trap can emerge in this case, as less educated individuals have a comparative advantage in producing child quantity rather than quality.}
The paper that is perhaps closest to ours in its motivation is Banerjee and Mullainathan (2007), who were the first to address the puzzling behavior of the poor described above in a theoretical model. They argue that poor individuals spend a larger fraction of their income on “temptation goods,” resulting in a convex saving function in income, which, in turn, can generate a poverty trap. In particular, they show that individuals, who are aware of their problem of self control, reduce savings so as to reduce future wasteful consumption, which acts like a tax on their future wealth. Banerjee and Mullainathan’s result is a consequence of their assumption that individuals have non-homothetic preferences that induce a weaker preference for temptation goods as individuals become richer. In contrast, in this paper, individuals’ preferences are homothetic, and the fraction of income spent on conspicuous consumption is endogenously determined in the signaling equilibrium. In particular, the key result of our model is that, despite homothetic preferences, this share is decreasing with the level of human capital, allowing for the emergence of a poverty trap.13

2.2 Concern for Status

Starting with Smith (1759) and Veblen (1899), a huge theoretical literature in the social sciences has been devoted to the idea that people care about and try to manipulate their status in society in various ways.14 Pinker (1997) surveys many examples of conspicuous consumption in human societies as well as costly displays of power in other species. Pinker, as well as many others, argues that preference for status is a consequence of natural selection. His argument, essentially, is that because higher status or more precisely the costly signal that generates this status, is positively correlated with other desirable genetic characteristics

12For example, Banerjee and Duflo (2007) show that in spite of their low body mass index, the poor tend to spend up to 7 percent of their income on “expensive calories” such as sugar while neglecting relatively cheaper, more nutritious, alternatives.

13It should also be noted that Banerjee and Duflo (2006) argue that the fact that the poor do sometimes save to buy televisions and to pay for festivals suggests that they may not be so susceptible to problems of self control.

14For recent empirical work that shows that people care about their status and relative position in society see Luttmer (2005), Clark and Oswald (1996), McBride (2001), and Dynan and Ravina (2007). See also the survey by Kahneman and Krueger (2006) and the references therein.
that increase fitness, a preference for higher status confers an evolutionary advantage.15

Some of the theoretical economics models in this literature interpret conspicuous consumption as a signal about unobserved income as we do here,16 while others focus on the idea that people care about their relative consumption.17 Empirical support for the notion that people rely on conspicuous consumption to influence their perceived status includes the work of Bloch et al. (2003) that is mentioned in the introduction, and of Chung and Fisher (2001) who explore the conspicuous spending patterns of recent immigrants into Canada. Charles et al. (2007) argue that since the marginal return to signaling through conspicuous consumption is decreasing in the average income of a person’s reference group, we should observe less conspicuous consumption among individuals who have richer reference groups. Their prediction is consistent with their finding that consumption of ‘visible goods’ such as clothing, jewelry and cars is decreasing in the wealth of one’s racial reference group, so that Blacks and Hispanics consume relatively more such goods than comparable Whites.

As explained in the introduction, our contribution to this literature consists of the argument that conspicuous consumption is expected to be negatively correlated with human capital, and the effect that this may have on the persistence of poverty.

3 Model

Consider an overlapping generations model of a one-good economy with a continuum of individuals. The good can be used for consumption, conspicuous consumption, and investment in human capital. Each individual lives two periods, has a single parent, and a single child. This parent-child relation creates a dynasty. When individuals are “young”, or in their first

15 Experiments illustrate that sexual motives induce conspicuous behavior. Griskevicius et al. (2007), for example, show that romantic motives seem to produce highly strategic and sex-specific conspicuous displays of consumption and benevolence, where males tend to spend more on conspicuous consumption compared to women. Relatedly, Wilson and Daly (2004), show that men respond more strongly than women to romantic situations, by willing to discount future income more for present consumption.

17 See for example Duesneberry (1949), Pollack (1976), and Frank (1985) for some of the early such models. Recently, Hopkins and Kornienko (2004) and Becker and Rayo (2006) analyzed the welfare implications of such preferences.
period of life, their parents are “old,” or in their second period of life.

In their first period of life, (young) individuals invest in human capital. An individual who invests $c \geq 0$ units of the good in human capital when young acquires $h = h(e)$ units of human capital, which enters the production process in the following period, when the individual is old. In particular, we assume that

$$h(e) = h + \gamma e,$$

where $h > 0$ and $\gamma > 1$. Individuals defer their consumption to the second period of their life, and hence use any resources they own when young to enhance their human capital.

In their second period of life, (old) individuals spend a fixed amount of their time working. An individual with human capital h produces a quantity

$$y = h + \pi$$

of the good, where π is a random term that is drawn from a continuous distribution with support $[\pi(h), \pi(h)]$ such that $\pi(h) \geq -h$ and $E[\pi] = 0$. Old individuals allocate the resources they produce among consumption, c, conspicuous consumption, x, and a bequest to their offspring, b. Hence, their budget constraint is given by,

$$c + b + x \leq y.$$

(2)

Individuals’ preferences are given by the following Cobb-Douglas utility function:

$$u(c, b, S) = B \left(c^{1-\beta} b^\beta \right)^{1-\lambda} S^\lambda,$$

where $\beta \in (0, 1)$ and $\lambda \in (0, 1)$ are parameters that capture the relative weight given to consumption, bequest, and status, $B = \left((1-\beta)^{1-\beta} \beta^{-\beta} \right)^{1-\lambda}$ is a constant coefficient, and $S = E(y|h, x)$ is “perceived status.” That is, we assume that the perceived status of an individual is given by the social belief about the individual’s expected income conditional on the individual’s level of human capital and conspicuous consumption, both of which we assume to be observable. Individuals’ consumption and the bequest they leave to their offspring are assumed to be unobservable.

To justify these two assumptions, note that as long as some type of private consumption is not observable, then we may simply define conspicuous consumption to be the type of
consumption that is observable. There are two justifications for the assumption that the bequest is not observable. (1) It is possible to interpret the bequest as the amount of resources that a parent spends in order to educate his child. A lot of this spending, such as the effort that goes into instilling in the child the value of learning or the number of hours that a parent spends helping his child with the homework, is simply non observable. (2) Young individuals spend their entire inheritance on acquiring education or human capital. However, the quality of a child’s education would only be revealed when the child becomes an adult, after the parent has already passed. So to the extent that the bequest is observable, it may only be observable when it is already too late to make a difference for the parent. In other words, if we interpret human capital as years of schooling, investment in human capital is a continuous process. Consequently, not much can be learned from the fact that a child attends primary school, because it is not clear what will be the child’s final level of education.

We restrict the model’s parameters as follows:

$$\beta \gamma > 1;$$

and

$$(1 - \lambda)\beta \gamma < 1.$$

As will become apparent, the first restriction ensures that in dynasties where conspicuous consumption is a sufficiently small fraction of individuals’ income, the expected level of human capital is growing over time. The second restriction ensures that in dynasties where conspicuous consumption is close to a fraction λ of income, the expected level of human capital is converging to a constant level.

Observe that the maximization of individuals’ utility function (3) subject to their budget constraint (2) implies that for any level of expenditure on conspicuous consumption x, the bequest that individuals leave to their offspring is

$$b = \beta(y - x),$$

and individuals’ consumption is

$$c = (1 - \beta)(y - x).$$
We now turn to the analysis of the allocation of resources to conspicuous consumption, x. An equilibrium is defined in the following way: Let $x(h, y) : [0, \infty) \times [0, \infty) \mapsto [0, \infty)$ denote individuals’ expenditure on conspicuous consumption as a function of their human capital h and income y, and $y(h, x) : [0, \infty) \times [0, \infty) \mapsto [0, \infty)$ denote the social beliefs about individuals’ expected income as a function of their observable human capital and expenditure on conspicuous consumption.

Definition. A pair of expenditure on conspicuous consumption and social belief functions $(x(y, h), y(h, x))$ is an equilibrium if:

1. individuals’ expenditures on conspicuous consumption $x(h, y)$ are optimal given the social beliefs $y(h, x)$; and
2. social beliefs $y(h, x)$ are consistent with the expenditure function $x(h, y)$, or

\[y(h, x) = E[y : x(h, y) = x]. \]

4 Equilibrium Analysis

In a standard signaling game one player sends a message (signal) to which another player responds by taking an action that affects the former player’s payoff. Thus, strictly speaking, because no one responds to individuals’ choice of conspicuous consumption, the game that is described in this paper is not a standard signaling game. However, because individuals’ levels of conspicuous consumption affect social beliefs, and these enter directly into individuals’ utility functions, the game that is described here can be analyzed in much the same way as a standard signaling game.

Like any signalling game, the many different interpretations that can be given to different choices of off-equilibrium expenditures on conspicuous consumption give rise to many different equilibria. But, as shown in the appendix, plausible restrictions on off-equilibrium beliefs, and specifically, the restrictions imposed by the so called *intuitive criterion* (Cho and Kreps, 1987), imply that the equilibrium must be fully separating.\(^{18}\)

\(^{18}\)A formal proof is presented in the appendix (Proposition 2). Intuitively, the *intuitive criterion* requires
Plugging equations (4) and (5) into the individuals’ utility function (3) allows us to derive individuals’ utility as a function of their income y, conspicuous consumption x, and human capital h as follows:

$$u(y, x) = (y - x)^{1 - \lambda} y^\lambda (h, x)^\lambda.$$ \hfill (6)

An individual with human capital h and income y chooses the level of conspicuous consumption $x(h, y)$ to maximize utility (6). The implied first-order-condition that is associated with a fully separating equilibrium is given by the following differential equation:

$$\frac{\lambda}{1 - \lambda} \frac{y - x}{y(h, x)} = 1 \frac{dy(h, x)}{dx}.$$ \hfill (7)

Note that the left-hand-side of this first-order-condition describes the marginal rate of substitution between the bundle of consumption and bequest, $y - x$, and status, $y(h, x)$, while the right-hand-side is the marginal cost of status (because the marginal cost of the consumption/bequest bundle is one). In equilibrium, these two marginal rates have to be equal.

Noting that in equilibrium $y = y(h, x)$, the solution $y(h, x)$ of the differential equation (7) is (implicitly) given by the following equation:

$$y(h, x)^{1/(1 - \lambda)} - \frac{x}{\lambda} y(h, x)^{\lambda/(1 - \lambda)} = (h + \pi(h))^{1/(1 - \lambda)}.$$ \hfill (8)

Except for special cases (such as $\lambda = 1/2$), it is impossible to obtain an explicit solution for the equilibrium social belief $y(h, x)$. But it is possible to invert the implicit solution for $y(h, x)$ in equation (8) to obtain an explicit solution of the equilibrium level of conspicuous consumption $x(h, y)$ as follows:

$$x(h, y) = \lambda \left(y - \frac{(h + \pi(h))^{1/(1 - \lambda)}}{y^{\lambda/(1 - \lambda)}} \right).$$ \hfill (9)

This result is summarized in the following proposition. (The proof is presented in the appendix).

Proposition 1 The signalling game has a unique fully separating equilibrium

$$\langle x(h, y), y(h, x) \rangle.$$
that individuals who deviate from equilibrium and claim to be of a certain type should be believed if all the other types would not want to deviate in the same way, even if by deviating they would be believed to be of this claimed type.
In this equilibrium, \(x(y, h) \) is given by equation (9), and \(y(h, x) \) satisfies equation (8).

![Equilibrium expenditure on conspicuous consumption](image)

Figure 1: Equilibrium expenditure on conspicuous consumption, \(x(y, h) \)

Equation (9) implies that the equilibrium expenditure on conspicuous consumption is given by

\[
x(y, h) = \lambda y
\]

if \(\pi(h) = -h \). Otherwise, if \(\pi(h) > -h \), then \(x(y, h) \) has the following notable properties as depicted in Figure 1:

1. \(x(h + \pi(h), h) = 0 \). An individual that is hit with the worst possible shock \(\pi = \pi(h) \) does not spend any income on conspicuous consumption.

2. For any fixed level of human capital \(h \), individuals’ expenditure on conspicuous consumption is increasing in the shock to their income \(\pi \) and in their total income \(y = h + \pi \).

3. For any fixed level of human capital \(h \), individuals’ expenditure on conspicuous consumption is concave in their income \(y \).

4. For any fixed level of human capital \(h \), the slope of individuals’ expenditure on conspicuous consumption as a function of their income increases to \(\lambda / (1 - \lambda) \) as individuals’ income decreases to \(h + \pi(h) \).
5. For any fixed level of human capital h, the slope of individuals’ expenditure on conspicuous consumption as a function of their income tends to λ as individuals’ income increases.

In addition, the equilibrium expenditure on conspicuous consumption, $x(y, h)$, has the following two important properties. First, holding income constant, the larger is the unobserved element of an individual’s income, π, or the smaller is the individual’s (observable) human capital, the larger is the individual’s expenditure on conspicuous consumption. And second, for a given distribution of the shock π, the larger is an individual’s level of human capital h, the smaller is the expected fraction of the individual’s income that is devoted to conspicuous consumption.

As explained in the introduction, the fact that the share of conspicuous consumption out of income is decreasing with the level of human capital is a key result of the model because it implies the possible existence of a poverty trap. Notably, algebraic manipulation reveals that if human capital is unobservable then in the unique fully separating equilibrium $y(x) = x/\lambda$ and so the separating equilibrium cannot give rise to a poverty trap.

5 The Dynamics of Income

The fact that individuals’ output is subject to random shocks implies that the relationship between an individual’s human capital, income, and bequest, and their offspring’s human capital and income is stochastic. We describe this relationship for the case of a dynasty that begins with an individual who has human capital $h \geq h_0$ and is subject to a random shock to output π that is equal to its expected value, $E[\pi] = 0$, in every period. For values of $\lambda \leq 1/2$, the wealth of dynasties who consistently experience bigger shocks will grow more quickly, and the wealth of dynasties who consistently experience smaller shocks will grow more slowly. For values of $\lambda > 1/2$, since the slope of individuals’ expenditure on conspicuous consumption as a function of income increases to $\lambda/(1 - \lambda) > 1$ as individuals’ income decreases to $h + \pi(h)$, the relationship between the shock and wealth accumulation is non-monotonic. For income levels that are close to $h + \pi(h)$ the marginal propensity to engage in conspicuous consumption is larger than unity, which implies that a rise in income
(due to the random component π) will lead to a smaller bequest.

We focus on the path where $\pi = 0$ for the sake of simplicity. However, although our analysis provides only a partial view of the type of growth paths that may exist in the economy, the view that is afforded is representative of the whole. Moreover, it is possible to arbitrarily reduce the variance of the shock term π in such a way that it has no effect on the separating equilibrium conspicuous consumption function $x(y, h)$ (as long as the support of the distribution of π is unchanged and the density function is strictly positive in the entire range) such that almost all the realizations of the noise term π would be equal to, or in the neighborhood of the expected value of the noise term $E[\pi] = 0$.

Denote the human capital and output of an individual in a given dynasty at time t by h_t and y_t, respectively. As explained above, we examine a dynasty where $h_0 \geq h$ and where $y_t = h_t$ for every $t \geq 1$. We denote the mapping that governs the dynamics of human capital by $\phi: [0, \infty) \to [h, \infty)$ so that

$$h_{t+1} = \phi(h_t)$$

for every $t \geq 0$.

By (1), (4), and (9),

$$\phi(h_{t+1}) = h + \gamma \beta \left((1 - \lambda) h_t + \lambda \left(\frac{(h_t + \pi(h_t))^{1/(1-\lambda)}}{h_t^{\lambda/(1-\lambda)}} \right) \right)$$

where b_t and x_t denote the individual’s bequest and expenditure on conspicuous consumption in period t, and individuals invest their entire bequest in their education, and hence $e_t = b_t$.

It can be verified that the function ϕ has the following properties:

1. If the lower bound on the noise term π is equal to the individual’s level of human capital in absolute value, $\pi(h_t) = -h_t$, then

$$\phi(h_{t+1}) = h + \gamma \beta (1 - \lambda) h_t.$$

In this case, h_{t+1} is a linear function of h_t that intersects the 45 degree line because of our assumption that $(1 - \lambda) \gamma \beta < 1$.

2. If the lower bound on the noise term is a constant, $\pi(h_t) = \pi < 0$, then for $h_t \geq -\pi$, ϕ is increasing and convex, with a slope that increases from $\gamma \beta (1 - \lambda)$ as h_t tends to $-\pi$ from above, to $\gamma \beta$ as h_t tends to infinity.
So, if it is assumed that the lower bound on the noise term $\pi(h)$ is equal to $-h$ for small values of h but is equal to some $\pi < 0$ for values of h that are larger than $|\pi|$, or

$$
\pi(h) = \begin{cases}
-h & \text{for } h < |\pi| \\
\pi & \text{for } |\pi| \leq h
\end{cases}
$$

then it follows that the mapping ϕ is increasing and (weakly) convex. Such a function $\pi(h)$ is consistent with the observation that a large negative shock may cause an individual with low human capital to lose all his income, but that wealthier individuals can usually afford enough insurance to avoid becoming penniless even if the worst should occur. If in addition $\pi < h/(\gamma \beta (1 - \lambda) - 1)$, then under the assumption that $(1 - \lambda) \beta \gamma < 1$ and $\beta \gamma > 1$, the mapping ϕ intersects the 45 degree line twice as depicted in Figure 2 below.

It thus follows that a dynasty that begins with a low level of human capital will be trapped in poverty unless it experiences a series of large positive shocks to output. In contrast, the output of a dynasty that begins with a high level of human capital will grow indefinitely (converging to a rate of growth of $\beta \gamma - 1$), unless it experiences a series of large negative shocks.

It should be noted that the assumption we imposed on $\pi(h)$ through (10) is not necessary for this conclusion to hold. The same qualitative result would continue to hold provided that $|\pi(h)|/h$ begins to decrease monotonically above some threshold.
6 Concluding Remarks

This paper makes a contribution to the discussion about the significance and effect of conspicuous consumption by illustrating that if an individual’s level of human capital provides a signal about the individual’s income, then more educated individuals can afford to spend relatively less on conspicuous consumption. We show that the implications of this insight can contribute to our understanding of the behavior of the poor and to the persistence of poverty. Intuitively, dynasties that are on a track of human capital accumulation reduce the share of income devoted to conspicuous consumption, which supports and reinforces further accumulation of wealth and human capital in the dynasty and facilitates upward mobility. In contrast, individuals with low levels of human capital spend a relatively larger fraction of their income on conspicuous consumption, which prevents their dynasty from accumulating human capital.

Interestingly, if, as suggested by evolutionary considerations, females tend to worry less about their social status, then societies in which women have more control over resources, may be characterized by less conspicuous consumption and a bigger potential for escaping poverty.

An extension of the model that incorporates differences across countries with respect to the transparency of human capital and individual investment in the human capital of the next generation may offer an explanation for cross country differences in the persistence of poverty. These potential differences across countries could lead to, or may be interpreted as, differences in social norms or culture with respect to the “making of a spectacle.” As illustrated in this paper, such cultural differences can have serious implications with respect to the persistence of poverty.
Appendix

Proof of Proposition 1. In a fully separating equilibrium the social belief \(y(h, x) \) must be monotone increasing for every \(h \geq h_0 \). As explained in Section 3, the social belief \(y(h, x) \) must satisfy the differential equation (7) for every \(h \geq h_0 \). This differential equation is homogenous and so can be transformed into a separable differential equation and then solved (Boyce and DiPrima, 1996, 90-91). The solution is given by (8) (the constant term must be equal to zero because \(y(h, 0) \) must be equal to zero for every \(h \geq h_0 \) in equilibrium). Uniqueness of the equilibrium follows from uniqueness of the solution of (7), which follows from standard results about the uniqueness of solutions of differential equations, plus the fact that (7) has no singularity points in the relevant range.

Proposition 2. An equilibrium \(\langle x(h, y), E[y|h, x] \rangle \) that meets the intuitive criterion is fully separating.

Proof. The proof follows from the following five steps.

1. An equilibrium belief function \(E[y|h, x] \) is non-decreasing in \(x \). If, to the contrary, for some \(h \geq 0 \) and \(x' > x \), \(E[y|h, x] > E[y|h, x'] \), then an agent can spend less on conspicuous consumption and still be believed to have a higher expected income. A contradiction to the optimality of the conspicuous consumption function.

2. An equilibrium expenditure on conspicuous consumption, \(x(h, y) \), is non-decreasing in \(y \). Suppose to the contrary that an agent with human capital \(h \) and income \(y' \) spends \(x' \) on conspicuous consumption, \(c' = (1 - \beta)(y' - x') \) on consumption, and \(b' = \beta(y' - x') \) on bequest, and is believed to have an income \(\tilde{y}' \), while an agent with human capital \(h \) and income \(y < y' \) spends \(x > x' \) on conspicuous consumption, \(c = (1 - \beta)(y - x) \) on consumption, and \(b = \beta(y - x) \) on bequest, and is believed to have an income \(\tilde{y} \geq \tilde{y}' \). Because the latter agent optimizes,

\[
((1 - \beta)(y - x))^{(1 - \beta)(1 - \lambda)} (\beta(y - x))^{\beta(1 - \lambda)} \tilde{y}^\lambda \\
\geq ((1 - \beta)(y - x'))^{(1 - \beta)(1 - \lambda)} (\beta(y - x'))^{\beta(1 - \lambda)} (\tilde{y}')^\lambda,
\]
or

\[(y - x)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)} (1 - \beta)^{(1-\beta)(1-\lambda)} \beta^\beta (1-\lambda) y^\lambda \geq (y - x')^{(1-\beta)(1-\lambda)+\beta(1-\lambda)} (1 - \beta)^{(1-\beta)(1-\lambda)} \beta^\beta (1-\lambda) (y')^\lambda,
\]

or, because \(\frac{y' - x}{y - x} \) is increasing in \(x\),

\[
\left(\frac{y' - x}{y - x} \right)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)} (y - x)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)} (1 - \beta)^{(1-\beta)(1-\lambda)} \beta^\beta (1-\lambda) y^\lambda
\]

\[
> \left(\frac{y' - x'}{y - x'} \right)^{(1-\beta)(1-\lambda)+\beta(1-\lambda)} (y - x')^{(1-\beta)(1-\lambda)+\beta(1-\lambda)} (1 - \beta)^{(1-\beta)(1-\lambda)} \beta^\beta (1-\lambda) (y')^\lambda.
\]

But then

\[
((1 - \beta) (y' - x))^{(1-\beta)(1-\lambda)} (\beta (y' - x))^{\beta(1-\lambda)} y^\lambda
\]

\[
> ((1 - \beta) (y' - x'))^{(1-\beta)(1-\lambda)} (\beta (y' - x'))^{\beta(1-\lambda)} (y')^\lambda,
\]

which means that the agent with income \(y'\) cannot be optimizing.

3. If for some level of human capital \(h\) the belief function \(E[y|h,x]\) is constant (as a function of \(x\)) on an interval, then it “jumps up” immediately to the right of this interval. That is, if for some fixed \(h\) the social belief \(E[y|h,x]\) is constant on an interval \([a,b]\) or \([a,b)\) and is such that \(E[y|h,x] > E[y|h,b]\) for \(x > b\) then \(\lim_{x \to b} E[y|h,x] > E[y|h,b]\) or \(E[y|h,b] > \lim_{x \to b} E[y|h,x]\), respectively. We prove this claim for the latter case. The proof for the former case is similar. Suppose to the contrary that two agents with the same \(h\) spend \(a\) and \(b\) on conspicuous consumption. If the two agents are believed to have the same expected income then the agent who spends \(b\) on conspicuous consumption cannot be optimizing.

4. If for some \(h\), \(E[y|h,x]\), viewed as a function of \(x\) alone, is constant on an interval \([a,b]\), then the agent with the lowest income \(y_b\) who spends \(b\) on conspicuous consumption in equilibrium must be indifferent between spending \(b\) or \(a\) on conspicuous consumption. If no such agent exists, and an agent with income \(\inf \{y : x(h,y) = b\}\) spends \(a\) on conspicuous consumption, then this agent must be indifferent between
spending \(a \) or \(b \) on conspicuous consumption. In the former case, it follows from the fact that agents with incomes \(y < y_b \) prefer to spend \(a \) on conspicuous consumption and continuity; in the latter case, it follows from the fact that agents with incomes \(y > \inf \{ y : x(h, y) = b \} \) prefer to spend \(b \) on conspicuous consumption and continuity. The statement and proof in the case where \(E[y|h, x] \) is constant on an interval \([a, b]\) is similar.

5. Fix an equilibrium \(\langle x(h, y), E[y|h, x] \rangle \). If the belief function \(E[y|h, x] \) is (strictly) increasing, then we’re done. Suppose then that for some level of human capital \(h \), the belief \(E[y|h, x] \) is constant on some interval \([a, b]\), and that it jumps up immediately thereafter as implied by step 3. Suppose that the equilibrium is such that an agent with income \(y_b \) spends \(b \) on conspicuous consumption, and that agents with lower incomes spend no more than \(a \) on conspicuous consumption (the argument for the case where agents with incomes \(y > y_b \) spend at least \(b \) on conspicuous consumption, and an agent with income \(y_b \) spends \(a \) on conspicuous consumption is similar). Step 4 implies that an agent with income \(y_b \) is indifferent between spending \(a \) on conspicuous consumption if he is believed to have an average income of \(E[y|h, a] \), and spending an additional sum of \(b - a \) on conspicuous consumption if he is believed to have an average income of \(E[y|h, b] > E[y|h, a] \). Similarly, for some small \(\varepsilon > 0 \), an agent with income \(y_b - \varepsilon \) is indifferent between spending \(a \) on conspicuous consumption if he is believed to have an average income of \(E[y|h, a] \), and spending an additional sum of \(b - a - \delta \varepsilon \) on conspicuous consumption if this implied that he would be believed to have an average income of \(E[y|h, b] - \Delta \delta > E[y|h, a] \). In contrast, an agent with a lower income than \(y_b - \varepsilon \) strictly prefers to spend \(a \) than to spend \(b - \delta \varepsilon \) even if this means that he would be believed to have the higher income \(E[y|h, b] - \Delta \delta \). So, an agent with income between \(y_b - \varepsilon \) and \(y_b \) would like to spend a little more if this meant that it was believed to have a higher income but this is not possible with the equilibrium beliefs \(E[y|h, x] \). But, if such an agent deviates from equilibrium and spends an additional sum of \(b - a - \delta \varepsilon \) on conspicuous consumption, then it should be believed that his income is at least \(y_b - \varepsilon \), because, as explained above, it is not be in the interest of
an agent with a lower income to deviate in this way even if he were believed to have an income that is equal to $y_b - \varepsilon$. This argument implies that if $E[y|h,x]$ is part of an equilibrium that satisfies the intuitive criterion, then it cannot be constant on any interval. It therefore follows that it must be part of a fully separating equilibrium. ■
References

