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Abstract

We construct an endogenous growth model of directed technical change with automation
— the introduction of machines which replace low-skill labor and complement high-skill
labor — and horizontal innovation — the introduction of new products, which increases
demand for both types of labor. Machines are produced with the same technology as the
consumption good. The level of technology in the economy is characterized by the number
of products and the share of these that are automated. For general processes of technol-
ogy, we demonstrate that although low-skill wages can drop during periods of increasing
automation intensity the asymptotic growth rate is positive, though lower than that of the
economy. We then endogenize the evolution of technology and derive an asymptotic steady
state. Through numerical simulations, we show that the transitional path follows three
phases. First, wages are low such that few machines are used and low-skill wages keep pace
with the growth rate of the economy. Then, as wages grow the share of automated prod-
ucts increases and the economy substitutes towards the use of machines which depresses
the growth rate of low-skill wages, potentially to negative. Finally, as the economy reaches
steady state the share of automated products is constant and the relative growth rate of
low-skill wages picks up though it remains lower than that of the economy. We extend
the model to include middle-skill workers and demonstrate that the model endogenously
captures two important characteristics of the U.S. income distribution over the past 50
years: initially a monotone dispersion of the income distribution, and thereafter a wage
growth polarization, in which middle-skill workers experience the lowest wage growth. Fi-
nally, in an extension we allow machines to be produced with a different technology than
the consumption good. This allows for faster productivity growth for machines which can
potentially lead to permanently negative growth of low-skill wages.

JEL: E23, E25, O33, O31, O41
KEYWORDS: Capital-skill complementarity, income inequality, automation, horizontal in-
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1 Introduction

Will technological progress benefit all workers, or will some become superfluous as the Luddites
feared in XIXth England? Economists have long dismissed this concern, emphasizing that new
jobs are created to replace those lost to technology. Yet, that argument is mostly absent from
the theoretical literature on technology and income distribution, which has largely ignored
labor-replacing innovation by focusing on skilled- versus unskilled- labor augmenting technical
change (Acemoglu and Autor, 2011). In the face of increasing income inequality and a declining
labor share of output, the concern is receiving renewed interest (Brynjolfsson and McAfee,
2011 and Kotlikoff and Sachs, 2013). In fact, mounting empirical evidence shows that much
technological development takes the form of labor-saving automation of production processes,
mostly replacing low-skill workers (Autor, Levy, Murnane, 2003).1 In this paper, we formalize
the economists’ popular argument by introducing a labor-replacing automation technology into
an expanding variety growth model, and we analyze when technological progress reduces the
welfare of some workers. In addition, our model is consistent with several features of the
evolution of the income distribution in the last 40 years, including a growing inequality between
high-skill and low-skill workers’ income, wage polarization and a moderate decline in the labor
share.

We consider an economy populated by low-skill and high-skill workers, where a final good
is produced by combining a set of intermediate inputs. These are produced by two types of
firms. Non-automated firms must rely on both types of labor, whereas automated firms can
replace low-skill workers with machines produced from the final good. Automation of produc-
tion by existing firms increases the overall productive capability of the economy, but reduces
the relative demand for low-skill workers. This contrasts with technological development that
introduces new products which also improves the economy’s economic productivity but in-
creases the demand for both types of labor. High-skill workers always benefit from either, but
low-skill workers may, but need not, lose from automation. Though low-skill workers may lose
temporarily from automation, we show that for very general processes of technological devel-
opment, their welfare must grow asymptotically, albeit at a lower rate than that of high-skill
workers. We then endogenize technological development by assuming that new products start
non-automated and by letting both types of technological progress be the result of deliberate
innovation. We show that the incentives to automate depends on the level of low-skill wages.
This introduces a structural shift in the economy, in which the low initial wages imply little
incentive to automate such that low-skill wages grow at pace with the economy. As the econ-
omy grows so do low-skill wages and the incentive to automate increases. The growth rate of
the economy increasingly relies on automation and income inequality continuously rises. In
an extension, we introduce middle-skill workers and show that the model can generate wage
polarization.

The model features a two-dimensional level of technology: the measure of existing interme-
diate inputs and the fraction of these that can be produced by an automated process. Both
increase the productive capabilities of the economy, but by allowing for replacement of low-skill
workers, automation can reduce their absolute pay. For most of the analysis, we assume that
the machines are produced competitively one-for-one with the final good, which, importantly,

1Autor, Katz and Kearney (2006) argue that in the 1990s it was predominantly workers in the middle of
the income distribution, performing ‘cognitive routine tasks’ that were replaced, a tendency they label ‘job
polarization’.
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ties the price of machines to that of the consumption good. This makes the absolute level of
low-skill wages an important economic variable, not just as a measure of the welfare of low-skill
workers, but also as their cost disadvantage with machines. High low-skill wages both encourage
a substitution away from low-skill workers to machines for automated firms and imply a shift
of market shares towards automated firms. As a result, higher low-skill wages are associated
with a higher skill premium. Initially, we consider general exogenous technological processes
with continuous growth in the measure of inputs. We show that in periods with increasing
automation low-skill wages can drop, although as long as there is not economy-wide perfect
substitution between low-skill workers and machines, low-skill wages must grow asymptotically
as well. To see why, note that a growing use of machines combined with a fixed stock of low-
skill labor must increase the relative price of low-skill workers compared with machines. When
machines are produced with the same general technology as the consumption good, this relative
price equals the real wage of low-skill workers and their welfare must increase asymptotically.
In particular, economy-wide imperfect substitution between low-skill and machines is obtained
if a positive fraction of the new products does not become automated immediately after entry,
even if low-skill workers and machines are perfect substitutes in the production process of au-
tomated firms. Hence, as in the ‘economists’ popular argument’ above, even if low-skill workers
are fully replaced in the production of existing products, the creation of new ones ensure that
their income keeps increasing.

We proceed to analyze specific endogenous technological processes where both automation
and the introduction of new goods are the result of deliberate investment in research. As in
Romer (1990), a fringe of potential entrepreneurs invest to introduce new products which are
initially produced by non-automated technological processes. Once they have created a new
product they can conduct a second innovation as in Aghion and Howitt (1996), which here takes
the form of automation. This introduces another margin of substitution between machines and
low-skill workers: the higher are the low-skill wages the higher is the incentive to automate to
acquire the ability to use machines. We allow for an externality, where the stock of automated
products may positively impact the productivity of the automation innovation technology. We
characterize the asymptotic steady state and show that improvements in the technology for
automation innovation will increase horizontal innovation, implying a higher asymptotic wage,
even for low-skill workers.

We then employ simulation methods to study the model’s transitional dynamics. These
can be thought of as occurring in three phases. First, with low levels of technology, low-skill
wages are low and there is little automation. During this phase, there is little incentive to
automate and the growth rate of low-skill wages mirrors that of the overall economy implying
that factor shares of both low- and high-skill workers remains relatively constant. As low-skill
wages and the stock of automated varieties increase, the incentive to invest in automation
increases. This brings the economy into the next phase in which the fraction of automated
products is increasing, putting downward pressure on low-skill wages. During this transitional
phase the relative growth rate of low-skill workers is the lowest and potentially negative. Finally,
once the fraction of automated products approaches its steady state level, the economy enters
its third phase. The share of automated products is no longer increasing and low-skill wage
growth must be positive, although lower than that of the overall economy. The factor share of
low-skill workers continues to decrease. The factor share of high-skill workers increases, though
labor’s overall factor share decreases modestly, consistent with recent evidence in Rodriguez
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and Jayadev (2013), Karabarbounis and Neiman (2013) and Piketty and Zucman (2013). We
conduct a growth decomposition and demonstrate how the growth in the economy transitions
from being driven solely by the entrance of new products to relying on both types of innovation.

We show that when considering the full transitional path, changes to the productivity of the
automation technology have ambiguous effects on the welfare of low-skill workers. Though, more
productive automation technology unambiguously increases the use of machines in the economy
and reduces low-skill workers share of output, it also encourages faster entry and increases the
overall growth rate of the economy. As noted above, a more productive automation technology
guarantees higher asymptotic wages through a higher growth rate of the economy, but in our
simulations, we show that it can reduce low-skill wages during the second phase of accelerating
automation.

Recent empirical work has increasingly found that workers in the middle of the income
distribution are most adversely affected by technological progress. To address this, we extend
the model to include middle-skill workers as a separate skill-group. Firms either rely on low-
skill workers or middle-skill workers (but not both) and the two skill-groups are symmetric
except that automating to replace middle-skill workers is more costly. This means that the
automation of low-skill workers will happen first, with a delayed automation process for middle-
skill workers. We show that this difference can reproduce important trends in the United States
income distribution as described in Autor, Katz and Kearney (2006): in a first period there is a
uniform dispersion of the income distribution, as low-skill workers’ task are rapidly automated
but middle-skill tasks are not; while in the second period there is wage polarization: low-skill
workers’ share of automated products is close to steady-state, and middle-skill tasks are more
rapidly automated.

The baseline model restricts the production technology of consumption goods and machines
to be identical and permanently binds each type of worker to a category even as wage dispersion
grows. In extensions, we relax each of these assumptions in turn. We allow the production
of machines to rely more heavily on the use of machines as inputs than the production of the
consumption good, which endogenously delivers faster growth in the production of machines
and a resulting decreasing real price. This extension allows for both a productivity effect, as
more machines increases the productive capability of the economy, and a substitution effect as
the cheaper price of machines further increases their cost-advantage over low-skill workers. The
elasticity of substitution between varieties crucially determines the relative size of these effects,
with a higher value both reducing the gain in productivity from new products and ensuring a
larger shift in market share from non-automated to automated firms. As a result, for sufficiently
high elasticity of substitution, the asymptotic growth rate of low-skill real wages is negative.
In a second extension, the workforce consists of a mass of workers each endowed with innate
heterogeneous abilities to perform low-skill or high-skill tasks. Diverging returns to the two,
endogenously results in a shift from low-skill to high-skill employment. Those switching will
benefit from the higher growth rate of high-skill wages, and the gradual reduction in the stock
of low-skill labor implies that low-skill wages grow at a higher relative rate.

Income inequality between skill groups has been steadily increasing in developed countries
(particularly in the US) since the 1970’s, even though education has increased the relative
supply of skilled workers. Following the pioneering work of Tinbergen (1974, 1975), a large
literature has turned to skill-biased technical change (SBTC) as a possible cause for this trend
(see Hornstein, Krusell and Violante, 2005, for a more complete literature review). One can
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roughly categorize theoretical papers into one of three strands. The first strand emphasizes
the Nelson and Phelps (1966) hypothesis that more skilled workers are better able to adapt to
technological change, in which case a technological revolution (like the IT revolution) increases
the relative demand for skilled workers and increases income inequality. Several papers have
formalized this idea (including Aghion and Howitt, 1997, Lloyd-Ellis, 1999, Caselli, 1999, Galor
and Moav, 2000 and Aghion, Howitt and Violante, 2002). However, such theories mostly explain
transitory increase in inequality whereas inequality has been increasing for decades. Our model,
on the contrary, introduces a mechanism that creates permanent (and widening) inequality.

A second strand sees the complementarity between capital and skill as the source for the
increase in the skill premium. Krusell, Ohanian, Ríos-Rull, and Violante (2000) are the first to
formalize this idea; they develop a framework where capital equipment and high-skill labor are
allowed to be complementary. To this they add the empirically observed decline in the price
of capital equipment (relative to the consumption good), and show that their model can then
account for most of the variations in the skill premium. Our model shares features with their
framework: machines, which here depreciate immediately but play an analogous role to capital
in their model, are more complementary with skilled labor than with unskilled labor, and the
decrease in the price of machines relative to the price of other inputs leads to an increase in the
relative demand for skilled labor over unskilled labor. However, we endogenize the evolution of
technological progress.2

Finally, the third branch of the literature emphasizes the role of factor specific technical
change. This framework, originally presented by Katz and Murphy (1992) considers technology
to be either high-skill labor or low-skill labor-augmenting and employs a relative supply and
demand framework of these two skill groups — typically college and non-college graduates —
to infer the extent of skill-biased technical change from changes in the relative labor supply
and the skill-premium. This ‘canonical model’, as labeled by Acemoglu and Autor (2011), has
been widely used in empirical work. On the theory side, it has led to a large literature on
directed technical change (most notably Acemoglu, 1998, 2002 and 2007), which endogenizes
the bias of technical change. In particular, it shows that an increase in the supply of high-skill
workers may foster skill biased technical change and increase the skill premium. This model
delivers important insights about inequality and technical change, but it has no role for labor-
replacing technology (a point emphasized in Acemoglu and Autor, 2011). In addition, even
though income inequality varies, neither high-skill nor low-skill wages can decrease in absolute
terms, and their asymptotic growth rate must be the same. The present model is also a directed
technical change framework as economic incentives determinate whether technical change takes
the form of horizontal innovation or automation (and is therefore closer to Aghion and Howitt,
1996), but, it deviates from the assumption of factor-augmenting technologies and explicitly
allows for labor-replacing automation, generating the possibility for (temporary) absolute losses
for low-skill workers, and permanently increasing income inequality.

2An additional difference is that we do not need a decrease in the price of machines relative to the consump-
tion good to generate this pattern. This is because in our set-up, at given factor prices, horizontal innovation
is Harrod-Neutral, and therefore reduces the price of machines relative to labor. In their set-up, technological
progress is either labor augmenting or increases the productivity of the sector producing the investment good.
With only labor-augmenting technological change the price of capital would not decrease relative to the price of
effective units of labor. Nonetheless, in section 7.1, we allow for different production functions for the consump-
tion and investment goods, which translate into a decreasing price for machines relative to the consumption
good.
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In addition to the theoretical foundations for SBTC, an extensive literature examines its
empirical importance and in particular its role in the marked increase in income inequality in
the US and other advanced countries since the early 1980s.3 At the firm and industry level,
there is compelling evidence of a strong correlation between the adoption of automation tech-
nologies and the increased reliance on skills.4 Using the canonical model Goldin and Katz
(2008) find that in the US as a whole technical change has been skill-biased throughout the
20th century (with the skill-bias being the premium of a high school graduate in the early part
of the century). Further, changes in the supply of skilled labor coupled with a linear trend in
the bias of technological change fit the data remarkably well over the last 50 years, though the
data suggests a slowdown in SBTC from the mid 1990s onwards. Card and DiNardo (2002)
and Lemieux (2006) consider this slow-down in income inequality growth in the presence of
continued advances in computer technology as undermining for the usefulness of the concept
of SBTC in explaining observed patterns in income inequality. We do not equate SBTC with
skill-augmenting technological change, but instead model it explicitly as the automation of pro-
duction processes. This puts the relative stock of automated products central in explaining the
skill-premium, but does not create a one-to-one relationship between (the flow of) automation
intensity and automation’s impact on the skill-premium. Hence, in our framework an increasing
intensity of automation is perfectly consistent with a slowing growth in income inequality.

Autor, Levy, Murnane (2003) and the literature following (Autor, Katz, and Kearney, 2006,
2008 and Autor and Dorn, 2013) suggest a different answer to the apparent slowdown of the
skill-bias of technical change. They argue that a closer look at the income distribution is called
for and show that whereas income inequality has continued to increase above the median, there
has been a reversal below the median. They argue that the (routine) tasks performed by many
middle-skill workers — storing, processing and retrieving information — are more easily done
by computers than those performed by low-skill workers, now predominantly working in ser-
vice occupations. This ‘wage polarization’ has been accompanied by a ‘job polarization’ as
employment has followed the same pattern of decreasing employment in middle-skill occupa-
tions.5 Acemoglu and Autor (2011) argue that a task-based model where technological progress
explicitly allows the replacement of one input, say labor, by another, say capital, in the pro-
duction of some tasks provides a better explanation for wage and job polarization than the
canonical model (and in addition allows for a decrease in the absolute level of wages). In our
theory, automation similarly replaces labor with machines in the production of some goods. Its
advantage over the task framework is that when we consider the extension with both low-skill
and middle-skill workers, it provides a unified explanation for the relative decline of middle-skill
wages since the mid-1980s and the relative decline of low-skill wages in the period before. If au-
tomating the tasks performed by low-skill workers is easier (cheaper) than for those performed
by middle-skill workers, the lion’s share of the increase in the fraction of automated product

3The extent to which patterns in income inequality over the last few years are the result of the financial
crisis or underlying structural changes is a topic of ongoing debate and research. For this reason, we restrict
ourselves to changes in income inequality prior to 2008.

4Autor, Katz, and Krueger (1998), Autor, Levy, and Murnane (2003), Doms, Dunne and Troske (1997),
Bartel, Ichniowski, and Shaw (2007).

5This phenomenon has also been observed and associated with the automation of routine tasks in Europe
(Spitz-Oener, 2006, Goos and Manning, 2007, and Goos, Manning and Salomons, 2009). Another explanation
for polarization stems from the consumption side and relates the high growth rate of wages for the least-skilled
workers with an increase in the demand for services from the most-skilled – and richest – workers, see Mazzolari
and Ragusa (2013) and Barany and Siegel (2013).
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will happen later for middle-skill workers than for low-skill workers, and their respective periods
of lower wage growth will be sequential: The automation of the factory floors in the middle of
the century — primarily replacing low-skill workers — and the introduction of computers in
the latter third — primarily replacing middle-skill workers.6

Section 2 introduces the model and solves for equilibrium wages. Section 3 introduces ex-
ogenous technological processes and derives the asymptotic growth rates of wages. In Section
4 we endogenize the technological processes and solve for the steady state and Section 5 sim-
ulates the transitional dynamics. Section 6 extends the model to include middle-skill workers
to analyze wage polarization. Section 7 considers an extension that allows for declining real
prices of machines and one where workers endogenously choose between low-skill and high-skill
employment. Section 8 concludes.

2 The Model

In this section, we introduce the model, and solve for wages and production in a given period.
We consider a continuous time infinite-horizon economy populated by H high-skill workers
and L low-skill workers. Both types of workers supply labor inelastically and have identical
preferences over a single final good of:

Uk,t =

ˆ ∞
t

e−ρ(τ−t)
C1−θ
k,τ

1− θ
dτ,

where ρ is the discount rate, θ ≥ 1 is the inverse elasticity of intertemporal substitution and
Ck,t is consumption of the final good at time t by group k ∈ {H,L}.

The final good is produced by a competitive industry combining an endogenous set of
intermediate inputs, i ∈ Nt = [0, Nt] using a CES aggregator:

Yt =

(ˆ
i∈Nt

yt(i)
σ−1
σ di

) σ
σ−1

,

where σ > 1 is the elasticity of substitution between these inputs and yt(i) is the use of
intermediate input i at time t. We normalize the price of Yt to 1 at all points in time and drop
time subscripts for the remainder of this section. The demand for each variety is:

y(i) = p(i)−σY, (1)

where p(i) is the price of intermediate input i and the normalization implies that the ideal price
index,

[´
i∈N p(i)

1−σdi
]1/(1−σ) equals 1.

Each intermediate input is produced by a monopolist who owns the perpetual rights of
production. She can produce the intermediate input by combining low-skill labor, l(i), high-
skill labor, h(i), and machines, x(i), using the production function:

y(i) =
[
l(i)

ε−1
ε + α(i) (ϕ̃x (i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

6In fact, figure 3 in Autor and Dorn (2013) shows that low-skill workers left non-service occupations from
the 70’s, which is consistent with the view that their tasks in non-service occupations were automated before
the middle-skill workers’ tasks.
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where α(i) ∈ {0, 1} is an indicator function for whether or not the firm has access to an
automation technology which allows for the use of machines (henceforth, we refer to such a
firm and the product it produces as ‘automated’). If the firm is not automated (α(i) = 0),
production takes place using a standard Cobb-Douglas production function with only low-skill
and high-skill labor with a low-skill factor share of total costs of β. If the firm is automated
(α(i) = 1) it can substitute machines for low-skill workers with ε as the elasticity of substitution
between the two (we allow for machines and low-skill workers to be perfect substitute in which
case ε = ∞ and the production function is y(i) = [l(i) + α(i)ϕ̃x (i)]β h(i)1−β). High-skill
workers always retain a factor share of 1 − β. The parameter ϕ̃ is the relative productivity
advantage of machines over low-skill workers. Machines are an intermediate input in production
and are wholly consumed in the production process. Throughout the paper we will refer to x as
‘machines’, though our interpretation also includes any form of computer inputs, algorithms,
the services of cloud-providers etc. Machines are produced competitively one for one with
the final good and inherit a constant price of 1. Though a natural starting point, this is an
important assumption. We make it to show that when technical change is not directly labor-
augmenting, several stylized facts — rising inequality and a falling labor share, in particular —
can be explained without relying on falling real cost of technology. However, with compelling
evidence that the real cost of computing power has fallen dramatically (Nordhaus, 2007), we
generalize our model to allow for an endogenously declining real price of machines in Section 7.

Denoting low-skill wages w and high-skill wages v, the unit cost of intermediate input i is:

c(w, v, α(i)) = β−β(1− β)β−1
(
w1−ε + ϕα(i)

) β
1−ε v1−β, (2)

where ϕ ≡ ϕ̃1/(ε−1), c(·) is strictly increasing in both w and v and c(w, v, 1) < c(w, v, 0)
for all w, v > 0. The monopolist charges a constant markup over costs such that price is
p(i) = σ/(σ − 1)c(w, v, α(i)).

Using Shepard’s lemma and equations (1) and (2) delivers the demand for low-skill labor
of a single firm.

l(w, v, α(i)) = β
w−ε

w1−ε + ϕα(i)

(
σ − 1

σ

)σ
c(w, v, α(i))1−σY, (3)

which is decreasing in w and v. The effect on demand for low-skill labor following automation
is in general ambiguous. This is due to the combination of a negative substitution effect (the
ability of the firm to substitute machines for low-skill workers) and a positive scale effect
(the ability of the firm to employ machines decreases overall costs, lowers prices and increases
production). The higher is µ ≡ β(σ − 1)/(ε − 1) the higher is the relative importance of the
scale effect. In this paper we focus on labor-substituting innovation and impose throughout
that µ < 1 (equivalent to ε > 1+β (σ − 1)) which is necessary and sufficient for the substitution
effect to dominate and ensure l(w, v, 1) < l(w, v, 0) for all w, v > 0. It is straightforward to
show that the relative use of skilled labor is increasing in automation as well, consistent with
a large literature that finds technological improvements — in particular computerization — is
associated with increased relative skill-use.7

7Autor, Katz, and Krueger (1998) and Machin and Van Reenen (1998) provide evidence on industry-level
demand shifts. Doms, Dunne, and Troske (1997), Bartel, Ichniowski, and Shaw (2007) provide evidence at the
firm level. Katz and Autor (1998) and Acemoglu and Autor (2011) provide summaries of the literature.

7



Let x (w, v) denote the use of a machines by an automated firm. The relative use of machines
and low-skill labor for such a firm is then:

x(w, v)

l(w, v, 1)
= ϕwε, (4)

demonstrating that the relative use of machines depends both on technological factors and
economic factors; whether a firm is automated and the relative price of low-skill workers,
respectively. As emphasized by Autor (2013) both are important for understanding the extent
of automation and the role of the relative price of low-skill labor, w, will play an important
role in this paper.

Factor market clearing implies thatˆ
i∈N

l(i)di = L,

ˆ
i∈N

h(i)di = H, (5)

where stocks of labor are kept constant. We relax this assumption in Section 7 where workers
choose occupations based on relative wages and their heterogeneous skill-endowments.

Constant markups by intermediate input producers coupled with the unit elasticity of de-
mand for high-skill labor ensure a constant factor share of high-skill labor of vH = (1−β)(σ−
1)/σY . Using this along with equations (1) and (2) gives profits of:

π(w, v, α(i)) = (w1−ε + ϕα(i))µ
β(σ−1)β(σ − 1)(σ−1)β

σ(σ−1)β+1
Y 1−ψ−1

, (6)

where ψ ≡ (σ−1)−1(1−β)−1. The constant markup charged by the intermediate input produc-
ers allows us to write revenue as r(w, v, α(i)) = σπ(w, v, α(i)). Hence, we can write the relative
revenues of a non-automated firm compared with an automated firm as r(w, v, 0)/r(w, v, 1) =(
1 + ϕwε−1

)−µ, and note that it is a decreasing function of w; since non-automated firms rely
more heavily on low-skill labor their relative market share drops with higher low-skill wages.

Let νl(w, v, α(i)) denote the share of revenues accruing to low-skill labor for intermediate
input producer i and analogously for high-skill workers, h, and machines, x. Using factor
demand functions we have:

νl(w, v, α(i)) =
σ − 1

σ
β
(
1 + ϕwε−1α(i)

)−1
,

νh(w, v, α(i)) =
σ − 1

σ
(1− β),

and the share to machines is defined residually by νl(·) + νh(·) + νx(·) = (σ − 1)/σ, with the
remaining share 1/σ accruing to the monopolist as profits. In an automated firm the relative
factor payment of low- versus high-skill workers is fixed at β/(1 − β), whereas in automated
firms, the ability to substitute for machines gives a relative share of (1 + ϕwε−1)−1β/(1 − β),
which is decreasing in w.

Aggregate relative factor rewards must be a weighted average of the relative factor rewards
in the two types of firms. Letting G denote the fraction of intermediate input producers that are
automated, we can sum over all intermediate input producers to get aggregate wages for low-
skill workers as wL = N [Gr(w, v, 1)νl(w, v, 1) + (1−G)r(w, v, 0)νl(w, v, 0)], with an analogous
expression for high-skill workers. This leads directly to an expression for the high-skill wage
premium.
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Lemma 1. For ε <∞, the high-skill wage premium is given by

v

w
=

(1− β)

β

L

H

G+ (1−G)(1 + ϕwε−1)−µ

G (1 + ϕwε−1)−1 + (1−G)(1 + ϕwε−1)−µ
, (7)

where ∂v/∂w > (1− β)L/(βH) for G > 0.8

For given L/H the skill premium is (weakly) increasing in the absolute level of low-skill
wages. This is so both because higher wages improve automated firms cost-advantage and
thereby their market share (as reflected by the term

(
1 + ϕα(i)wε−1

)−µ in equation 7) and
because automated firms substitute machines for low-skill workers (the term

(
1 + ϕwε−1

)−1 ).
Only in the special case of no automated firms, G = 0, will the aggregate factor shares inherit
that of a non-automated firm and v/w = (1− β)L/(βH).

The skill-premium of equation (7) is plotted in (w, v) space in figure 1a below. For G = 0
this is a straight line with slope (1 − β)L/(βH) shown as the dotted line. For any G > 0 the
use of machines shifts the curve to the left of the dotted line. Using that the combined factor
share of low-skill workers and machines is constant gives (νl + νx)/νh = β/(1 − β) for each
firm. Aggregating for all firms then gives wL + X = vHβ/(1 − β) such that the horizontal
distance from the skill-premium curve to the dotted line gives the aggregate use of machines
per low-skill worker (X/L). Hence X/L is low when w is low as there is little incentive to rely
on machines. As long as the economy cannot perfectly substitute machines for labor (that is
as long as ε < ∞ or G < 1) the skill-premium curve will have a finite slope. Further, it is
independent of N , but shifts to the left for increases in the share of automated firms, G.

We use demand for high-skill labor h(w, v, α(i)) and the labor market clearing conditions
to get:

Y =

(
σ − 1

σ
β

) β
1−β

H
(
G
(
ϕ+ w1−ε)µ + (1−G)wβ(1−σ)

)ψ
Nψ. (8)

Again we use that vH = (1−β)(σ−1)Y/σ to plot equation 8 in Figure 1a as well. We label
it as the productivity condition as it gives the highest Y (and thereby v) that a given N,G,w
can deliver. Improvements in either type of technology, G or N , will shift the productivity
condition to the northeast. We can combine these two to get the absolute pay for low-skill
workers as the intersection of the skill-premium and productivity conditions.

Proposition 1. For ε < ∞, the absolute pay for low-skill workers w is uniquely determined
by:

w =
σ − 1

σ
β

(
H

L

)1−β
N

1
σ−1

(
G(1 + ϕwε−1)µ−1 + (1−G)

)1−β
(G(1 + ϕwε−1)µ + (1−G))

ψ−1−1
σ−1

. (9)

w is an increasing function in N .
(i) When β/(1−β) > ε−1: w is either increasing in G (for a low N ) or ‘inverse u’-shaped

in G (for a large N) with w|G=0 < w|G=1.
(ii) When β/(1− β) = ε− 1: w is ‘inverse u’-shaped in G with w|G=0 = w|G=1.

8When machines and low-skill workers are perfect substitutes, ε = ∞, the skill premium is given by v
w

=
(1−β)
β

L
H

if w < ϕ̃−1 such that no firm uses machines, and v
w

= (1−β)
β

L
H
G+(1−G)(ϕ̃w)−1

(1−G)(ϕ̃w)−1 if w > ϕ̃−1.
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(iii) When β/(1−β) < ε−1: w is either decreasing in G (for a low N) or ‘inverse u’-shaped
in G (for a large N) with w|G=0 > w|G=1.9

The impact of an increase in N is unambiguously positive for both w and v. As the skill-
premium condition is upward sloping and invariant to changes in N , any increase in N pushes
out the productivity condition and raises low-skill wages. Higher low-skill wages will encourage
substitution away from low-skill workers to machines and increase X/L but insufficiently to
counter the raise in w.

The impact of an increase in the share of automated firms G on the real wage w can be
understood through the interaction of an aggregate substitution effect — the leftward movement
of the skill-premium condition — and an aggregate productivity effect — the outward shift in
the productivity condition. Automated firms hire less labor (everything else constant), but
automation leads to a productivity gain for the economy as a whole. The relative strength of
the aggregate productivity effect depends on whether β/ ((1− β) (ε− 1)) is smaller, equal to, or
greater than 1. A larger factor share β for machines/low-skill workers makes the aggregate scale
effect stronger, whereas a larger elasticity of substitution, ε, makes the aggregate substitution
effect stronger. Hence, a complete transition from all firms being non-automated to all firms
being automated will benefit low-skill workers if and only if β/(1− β) > ε− 1.

The effects for marginal increases in the automation fraction, G, are more subtle. However,
for sufficiently high N — and consequently sufficiently high w — w is always ‘inverse u’-shaped
in G. When w is high and savings from automation are consequently high, a low G tends to
favor the aggregate scale effect over the aggregate substitution effect. Hence, automating the
first intermediary input leads to a large gain in production as the automated firm can capture
a large market share and improve overall productivity, while automating the last intermediary
input represents a sharp reduction in low-skill labor demand since no firms will now rely only
on low-skill and high-skill labor.10

3 Asymptotic Growth Rates for General Technological Processes

We now derive the implications of Lemma 1 and Proposition 1 for general (continuous) processes
of the mass of products Nt and the fraction that is automated, Gt (in section 4 below, we
choose a particular specification to endogenize the evolution of Nt and Gt). For any variable
at, let gat = ȧt/at denote its growth rate, ga∞ = limt→∞g

a
t the asymptotic growth rate, and

a∞ = limt→∞at the asymptotic limit if such exists. The following proposition considers the
asymptotic growth rate of wt.

Proposition 2. Consider two processes [Nt]
∞
t=0 and [Gt]

∞
t=0 where (Nt, Gt) ∈ (0,∞)× [0, 1] for

9When machines and low-skill workers are perfect substitutes ε = ∞, w is given by w = σ−1
σ
β
(
H
L

)1−β
N if

w < ϕ̃−1 and w = σ−1
σ
β
(
H
L

)1−β
N

1
σ−1 (1 −G)1−β

(
G (ϕ̃w)β(σ−1) + 1−G

) 1−(1−β)(σ−1)
σ−1 if w > ϕ̃−1; otherwise,

w = ϕ̃−1and the latter expression still holds but replacing G the share of firms who have the automation
technology with Geff ≤ G the share of firms who use the automation technology. w is (weakly) increasing in
N , and either (weakly) decreasing in G (for a low N) or (weakly) ’inverse u’-shaped in G (for a larger N).

10Formally, we get the semi-elasticity of w with respect to G by taking the log of (9) and differentiating. We
can then write that ∂ln(w)

∂G
as proportional to the sum of two terms: ∂ln(w/v)

∂G
, given by (7), which is negative

and represents the substitution effect, and ∂lnY
∂G

which is positive and represents the productivity effect. The
ratio of the absolute value of the substitution effect over the productivity effect is increasing in G.

10



v	  

w	  
Machines	  per	  low-‐skill	  	  
worker	  (X/L)	  

Skill-‐premium	  

Produc<vity	  	  
condi<on	  

€ 

1− β
β

L
H

(a) The Equilibrium Wages

v	  

w	  

Skill-‐premium	  

Produc2vity	  	  
condi2on	  

€ 

1− β
β

L
H

(b) An Increase in Share of Automated Products: An increase in G enables higher sub-
stitution towards machines and shifts the Skill-premium to the left. An increase in G pushes
the Productivity Condition outwards. High-skill wages must increase, but low-skill wages can
potentially decrease.

Figure 1: The Equilibrium Wage Premium: The skill-premium condition is upward sloping and steeper than

the dotted line: for given G if low-skill wages increase, automated firms will capture larger market share and substitute

machines for low-skill workers increasing the skill-premium (v/w). The skill-premium is independent of N , whereas a

higher G pivots the skill-premium counter-clockwise. The Productivity condition is downward sloping and is pushed

outward by increases in N or G.
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all t. If a limit exists for Gt and there is asymptotic positive growth in Nt, (i.e. there exists
some t̄ and gN > 0 for which gNt ≥ gN for all t > t̄) then:

Part A) If 0 < limt→∞Gt < 1 then
- The asymptotic growth rate of wt is positive at

gw∞ =
1

(1 + β(σ − 1))
gY∞. (10)

Part B). If limt→∞Gt = 1 and Gt converges sufficiently fast (more specifically if

limt→∞ (1−Gt)N
ψ(1−µ) ε−1

ε
t exists and is finite) then

- If ε <∞ the asymptotic growth rate of wt is positive at :

gw∞ =
1

ε
gY∞, (11)

where [1 + β(σ − 1)]−1 > ε−1 by the assumption that µ < 1.11

- If low-skill workers and machines are perfect substitutes then limt→∞wt is finite and weakly
greater than ϕ̃−1 (equal to ϕ̃−1 when limt→∞ (1−Gt)Nψ

t = 0)

Proof. First, we note from Proposition 1 that w is increasing in Nt. For Part A) replace Gt
with its limit (less than 1) and let Nt → ∞. Using equation 9 gives the result. For Part B)

when limt→∞ (1−Gt)N
ψ(1−µ) ε−1

ε
t = 0, and ε < ∞, we can replace Gt with the limit of 1 and

the growth rate follows. For the case of perfect substitutes (with limt→∞ (1−Gt)Nψ
t = 0) the

result follows by contradiction. See appendix for further details.

The proposition states that in the case of asymptotically positive growth in Nt mild as-
sumptions are sufficient to guarantee an asymptotic positive growth rate of wt. To see why,
consider first the case in which limt→∞Gt < 1. If low-skill wages were to remain constant, the
relative demand for low-skill workers versus machines would remain constant as well. As the
economy grows so does the demand for the non-automated products and therefore for low-skill
labor. With a fixed supply of low-skill labor, labor markets would not clear. Hence, low-skill
wages must increase. As low-skill wages increase so does the relative market share of auto-
mated firms and their reliance on machines, both of which ensure that low-skill wages grow at
a lower rate than the economy. How much lower depends on σ and β: for growing low-skill
wages a higher importance of low-skill workers (a higher β) or a higher substitutability between
automated and non-automated products (a higher σ) implies a faster loss of competitiveness of
the non-automated firms and a lower growth rate of low-skill wages. The growth rate of wt is
independent of the elasticity of substitution between machines and low-skill workers, ε, as the
income received by low-skill workers from automated firms becomes negligible relative to the
income earned from non-automated firms.

Now, consider the case of limt→∞Gt = 1 such that asymptotically all products are auto-
mated and the convergence happens fast enough (relative to the growth inNt) to satisfy the con-
dition in Part B of Proposition 2. If there is less than perfect substitutability between workers
and machines within automated firms (ε < ∞), then an analogous argument-by-contradiction
shows that low-skill wages must increase asymptotically, though the growth rate relative to

11If limt→∞ (1−Gt)N
ψ(1−µ) ε−1

ε
t =∞ then 1

ε
gY∞ ≤ gw∞ ≤ 1

1+β(σ−1)
gY∞ .
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that of the economy must now be lower as the automated firms more readily substitute workers
for machines than the economy substitutes from non-automated to automated products. The
relative growth of low-skill wages now depends on ε as the fraction of non-automated firms
becomes zero.

Only in the special case in which machines and low-skill workers are perfect substitutes
in the production by automated firms and the share of automated firms is asymptotically 1
will there be economy-wide perfect elasticity between low-skill workers and machines.12 In this
case, wt cannot grow asymptotically, but will still be bounded below by wt ≥ ϕ̃−1, since a lower
wage would imply that no firm would use machines.

It is important to recognize that the proof of Proposition 2 relies on the same production
technology making both machines and the consumption good. To see this, let pCt and pxt
denote the price levels of the consumption good and machines, respectively. Hence, we can
write the real wage of low-skill workers as the product of the relative cost of workers relative to
machines and the real price of machines: wt/pCt = (wt/p

x
t )(pxt /p

C
t ). As argued above any finite

economy-wide elasticity of substitution between low-skill workers and machines must result in
asymptotically increasing relative price of low-skill workers, wt/pxt . As pxt /pCt is constant by
assumption the real wage must increase as a consequence. A generalized version of Proposition 2
in section 7 allows for asymptotic (negative) growth in pxt /pCt and thereby potentially decreasing
real wage for low-skill workers.

In general the processes of Nt and Gt will depend on the rate at which new products are in-
troduced, the extent to which they are initially automated, and the rate at which non-automated
firms are automated. Autor (2013) argues that the technological process of automation is best
understood as a uni-directional shift. When a task is new and unfamiliar, the flexibility and
outside experiences of workers allow them to solve unforeseen problems. As the task becomes
routine and potentially codefiable a machine (or an algorithm) can perform it. The replaced
workers must then move on to new tasks, not yet automated. The following lemma formalized
this idea in the context of the present model.

Lemma 2. Consider a process of [Nt]
∞
t=0 with asymptotic positive growth. Then if i) the

probability that a new product starts out non-automated is bounded below away from zero and
ii) the intensity at which non-automated firms are automated is bounded above and below away
from zero, then any limit of Gt must have 0 < limt→∞Gt < 1.

Proof. Note that GtNt is the mass of automated firms and let ν1,t > 0 be the intensity at which
non-automated firms are automated at time t and 0 ≤ ν2,t < 1 be the fraction of new products
introduced at time t that are initially automated. Then ˙(GtNt) = ν1,t(1−Gt)Nt + ν2,tṄt such
that Ġt = ν1,t(1−Gt)− (Gt− ν2,t)gNt . First assume that limt→∞Gt = 1, then if ν1,t < ν̄1 <∞
and ν2,t < ν̄2 < 1, we get that Ġt must be negative for sufficiently large t, which contradicts
the assumption that limt→∞Gt = 1. Similarly if limt→∞Gt = 0, then having ν1,t > ν for all t,

12There is no universal agreement on the proper extension of the elasticity of substitution when production,
as here, uses more than 2 factors. Blackorby and Russell (1981) discuss the differences between 3 often used
definitions. The present model, however, is invariant to which one of these extensions is used. One can show that
the economy admits an aggregate cost function C(w, v, px, Y ), where px and Y are the price of machines and total
production of the final good, respectively. The cost function inherits all the properties of a standard cost function

and delivers a relative use of machines and labor of X/L = ϕ(w/px)εG
(
G+

(
1 + ϕ (w/px)ε−1)1−µ (1−G)

)−1

.

It is easy to verify that the elasticity of substitution, dln(X/L)/dln(w/px), is finite for either ε <∞ or G < 1.
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gives that Ġt must be positive for sufficiently large t, which also implies a contradiction. Hence
a limit must have 0 < limt→∞Gt < 1.

The conditions of Lemma 2 represents a continuous shift of low-skill workers from recently
automated to still non-automated firms. As long as new products enter with production tech-
niques that are (at least not all) sufficiently routine so as to be automated, at any point in time
a positive fraction will remain non-automated and limt→∞Gt < 1. It is only in the special case
of all new products starting out automated (or asymptotically equivalently the intensity with
which they are automated increases without bounds) that it is possible for limt→∞Gt = 1. In
all other cases, Part A of Proposition 2 will govern the asymptotic properties of gwt .

It is worth noting that alternative conditions are sufficient to guarantee 0 < limt→∞Gt < 1.
In particular, amending the conditions of Proposition 2 to allow for some products to be au-
tomated with positive probability and others not at all would also imply 0 < limt→∞Gt < 1.
Hence, the results of Proposition 2 do not depend on all products being potentially automat-
able.13

4 A Dynamic Model

To study the determinants of automation and horizontal innovation, we now endogenize the
processes of Nt and Gt as the consequence of intentional innovation, though we keep in mind
that the results of Proposition 2 and Lemma 2 will hold in more general settings.

4.1 Innovation Technologies

We first introduce the innovation technology for automation. Let V A
t denote the value of an

automated firm and rt the economy wide interest rate. The asset pricing equation for such a
firm is given by

rtV
A
t = πAt + V̇ A

t , (12)

where we ease notation by defining πAt ≡ π(wt, vt, 1) as profits at time t by an automated firm.
The equation states that the required return on holding an automated firm, V A

t , must equal
the instantaneous profits plus appreciation. An automated firm only maximizes instantaneous
profits and has no intertemporal investment decisions to make. A non-automated firm, on the
other hand, has to decide how much to invest in becoming automated.

Denote the value of a non-automated firm V N
t . Such a firm can invest zAt every period

to automate with the Poisson process of η(zAt G
χ
t N

1−ψ
t )κ, where η > 0, 0 < κ < 1 and 0 ≤

χ ≤ 1. Rewriting the technological levels as (GtNt)
χN1−ψ−χ

t makes clear that the efficiency of
automation depends on the level of technology, Nt, as well as (weakly) positively on the stock
of varieties that are already automated, GtNt. The normalization with respect to N1−ψ

t ensures
that an asymptotic steady state can exist. With this in hand, the asset pricing equation for a
non-automated firm is:

rtV
N
t =

(
1 + ϕwε−1t

)−µ
πAt + η(zAt G

χ
t N

1−ψ
t )κ

(
V A
t − V N

t

)
− zAt + V̇ N

t , (13)
13In spite of this, in the following we still allow all products to be automatable. This is partly done for

tractability and partly because it does not seem like a restrictive assumption in the long-run. Autor, Levy, and
Murnane (2003) give the example of navigating a car through traffic as a set of skills beyond computers, yet 10
years later Google’s driverless car seems to be doing just that.
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which has an analogous interpretation to equation (12), except instantaneous profits are lower
((1 + wε−1t )−µ < 1) and profits are augmented by the instantaneous expected gain from inno-
vation η(zAt G

χ
t N

1−ψ
t )κ

(
V A
t − V N

t

)
net of expenditure on automation research, zAt . The first

order condition for automation innovation follows as:

Gχt N
1−ψ
t ηκ

(
zAt G

χ
t N

1−ψ
t

)κ−1 (
V A
t − V N

t

)
= 1, (14)

which must hold at all points in time for all non-automated firms. Therefore R&D expendi-
tures in automation increase with the difference in value between automated and non-automated
firms, and everything else constant an increase in low-skill workers’ wages increases R&D ex-
penditures in automation.14 This returns total expenditure on automation research of:

ZAt = (1−Gt)Ntz
A
t .

We specify innovation in new products in a standard manner. There is a fringe of outside
entrepreneurs who employ a linear technology which, by the use of ZDt of the final good,
increases the stock of new products by:

Ṅt = γN1−ψ
t ZDt ,

where γ > 0 is a measure of the overall productivity of the horizontal innovation technology. We
refer to ZDt as horizontal R&D expenditures. All new products are initially non-automated.15

The value of a new product is V N
t and free entry by entrepreneurs requires that:

γV N
t N1−ψ

t ≤ 1,

which must hold at all times and with equality if there is strictly positive innovation (Ṅt > 0).

4.2 Equilibrium Definition and Characterization

Market clearing for the final good requires

Yt = Ct +Xt + ZDt + ZAt , (15)

where Ct = CL,t + CH,t is total consumption at time t and Xt = GtNtxt(wt, vt) is total use of
machines.

Finally, the low-skill and high-skill representative household’s problems are standard and
lead to Euler equations which in combination give

Ċt
Ct

=
1

θ
(rt − ρ) ,

with a transversality condition requiring that the present value of all assets in the economy —
the aggregate value of the intermediate input producers — is asymptotically zero.

limt→∞

(
exp

(
−
ˆ t

0
rsds

)
Nt

(
(1−Gt)V N

t +GtV
A
t

))
= 0.

We can then define a feasible allocation and an equilibrium as follows:
14This claim is obtained for constant v, Y, V̇ Nt , V̇ At , rt using (6), (12), (13) and (14).
15Recall that the combination of Proposition 2 and Lemma 2 implies that the asymptotic growth rate of

wt is independent of the initial fraction of new products that are non-automated as long as this fraction is
asymptotically positive. Naturally, the level of pay will depend on this assumption.
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Definition 1. A feasible allocation is defined by time paths of stock of varieties and share
of those that are automated, [Nt, Gt]

∞
t=0, time paths of use of low-skill labor, high-skill labor,

and machines in the production of intermediary inputs and expenditures on automation R&D,
[lt(i), ht(i), xt(i), z

A
t (i)]∞i∈Nt,t=0, time path of intermediary inputs production [yt(i)]

∞
i∈Nt,t=0, time

paths of final good production levels, consumption levels, and horizontal R&D expenditures
[Yt, Ct, Z

D
t ]∞t=0 such that factor markets clear ((5) holds) and good market clears ((15) holds).

Definition 2. An equilibrium is a feasible allocation, a time path of intermediary input prices
[pt(i)]

∞
i∈Nt,t=0, a time path for low-skill wages, high-skill wages, interest rate and the value

of non-automated and automated firms
[
wt, vt, rt, V

N
t , V A

t

]∞
t=0

such that [yt(i)]
∞
i∈Nt,t=0 maxi-

mizes final good producer profits, [pt(i), lt(i), ht(i), xt(i)]
∞
i∈Nt,t=0 maximize intermediary inputs

producers’ profits, [zAt (i)]∞i∈Nt,t=0 maximizes the value of non-automated firms, [ZDt ]∞t=0 is de-
termined by free entry, [Ct]

∞
t=0 is consistent with consumer optimization and the transversality

condition is satisfied.

In order to work with an asymptotic stable system we normalize variables by defining
normalized expenditures on automation as ẑAt ≡ zAt N

1−ψ
t , normalized profits for an automated

firm as π̂At = πAt N
1−ψ
t , and normalized aggregate consumption Ĉt ≡ CtN

−ψ
t . Further, we

define nt ≡ N
−β/[(1−β)(1+β(σ−1))]
t and ωt ≡ w

β(1−σ)
t . This allows us to write the system as one

of four differential equations for (nt, Gt, ẑ
A
t , Ĉt) with 3 auxiliary variables (π̂t, ωt, g

N
t ). The four

differential equations are as follows:

ṅt = − β

(1− β)(1 + β(σ − 1))
gNt nt, (16)

Ġt = η(Gχt ẑ
A
t )κ(1−Gt)−GtgNt , (17)

˙̂zAt = γ
ηκ

1− κ
(Gχt ẑ

A
t )κ

((
1 + ϕω

−1/µ
t

)−µ
π̂t +

1− κ
κ

ẑAt

)(
1

γ
+
ẑAt (Gχt ẑ

A
t )1−κ

ηκ

)
− ηκ

1− κ
(Gχt ẑ

A
t )κπ̂t,

(18)

+
κχ

(1− κ)
ẑAt
(
η(Gχt ẑ

A
t )κ(1−Gt)/Gt − gNt

)
˙̂
Ct =

Ĉt
θ

[
γ(1 + ϕω

−1/µ
t )−µπ̂t + γ

1− κ
κ

ẑAt − ρ−
(
θ + ψ−1 − 1

)
ψgNt

]
, (19)

and the auxiliary conditions are

π̂t =

(
ββ(σ − 1)β

σ

) 1
1−β (

ω
1/µ
t + ϕ

)µ
H
(
Gt

(
ω
1/µ
t + ϕ

)µ
+ (1−Gt)ωt

)ψ−1
, (20)

ωt = nt

(σ − 1

σ
β

)−β(σ−1)
1−β


(
H
L

(
Gt

(
1 + ϕω

−1/µ
t

)µ−1
+ (1−Gt)

))−β(σ−1)
×(

Gt

(
ω
1/µ
t + ϕ

)µ
+ (1−Gt)ωt

)−β(1−(1−β)(σ−1))
1−β




1
1+β(σ−1)

,

(21)
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gNt = γ



((

1− β
σ−1
σ
ϕ

ω
1/µ
t +ϕ

)
Gt

(
ω
1/µ
t + ϕ

)µ
+ (1−Gt)ωt

)
×(

σ−1
σ β

) β
1−β H

(
Gt

(
ω
1/µ
t + ϕ

)µ
+ (1−Gt)ωt

)ψ−1
− (1−Gt)ẑAt − Ĉt

 . (22)

Equation (16) follows directly from the definition of nt. Equation (17) shows the evolution of
the fraction of varieties that are automated. The first term corresponds to existing products
being automated, whereas the second term reflects the introduction of new varieties which
are initially not automated. Equation (18) governs the transition of normalized automated
expenditures ẑAt and follows from a no-arbitrage condition of equality between the returns on
a non-automated firm and that of an automated firm.16 Equation (19) follows from rewriting
the Euler equation and using the return on a non-automated firm (equation 13) to substitute
for the interest rate.

The auxiliary equations (20) and (21) are the normalized forms of equations (6) and (9),
whereas equation (22) follows from noting that the horizontal innovation technology requires
gNt = Ṅt/Nt = γN−ψt ZDt and employing the market clearing condition for the final good. We
add the following condition on parameters

Assumption:
Parameters are such that

ρ

(
1

ηκκ(1− κ)1−κ

(
ρ

γ

)1−κ
+

1

γ

)
<

(
ββ(σ − 1)β

σ

) 1
1−β

ϕµψH. (23)

This assumption is a sufficient condition for the existence of a steady-state (n∗, G∗, ẑA∗, Ĉ∗)
for our normalized system of differential equations (16), (17), (18) and (19) with n∗ = 0, and
positive growth

(
gN
)∗
> 0. We will refer to this steady-state as an asymptotic steady-state

for our original system of differential equations. The assumption is satisfied by a sufficiently
low ρ or sufficiently high H. Moreover, η > 0 is a necessary requirement for asymptotic
positive growth rate. Without automation there is asymptotically insufficient incentive to
introduce new products and growth stops asymptotically. This result is more general than
this specific model. Since automation allows the economy to replace a limited input (labor)
with machines produced from the continuously growing supply of the final good, it removes
a scarcity constraint imposed on the economy by the fixed mass of low-skill workers. As
low-skill wages grow the difference in profits between automated and non-automated firms
grow correspondingly. Any horizontal innovation technology that would allow for a continuous
incentive to innovate without automation, would have continuously increasing growth with
automation precluding constant positive asymptotic growth.

16Specifically, the normalized returns are V̂ Nt ≡ V Nt N1−ψ
t and V̂ At ≡ V At N

1−ψ
t . Free entry ensures

V̂ Nt = 1/γ for all t, such that we can write equations (12) and (13) as:
[
(1 + wε−1

t )−µπ̂t + (1− κ)/κẑAt
]
/γ−1 =[

π̂t + (1− κ)/(ηGχκt κ)(ẑA)−κ ˙̂zAt

]
/
((
ẑAt
)1−κ

/(ηGχκt κ) + 1/γ
)
, where the numerator on the left hand side re-

flects the return on a non-automated firm (the flow of profits plus the expected gain from automation re-
search), and the numerator on the right hand side reflects profit flows π̂t plus appreciation ˙̂

V At for an au-
tomated firm, while the denominators are respectively the (normalized) value of a non-automated and an
automated firm. The substitution with ẑAt follows from the one-to-one monotone positive relationship between
(normalized) automation research and the value of an automated firm from the first order condition (14):
ηGχκt κ

(
ẑAt
)κ−1

(
V̂ At − 1/γ

)
= 1. Noting that the automation research function ensures strictly positive ẑAt

allows us to rewrite the no-arbitrage equation as equation (18).
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The assumption that θ ≥ 1 ensures that the transversality condition always holds.17 With
this in mind we can demonstrate the following proposition:

Proposition 3. Consider parameters for which the asymptotic steady-state is unique and
saddle-path stable.18,19 For an initial pair (Nt0 , Gt0) ∈ (0,∞) × [0, 1] (with Gt0 > 0 if χ > 0)
sufficiently close to the asymptotic steady-state, the model features a unique equilibrium. It
holds that high-skill wages, vt, and Yt grow at the same rate:

gvt = gYt , for all t.

Asymptotically, so does total spending on automation, Nt(1−Gt)zAt , total spending on innova-
tion of new products ZDt and consumption, Ct. This growth rate is proportional to the growth
rate of N

gY∞ = ψgN∞.

Low-skill wages grow asymptotically as in Part A of Proposition 2:

gw∞ =
1

(1 + β(σ − 1))
gY∞. (24)

and ẑA∞, gN∞ and G∞ are uniquely given by the intersection of three equations

Share of automated firms :

G∞ =
η(Gχ∞ẑA∞)κ

gN∞ + η(Gχ∞ẑA∞)κ
, (25)

FreeEntry :
1

γ
=

ẑA∞
(
1
κ − 1

)
(ρ+ (θ − 1 + ψ−1)ψgN∞)

, (26)

Automation :

(ẑA∞)1−κ

ηGχκ∞ κ︸ ︷︷ ︸
inverse marginal

intensity of automation

=

π̂∞: normalized profits of automated firms︷ ︸︸ ︷(
ββ(σ − 1)β

σ

) 1
1−β

HGψ−1∞ ϕµψ(
ρ+

(
θ − 1 + ψ−1

)
ψgN∞

)︸ ︷︷ ︸
r̂∞: normalized interest rate

− 1

γ︸︷︷︸
Normalized
value of a

nonautomated firm

. (27)

17To ensure the existence of an asymptotic steady-state with positive growth and meaningful comparative
statics we only require that θ > 1−ψ−1. However, for 1−ψ−1 < θ < 1, an additional restriction on parameters
must be met to satisfy the transversality condition. To simplify exposition and since this is the empirically
relevant case we focus our analysis on θ ≥ 1.

18The normalization of the automation function, η(zAt G
χ
t N

1−ψ
t ), by Gχt implies that investments in innovation

for automation are strategic complements for intermediate input producers. This gives rise to potentially
multiple equilibria. Though, this could itself be interesting, we here restrict attention to parameter specifications
that ensure unique asymptotic equilibria. This would naturally be the case for χ = 0, but either ψ > 1− χκ or
γκρ1−κ(1−κ)κ

ηκκ
< ((θ − 1)ψ + 1) 1−χκ+ψ(1−κ)

1−χκ−ψ ) are sufficient conditions as well.
19With two state variables (N and G) saddle path stability requires exactly two eigenvalues with positive

real parts. We examine numerically the set of parameters that arises from the product of sets of β ∈ [0.1, 0.9],
σ ∈ [1.5, 6], γ ∈ [0.8, 1.2], η ∈ [0.1, 4], κ ∈ [0.2, 0.5], χ ∈ [0, 1], ϕ̃ ∈ [1.25, 2.3], ε ∈ (1,∞) with H = L = 0.5 and
ρ = 0.02 when parameters satisfies condition (23), µ < 1 and give rise to a unique steady state. In all cases,
there are two negative eigenvalues. We are further examining the issue numerically and algebraically.
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Proof. See Appendix X.

From now on, we restrict attention to the case where parameters are such that the asymp-
totic steady-state is unique and saddle-path stable (our numerical analysis shows that this is
not a strong restriction on parameters, see Appendix X). Though the model does not feature a
balanced growth path in all variables, the growth rate of high-skill wages equals that of Yt on the
entire transition path. Total consumption Ct and total R&D expenditures Nt(1−Gt)zt + ZDt
are asymptotically constant fractions of Yt as is spending on machines. Low-skill wages grow
at a lower rate and their asymptotic factor share is zero. This happens as a consequence of
increasing low-skill wages which implies a continuous substitution away from low-skill workers
for automated firms and a decreasing market share for automated firms.

For given (ẑA∞, g
N
∞), equation (25) defines a unique level for the asymptotic share of auto-

mated firms, G∞, which is increasing in the investment in automation ẑA∞ and decreasing in
the asymptotic growth rate in new products gN∞. Given this dependence of G∞, the asymptotic
steady state is characterized by the intersection of the Automation and Free Entry conditions
in (ẑA∞, g

N
∞) space. Consider first the free entry condition, the right hand side of equation (26) is

the asymptotic (normalized) value of an non-automated firm which has an expected flow value
of −ẑA∞ + η(G∞ẑ

A
∞)κ(V̂ A

∞ − 1/γ) = −ẑA∞ + ẑA∞/κ. The free entry condition requires a positive
slope between ẑA∞ and gN∞ as a higher ẑA∞ must come from a higher value of an automated firm
which increases the value of a non-automated firm. With free entry in horizontal innovations
this increases the growth rate of the economy, gN∞ which increases the interest rate, reduces
the value of a new non-automated firm and ensures zero profits of horizontal innovation. Next,
consider the automation condition. It is derived from the incentive for a non-automated firm
to spend resources on automation as given by equation (14). Using the normalization this can
be written as

(
ẑA∞
)1−κ

/(ηGχκ∞ κ) = (V̂ A
∞ − V̂ N

∞ ), which by suitable substitution can be written
as the Automation condition. The condition makes it clear that the incentive to automate is
a strictly positive monotonic function of the difference between the (normalized) value of an
automated firm and that of a non-automated firm.

To understand the comparative statics with respect to the automation technology and the
horizontal innovation technology, it is convenient to first analyze the specific case where ψ = 1
and χ = 0, so that the free-entry condition and automation conditions are independent of the
asymptotic share of automated firms and the automation condition and free entry condition
are sufficient to describe the equilibrium. Figure 2a plots these two in (ẑA∞, g

N
∞). The free entry

condition remains unchanged and requires a positive slope. The Automation condition is now
unambiguously downward sloping: a higher gN∞ gives a higher interest rate, which reduces the
present discounted value of an automated firm and thereby the incentive to invest in automation.

Now, consider first an increase in the productivity of the automation technology η, which
leaves the free entry condition unchanged but pushes out the Automation condition. Lower
cost of automation encourages higher expenditures on automation, ẑA∞, which in turn increases
the value of being non-automated and encourages more horizontal innovation: both gN∞ and
zA∞ increase. The consequences of an increase in the horizontal innovation technology, γ, are
demonstrated in figure 2b. An increase in γ reduces the value of a non-automated firm and
encourages further innovation in automation, pushing out the Automation condition. The free
entry condition moves to the right as more efficient entry increases the interest rate. Conse-
quently, the growth rate of the economy increases, and one can show that ẑA∞ must decrease.

When ψ 6= 1 or χ 6= 0, the problem is more complicated because the asymptotic share
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(a) The Asymptotic Steady State and an Increase in Productivity of Automation
Technology η. The Automation condition is negatively sloped: A higher growth rate of the
economy, gN∞, increases the interest rate and reduces the incentive to automate an existing
non-automated product. The Free Entry condition is positively sloped: Higher expendi-
tures on innovation in automation, ẑA∞, must be associated with higher expected gains from
automation and a higher incentive to enter. This is offset by higher gN∞.
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(b) An Improvement in Productivity of Horizontal Innovation Technology γ. A higher
γ reduces the value of non-automated firms, increases the incentive to automate and pushes
the Automation condition to the right. It further increases the inflow of new products and
pushes the Free Entry condition to the right. As a consequence gN∞ increases and ẑA∞ drops.

Figure 2: Asymptotic Steady State for special case of ψ = 1 and χ = 0
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of automated firms enter the automation equation through its impact on the productivity of
the automation technology and/or through its impact on the profits of automated firms. As
a result, the automation curve is not necessarily downward sloping and to understand the
intuition, it is better to look directly at the automation equation but considering gN∞ as a
function of ẑA∞ defined by the free-entry equation (26), and G∞ as a decreasing function of
ẑA∞ implicitly defined by the share of automated firms and the free-entry equations (25) and
(26).20 Then it can be shown that a change in parameters that increases the right-hand side
of this modified automation condition increases the equilibrium value of ẑA∞.21 At given ẑA∞, a
higher productivity of the automation technology η further increases the effective productivity
of the automation technology (ηGχκ∞ ) through its positive impact on the asymptotic share of
automated firms for χ 6= 0. Moreover, the increase in the asymptotic share of automated
firms, increases the profits of firms if ψ > 1, but decreases them if ψ < 1. Higher profits
tend to increase automation expenditures (it increases the right-hand side of the automation
equation), so that the positive impact of η on ẑA∞ is reinforced when ψ > 1 and mitigated
otherwise. Nevertheless, it is possible to show that this mitigation effect is never the dominant
one, so that ẑ∞ and gN∞ are always increasing in the productivity of the automation technology
η.

For given ẑ∞ an increase in γ lowers the asymptotic share of automated firms (as there are
more new firms created every instant). When χ 6= 0, this has a negative impact on the effective
productivity of the automation technology (ηGχκ∞ ), which tends to reduce ẑA∞. In addition, for
ψ > 1, this leads to lower profits for automated firms which lowers the intensity of automation
ẑ∞(and the opposite when ψ < 1). In fact, the intensity of automation may decrease sufficiently
that the growth rate gN∞ decreases. This latter scenario is only possible if these two effects are
sufficiently large, in particular, it requires that ψ + χ > 1/κ.22 The interpretation of this
counter-intuitive result is the following: a higher productivity for horizontal innovation reduces
the incentive to automate and therefore the value of a new variety so much that the intensity of
horizontal innovation decreases sufficiently for the growth rate in new products to go down. To
summarize, and taking into account that the asymptotic growth rate of the economy gY∞ = ψgN∞,
we have:

Proposition 4. An increase in the productivity of the automation technology η increases the
asymptotic expenditures on automation ẑA∞ and the asymptotic growth of the economy gY∞. An
increase in the productivity of the horizontal innovation technology decreases the asymptotic
intensity of automation ẑA∞ if ψ ≥ 1 − χκ and increases the growth rate of the economy gY∞ if
ψ ≤ (1− χκ) /κ.

5 Transitional Dynamics

In the following we illustrate the transitional dynamics of the system through simulation meth-
ods (at the moment we choose ‘reasonable’ parameters and we will calibrate the model in the

20Substitute the Free Entry condition (26) into the equation for G∞ to get G∞ = η(Gχ∞ẑ
A
∞)κ/(

γẑA∞( 1
κ
−1)−ρ

(θ−1)ψ+1
+

η(Gχ∞ẑ
A
∞)κ), which is decreasing in ẑA∞ for κ < 1.

21Moving the normalized value of a non-automated firm 1/γ to the left-hand side, and then dividing the
left-hand side by the right-hand side defines a function of ẑA∞, which can be shown to be increasing around
steady-state.

22Note that this is a necessary condition but not a sufficient one.
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future).23 Our goal is to capture a shift from little to extensive reliance on machines and au-
tomation. We therefore choose a low initial level of automation G0 = 0.005 (recall that our
normalization of the automation technology does not allow us to set G0 = 0 for χ > 0) and a
low initial mass of intermediate inputs N0 = 10 which gives an initial low-skill wage of 1. The
parameters of the model are as follows

Table 1: Base-line Parameter Specification

σ ε β H L θ η κ ϕ̃ ρ χ γ

3 4 0.5 0.5 0.5 1 0.21 0.5 1.78 0.02 1 1

Total stock of labor is 1 and we set H = L = 1/2 and β = 1/2 such that absent automation
low-skill and high-skill workers would be symmetric. We set σ = 3 to capture an initial share
of labor of 2/3. We set ϕ̃ = 1.78 which gives initial relative profits of an automated firm
of 2.4 times that of an non-automated firm. The productivity of horizontal and automation
innovations, γ = 1 and η = 0.21, are chosen to match an asymptotic growth rate of Y of 2
per cent and a an asymptotic share of automated products of G∞ = 2/3. We set θ = 1 and
ρ = 0.02 which returns a long-run interest rate of 4%. Finally, we set χ = 1, κ = 1/2, and
ε = 4. This gives a ψ = 1 and β/[(1− β)(ε− 1)] = 1/3, which means that for Proposition 1 we
are in the (iii) case.

The transitional dynamics are shown in Figure 3. These can be split into three distinct
phases. First, little investment in automation has taken place, the stock of intermediate inputs
is low, and wages are low. During this phase there is little automation and both low-skill and
high-skill wages follow the growth path of the economy as a whole, which is initially just below
2.5 per cent (The Southwest and Northwest panels of Figure 3). Both low-skill and high-skill
workers retain an almost constant share of GDP and total labor share remains above 60 per
cent for more than 80 years (with machines being an intermediate input in production we define
GDP = Y −X).

As the economy grows it moves into the second phase where the increasing stock of auto-
mated products and the higher low-skill wages increase the incentive for non-automated firms
to automate and for already automated firms to substitute machines for low-skill workers. As
can be seen from the Southeast panel of Figure 3 the expenditures on innovation in automation
gradually increases from just above zero to its steady state level of 8 per cent of GDP. As G
increases, following the initial increase in automation expenditures, the growth rate of low-skill
workers declines. In this simulation it reaches a minimum of just above zero after 80 years
(though, the growth rate is positive for this simulation, it is easy to find parameter values for
which the growth rate of low-skill wages can temporarily become negative). During this period
the increased use of automation is sufficient to (almost) cancel the positive effects on low-skill
wages from a growing stock of intermediate inputs. High-skill wages continue to grow at the
rate of the economy and the skill-premium increases from parity to around 2 after 100 years
(Since H = L, the skill-premium can be found by dividing the high-skill factor share with the
low-skill factor share). The factor share of GDP accruing to high-skill workers increases from
the second phase on. This is a consequence of high-skill workers retaining a constant share of
Y ; the increased use of intermediate inputs — which do not count towards GDP — implies a

23We employ the so-called “relaxation” algorithm for solving systems of discretized differential equations
(Trimborn, Koch and Steger, 2008). See Appendix X for details.
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Figure 3: Transitional Dynamics for Baseline Parameters

decreasing GDP/Y . As a consequence total labor share of GDP drops only marginally over the
entire period, though low-skill workers share of labor continuously approach its asymptotic level
of zero. This is consistent with recent evidence that has seen a long period of constant labor
share of GDP, but a recent drop. Karabarbounis and Neiman (2013) find a global reduction of
5 percentage points in labor’s share of corporate gross value added over the past 35 years.

Finally, as the economy approaches its new steady state, with G being (almost) constant,
the results of Proposition 2 hold and the asymptotic growth rate of low-skill wages must be
positive. The combination of an asymptotic growth rate of the economy of 2 per cent and
the parameter choices of β and σ implies an asymptotic growth rate of low-skill wages of 1
per cent (= 2%/(1 + β(σ − 1))). Hence, the model mirrors the path of income inequality in
the US of an acceleration from the early 1980s to the mid 1990s followed by a deceleration
thereafter. Note, that this happens in spite of continuously increasing automation intensity
and spending as seen by the lower panels of figure 3. The fact that there is no direct one-to-
one link between the automation intensity and the skill-bias of technical change speaks to the
current debate over the usefulness of SBTC in explaining the patterns of inequality. Both Card
and DiNardo (2002) and Lemieux (2006) argue that the combination of a deceleration in the
growth of inequality along with continuous growth in spending on computers is problematic for
the SBTC framework, whereas the present model suggests that the change in the intensity of
automation could be a more important driver of inequality.

We further analyze the sources of economic growth, by doing a growth decomposition of
low-skill wages and GDP. Note, that at each point in time, we can write low-skill wages as a
function of Nt and Gt from equation (9): wt = f(Nt, Gt). Differentiating with respect to time
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Figure 4: Growth Decomposition for Low-skill Wages and GDP: The top panel shows the contribution

to growth in low-skill wages from the instantaneous expenditures on automation, ẑAt , and horizontal growth, gNt . The

lower panel does the same decomposition for the growth rate in GDP.

and using equation (17) gives:

gwt =

(
Nt

wt

∂f

∂N
− Gt
wt

∂f

∂G

)
gNt +

Gt
wt

∂f

∂G
(η(Gχt )κ(1−Gt)/Gt) (ẑAt )κ,

where the first term is the instantaneous growth in low-skill wages arising from a positive growth
rate in the stock of intermediate inputs, and the second term is correspondingly the contribution
from positive automation research. An analogous expression can be derived for GDP. Note,
that the interpretation of these two terms is the change in growth from an instantaneous drop in
the corresponding research intensity, not the long-term consequences of stopping innovation in
one type of innovation. As emphasized in the discussion after equation (23), economic growth
would eventually stop if either innovation stopped. Figure 4 below plots gwt and gGDPt along
with the corresponding growth decomposition.

Reflecting the initial low expenditures on automation, growth in both GDP and low-skill
wages is driven by the introduction of new products and the contribution from automation is
zero. As the size of automation increases the contribution to overall growth shifts from being
driven primarily by the introduction of new products to primarily by the automation of old
ones. The figure further shows the skill-bias of the two forms of automation. Whereas the
introduction of new products only has a marginal impact on the growth rate of the overall
economy, and thereby high-skill wages, it has a positive impact on low-skill wages of almost
2 percentage points, implying that horizontal innovation is low-skill biased.24 Automation,

24In this particular simulation horizontal innovation is low-skill biased throughout. Though horizontal inno-
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Figure 5: Transitional Dynamics for Varying Automation Productivity, η

naturally, is high-skill biased.

5.1 Comparative Statics

Proposition 4 above made clear that an increase in the automation technology, η, will in-
crease innovation in both automation and the introduction of new products asymptotically,
both increasing the asymptotic growth rate of the economy. In the following, we consider the
consequences for the transitional dynamics by plotting the cases η = 0.17 and η = 0.25, in
addition to the baseline value of η = 0.21 in Figure 5. It is immediately clear that higher
η leads to higher automation intensity and consequently higher inflow of new products both
of which guarantee a higher transitional path of GDP. However, higher automation intensity
implies a more rapid and dramatic shift into ‘Phase 2’ in which low-skill wages suffer from
higher automation. Hence, low-skill wages as a share of total GDP are unambiguously lower
for higher η, but the path of absolute low-skill wages depends in non-trivial ways on η. For a
temporary period, low-skill wages will be lower for higher η, though the combination of higher
eventual growth rate and Proposition 2 guarantees an eventual higher low-skill wages.

In addition we show the comparative statics for an analogous variation of the productivity of
horizontal innovation. We display γ = 0.95 and γ = 1.05 in addition to its initial value of γ = 1.
Figure 6 demonstrates how the growth rate of the economy is higher for higher γ. This results
in a higher growth in low-skill wages. The low-skill labor share of total GDP is lower for higher
γ. This is a consequence of the higher absolute low-skill wages — which causes a substitution
towards machines for already automated firms — and an almost unchanged fraction of firms
which are automated.

vation is always low-skill biased for sufficiently large w, it is not generally the case.

25



0 50 100 150 200

1.2

1.5

2

3

Transition of low−skill wages

Years

U
n
it

s

 

 

gamma=0.95

gamma=1

gamma=1.05

0 50 100 150 200
1

2

5

10

20

50
Transition of GDP

Years

U
n
it

s

0 50 100 150 200
0

1

2

3

4

5

6
Transition of g

N

Years

P
er

 c
en

t

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3
Transition of g

w

Years

P
er

 c
en

t

0 50 100 150 200
0.5

1

1.5

2

2.5

3
Transition of g

GDP

Years

P
er

 c
en

t

0 50 100 150 200
5

10

15

20

25

30

35
Transition of Low−wage Share of GDP

Years

P
er

 c
en

t

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Transition of G

Years

U
n

it
s

0 50 100 150 200
0

0.5

1

1.5

2

2.5
Transition of Automation Intensity

Years

P
er

 c
en

t

Figure 6: Transitional Dynamics for Varying Productivity of Horizontal Innovation, γ:

6 Middle-Skill Workers and Wage Polarization

Autor, Katz, and Kearney (2006) argue that a more detailed look at the income distribution
is necessary to understand the effects of SBTC, including the apparent deceleration of income
inequality from the mid 90s. They show that the evolution of the U.S. wage distribution shows
distinct patterns in the 1970s and 1980s compared with those of the following decades. In the
first period wage inequality is uniformly increasing and those with the highest earnings see
the highest increases, whereas from the mid to late 1980s the lowest wage increases is to be
found in the middle-income groups with the highest and lowest experiences higher relative wage
increases. They and Autor and Dorn (2013) conjecture that these workers perform ‘cognitive
routine’ tasks which are more easily replaced by machines.

The preceding model suggests a related, but distinct explanation: Automating the tasks
performed by middle-skill workers is not easier, but more difficult and therefore happens later.
Hence, before 1990 and for most of the 20th century low-skill workers were in the process
of being replaced by automation as semi-automated factories, mechanical farming, household
appliances etc were increasingly used. Now computers are powerful enough to replace middle-
skill workers and in the period since 1990 it has mostly been middle-skill workers who find
themselves being replaced by computers, algorithms etc.

To make this hypothesis precise we must introduce a massM of middle-skill worker into the
model. We think of these workers as being sequentially ‘ranked’ such that high-skill workers
can perform all tasks, middle-skill workers can perform middle-skill tasks and low-skill tasks,
and low-skill workers can perform only low-skill tasks. All newly introduced intermediate
products continue to be non-automated, but there is an exogenous probability δ that it will
require low-skill and high-skill workers as described before and a probability 1− δ that it will
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require middle-skill workers and high-skill workers without the need for low-skill workers. The
extension of the individual production is therefore:

yL(i) =
[
l(i)

ε−1
ε + α(i) (ϕ̃Lx(i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

yM (i) =
[
m(i)

ε−1
ε + α(i) (ϕ̃Mx(i))

ε−1
ε

] εβ
ε−1

h(i)1−β,

where yL(i) and yM (i) are the production of intermediate input producers who employ low-skill
workers and middle-skill workers, respectively, and m(i) is the use of middle-skill workers by
a firm of the latter type. ϕ̃L and ϕ̃M are the productivity of machines that replace low-skill
workers and middle-skill workers, respectively. The mass of intermediate input producers who
use low-skill workers is δN with the remaining, (1−δ)N , using middle-skill workers.25 The final
good continues to be produced competitively by a CES aggregator of all intermediate inputs
and machines for either type of intermediate input producer are produced one-for-one with the
final good keeping a constant price of 1. The shares of automated products, GL and GM will
in general differ.

Both types of producers continue to have access to an automation technology as be-
fore, but we allow the productivity to differ, such that automation happens with intensity
ηL(zAL,tG

χ
L,tN

1−ψ
t ) for firms employing low-skill workers and ηM (zAM,tG

χ
M,tN

1−ψ
t ) for those em-

ploying middle-skill workers. Denote wages for low-skill and middle-skill workers by wL and
wM , respectively, and the corresponding normalized values ωL and ωM . We show in Appendix
X that analogous to section 4 we can write this as a system of 6 differential equations for
(nt, GL,t, GM,t, ẑ

A
L,t, ẑ

A
M,t, Ĉt) with 4 auxiliary variables (π̂L,t, ωL,t, ωM,t, g

N
t ), where π̂L,t is the

normalized profits for an automated firm using low-skill workers. We then show that analogous
to Proposition 3, the following lemma holds

Lemma 3. Consider the model with middle-skill workers as outlined above for which the asymp-
totic steady-state is unique and saddle-path stable.26 For an initial pair (Nt, GL,t0 , GM,t0) ∈
(0,∞) × (0, 1] × (0, 1] (with GL,t0 , GM,t0 > 0 if χ > 0) sufficiently close to the asymptotic
steady-state, the model features a unique equilibrium. It holds that high-skill wages, vt, and Yt
grow at the same rate:

gvt = gYt , for all t.

Asymptotically, so does total spending on each form of automation, δNt(1 − GL,t)zAL,t and
(1− δ)Nt(1−GM,t)z

A
M,t, total spending on innovation of new products ZDt , and consumption,

Ct. This growth rate is proportional to the growth rate of N

gY∞ = ψgN∞.

Both low-skill and middle-skill wages grow asymptotically as

gwL∞ = gwM∞ =
1

1 + β(σ − 1)
gY∞.

25Naturally, a more realistic model would allow all products to be produced by all factors. That would make
the analysis substantially more complicated without altering the underlying argument.

26This is the case for the set of parameters chosen for the simulation. We have not yet established more
general conditions.
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Proof. In Appendix X.

The Lemma gives the direct extension of Proposition 3. Both low-skill and middle-skill
wages must grow asymptotically, though at less than the economy for reasons that directly
mirror previous discussions. We now turn to the transitional dynamics. To emphasize the role
of distinct innovation technologies, we choose δ = 1/2 and keep parameters as before except that
the productivity of the automation technology for middle-skill workers is given by ηM = 0.19
and ηL continues to be 0.21. We also set L = M = 0.25 to keep the mass of workers that can
be replaced by machines at 0.5. The overall picture is similar to that of Figure 3, but with
distinct paths for low-skill and middle-skill wages as shown in figure 7. The crucial difference
is that the less productive automation technology implies a slower adaptation of automation
in firms employing middle-skill workers. With a substantially faster increase in GL than in
GM the dampening effects on low-skill wages from increasing automation is more pronounced
for decades and they grow slower than both high-skill wages and middle-skill wages. Though
slower there is continuous automation of firms employing middle-skill workers. However, after
165 years automation for firms employing low-skill workers tapers off, but continues for firms
employing middle-skill workers. This causes a shift in the relative growth rates of wages and
for the rest of the simulation low-skill wages grow faster than that of middle-skill wages as
they both approach the asymptotic growth rates of 1 per cent. Note, that at all points in time
vt ≥ wM,t ≥ wL,t so no group has an incentive to be employed beneath its skill level.

The same point is made slightly differently in the Southeast panel of Figure 7. This panel
replicates the analogue of Figure 2 in Autor, Katz and Kearney (2006) which shows a monotone
spreading out of the income distribution for 1973-1988 (corresponding to the period 146-166
years), but a wage growth polarization where middle-income earners see the slowest growth
rate from 1988-2004 (corresponding to the period 166-186 years).

Our assumption that automation is intrinsically easier for intermediate inputs hiring low-
skill workers than for those hiring middle-skill workers (ηM < ηL) may seem at odds with
empirical papers which argue that automation now predominantly hurts middle-skill workers.
Our model emphasizes that the intensity of automation and the technological possibilities for
automation are different concepts, since the intensity of automation does not depend only on
its cost but also on its benefit. Hence, in the last phase of our simulation, more middle-skill
worker products get automated than low-skill worker products, even though automating low-
skill products is less costly. Yet, some papers argue that the technological opportunities for
automation are today lower for low-skill workers than for middle-skill workers. This is easy
to reconcile with our model if we assume that for both low-skill and middle-skill products, a
common fixed share can never be automated (or have a much lower automation productivity,
identical for both types of products). In this case, the share of low-skill workers hired in the
products that can never be automated will be larger than the corresponding share for middle-
skill workers (since a higher share of low-skill products will have been automated), and as a
result, it may be on average easier to automate a product hiring middle-skill workers than one
hiring low-skill workers.

7 Extensions

The baseline model featured exogenous stocks of low- and high-skill labor and allowed the final
good to be used for both the production of machines and consumption. In the following, we
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Figure 7: Transitional Dynamics with Middle-Skill Workers

generalize the model to allow for, respectively, i) different production technologies for machines
and the consumption good and ii) workers with heterogeneous abilities of different skills and an
endogenous choice of where to supply skills. For expositional clarity both extensions are made
for the specification without middle-skill workers.

7.1 Alternative Production Technology for Machines

The assumption of identical production technologies for consumption and machines imposes a
constant real price of machines. For this setting, Proposition 2 gives the general conditions
under which the real wages of low-skill workers must increase asymptotically. As shown in
Nordhaus (2007) the price of computing power has dropped dramatically over the past 50
years. The declining real price of computers/capital is central to the theories of Krusell et. al.
(2000), Autor and Dorn (2013), and Karabarbounis and Neiman (2013).

To allow for declining real prices in machines, we extend the model such that machines
and the final good are produced using different technologies. Specifically, let there be two final
good sectors, both perfectly competitive employing CES production technology with identical
elasticity of substitution, σ. The output of sector 1, Y is used for consumption and research
expenditures Y = C + ZA + ZD. The output of sector 2, X, is used solely for machines. The
two final good sectors use distinct versions of the same set of intermediate inputs N , where we
denote the use of intermediate input i ∈ N for sector 1 as y1(i) and that in sector 2 as y2(i).
The two versions of intermediate input i are produced by the same intermediate input supplier
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using production technologies that differ only in the weight on high-skill labor:

yk(i) =
[
lk(i)

ε−1
ε + α(i)(ϕ̃xk(i))

ε−1
ε

] εβk
ε−1

hk(i)
1−βk ,

where a subscript, k = 1, 2, refers to the sector where the input is used. Importantly, we assume
β2 ≥ β1, such that the production of machines relies more heavily on machines as inputs in
production. Continuing to normalize the price of final good Y to 1, such that the real price of
machines is pxt , and allowing for the natural extensions of market clearing conditions, we can
derive the following generalization of Proposition 2 (where ψk = (σ − 1)−1(1− βk)−1)

Proposition 5. Consider the model above with two final good sectors and take two processes
[Nt]

∞
t=0 and [Gt]

∞
t=0 where (Nt, Gt) ∈ (0,∞) × [0, 1] for all t. If a strictly positive limit exists

for Gt, then:
gp

x

∞ = −ψ2 (β2 − β1) gN∞

gY∞ =

[
ψ1 + ψ1

β1 (β2 − β1)
1− β2

]
gN∞, (28)

and if 0 < limt→∞Gt < 1 then the asymptotic growth rate of wt is27

gw∞ =
1

1 + β1(σ − 1)

[
1 + (1− (1− β1)(σ − 1))β1

β2−β1
1−β2

]
[
1 + β1(β2−β1)

1−β2

] gY∞. (29)

Proposition 5 naturally reduces to Proposition 2 for the special case of β2 = β1. When
β2 > β1, the productivity of machine production increases faster than that of the production of
Y , implying a gradual decline in the real price of machines. For given gN , the faster productivity
growth of machines has two effects on the real wage of low-skill workers. One can show that
the faster growth in the supply of machines will increase the (positive) growth in the relative
price of low-skill workers, w/px, but simultaneously, the higher productivity growth of machine
production will reduce the real price of machines, px. The combination of these two will always
imply that low-skill workers capture a lower share of the growth in Y , but the growth rate of
low-skill wages need not be negative. Low-skill wages will, however, fall asymptotically for high
elasticity of substitution between varieties as higher elasticity of substitution implies an easier
substitution away from non-automated products produced relying heavily on low-skill labor to
those automated relying more heavily on machines.

7.2 Heterogeneous Workers and Endogenous Choice of Occupation

The main text assumed a fixed stock of workers. With a continuously widening wage dispersion
between low-skill and high-skill labor, this might seem a restrictive assumption. In the following
we allow the labor supply to respond to changes in factor rewards and show that our analysis
so far is robust to this addition, although supply effects will help the growth of low-skill wages.

27If Gt tends towards 1 sufficiently fast such that limt→∞(1 − Gt)N
ψ2(1−µ) ε−1

ε
t is finite, then gw∞ =

1
ε

[
ψ1

(
1+β1

β2−β1
1−β2

)
−ψ2(ε−1)(β2−β1)

]
ψ1

[
1+

β1(β2−β1)
1−β2

] gY∞ ≥ gpx∞ whether ε is finite or not. It is clear that there always exists an

ε sufficiently high for the real wage of low-skill workers to decline asymptotically.
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We adopt a specification of heterogeneous productivity endowments of low-skill and high-skill
workers along the lines of Roy (1951). Let there be a unit mass of heterogeneous individuals,
indexed by j ∈ [0, 1] each with 2-dimensional endowment. Each is endowed with the ability to
supply one unit of low-skill labor and Γ (j) = (1+α)

α j1/α, α > 0 units of high-skill labor (the
exact distribution is of no crucial importance). Workers are thereby ranked in increasing order
of their endowment of high-skill abilities on [0, (1 + α)/α]. The parameter α governs the shape
of the ability distribution with α →∞ implying equal distribution of skills. We can show the
following proposition which generalizes Proposition 2.

Proposition 6. Consider two processes [Nt]
∞
t=0 and [Gt]

∞
t=0 where (Nt, Gt) ∈ (0,∞)× [0, 1] for

all t, such that Gt exists and there is asymptotic positive growth in Nt. Then if 0 < limt→∞Gt <
1, the asymptotic growth rate of wt is:28

gw∞ =
1 + α

1 + α+ β(σ − 1)
gY∞,

with
gY∞ = ψgN∞.

Proof. See Appendix

At all points in time there exists an indifferent worker (j̄t) where wt = (1 + α)/α (j̄t)
1/α

vt,
with all j ≤ j̄t working as low-skill workers and all j > j̄t working as high-skill workers. This
introduces an endogenous supply response as the diverging wages for low- and high-skill workers
encourages shifts from low-skill to high-skill jobs. The gradual reduction in supply dampens
the relative decline in low-skill wages. Hence, besides securing themselves a higher future wage
growth, low-skill workers who switch to high-skill occupation also benefit the remaining low-
skill workers. Although, the supply effect is important in the low-skill sector, the increase in
supply of high-skill workers is asymptotically irrelevant, and we still have gY∞ = ψgN∞. In fact,
provided that an amended version of assumption 23 holds (with H̄ ≡

´ 1
0 Γ(j)dj = 1 replacing

H), we can also extend the dynamic model of section 4 to this case. In particular, Proposition
3 remains unchanged (except for equation (24)).

Note, that as all changes in the stock of labor is driven by demand-side effects, wages and
employment will move in the same direction. Extending our analysis of middle-skill workers
to allow for switches between sector of employment could therefore reproduce the employment
patterns of ‘job polarization’ in addition to ‘wage polarization.

8 Conclusion

We construct an endogenous growth model of directed technical change with automation and
horizontal innovation. Automation allows for the introduction of machines, which are comple-
mentary to high-skill workers, but replace low-skill workers. The model features a continuous
shift of low-skill employment from recently automated firms to as of yet non-automated firms.
For general processes of technological development low-skill wages must grow asymptotically,

28If Gttends towards 1 sufficiently fast such that limt→∞(1−Gt)N
ψ(1−µ)(ε−1)

1+(ε−1)/(1−α)

t is finite then gw∞ = 1+α
α+ε

gY∞for
ε finite and wt is asymptotically finite (bounded below by ϕ̃−1) in the perfect substitute case.
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though at a lower rate than that of the economy. This result depends only on either some
new products initially being non-automated or on machines and low-skill workers not being
perfect substitutes in automated firms. In particular, neither our specific choice of innovation
technology in Section 4, nor the exogenous nature of the stock of low-skill labor, nor the fact
that all products are initially non-automated and can be automated with positive probability
are crucial. Other assumptions, however, are important for the result. First, when machines
and the consumption good are produced using the same technology, the constant real price
of machines implies that the rising relative price of low-skill workers compared with machines
must translate into increasing real wages. We show how a declining real price of machines can
lead to asymptotically declining real wages for low-skill workers. In addition, an elasticity of
substitution between products of more than 1 implies an asymptotically declining market share
to non-automated products and thereby an asymptotically declining factor share to low-skill
workers. Alternatively, a nested structure could allow an elasticity of substitution between
some sectors, say services and manufacturing, of less than than one as explored in Acemoglu
and Guerrieri (2008) and Autor and Dorn (2013). In addition new products could have an
exogenous higher productivity (as in Lloyd-Ellis, 1999). Either specification could secure a
higher growth rate for low-skill workers and they are each a topic for future research.

Moreover, our model delivers continuously rising inequality and a limited drop in the factor
share of labor, both of which are consistent with recent empirical evidence. It further captures
additional important features of income inequality such as the deceleration in income inequality
the decade following the early 90s and the polarization of the wage distribution. Finally,
automation and technological development are intrinsically linked to the international economy.
Linking automation of production processes with international trade and offshoring is a fruitful
path for future research.

9 Appendix (to be added)
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